
DOUBLE COSET FORMULAS FOR PROFINITE GROUPS

PETER SYMONDS

Abstract. We show that in certain circumstances there is a sort of double coset formula
for induction followed by restriction for representations of profinite groups.

1. Introduction

The double coset formula, which expresses the restriction of an induced module as a direct
sum of induced modules, is a basic tool in the representation theory of groups, but it is not
always valid as it stands for profinite groups. Based on our work on permutation modules
in [8], we give some sufficient conditions for a strong form of the formula to hold. These
conditions are not necessary, although they do often hold in interesting cases, and at the
end we give some simple examples where the formula fails.

We also formulate a weaker version of the formula that does hold in general.

2. Results

We work with profinite groups G and their representations over a complete commutative
noetherian local ring R with finite residue class field of characteristic p. There is no real loss
of generality in taking R = Ẑp. Our representations will be in one of two categories: the
discrete p-torsion modules DR(G) or the compact pro-p modules CR(G). These are dual by
the Pontryagin duality functor Hom(−, Q/Z), which we denote by ∗, so we will usually work
in DR(G). Our modules are normally left modules, so dual means contragredient. For more
details see [7, 8].

For any profinite G-set X and M ∈ DR(G) we let F (X,M) ∈ DR(G) denote the module
of continuous functions X → M , with G acting according to (gf)(x) = g(f(g−1x)), g ∈
G, f ∈ F (X, M), x ∈ X. We set F (X) = F (X, T ), where T = R∗, the Pontryagin dual of
the trivial module R.

When H, G are profinite groups with H ≤ G and M ∈ DR(H), we define the coinduced

module CoindG
H M ∈ DR(G) by CoindG

H M = F (G, M)H ∼= F (G)⊗̌H
M . Here H acts on the

right of G, and G acts on the left, so we have ((g, h)f)(x) = hf(g−1xh) for g, x ∈ G, h ∈
H, f ∈ F (G, M). The operation ⊗̌ on discrete modules is Pontryagin dual to the more
familar completed tensor product ⊗̂ on compact modules ([8] 2.4); it commutes with direct
limits.

The dual concept is induction: for N ∈ CR(H), IndG
H N = R[[G]]⊗̂HN , where R[[G]] is

the complete group algebra. This is related to coinduction by Pontryagin duality: IndG
H N ∼=

(CoindG
H N∗)∗.

These functors have most of the properties that one would expect by analogy with the
discrete case ([8] 2.4).
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Now if K ≤ G then ResG
K CoindG

H M = ResG
K(F (G)⊗̌H

M) and the action of K is via
its action on F (G) only. What we want to do is to decompose F (G), considered as a left
K ×H-module. The action of K ×H on G is given by (k, h)x = kxh−1 and the action on
F (G) by ((k, h)f)(x) = F (k−1xh), for h ∈ H, k ∈ K, g, x ∈ G.

The reader might prefer to think of the dual problem of decomposing R[[G]], but by
working in DR(G) we avoid having to deal with the topology.

What we have is a permutation module in the sense of [8]. Note that StabK×H(g) =
{(k, h) ∈ K ×H | kgh−1 = g} = {(gh, h) | h ∈ Kg ∩H}.

What we want to do is to decompose this into pieces of the form F ((K ×H)/S), where
S = Sg = StabK×H(g) for some g ∈ G.

For an H-module M we write gM for the gH-module which is isomorphic to M as an
R-module but where gh acts as h.

Lemma 2.1. F ((K×H)/S)⊗̌H
M ∼= CoindK

K∩gH ResHg

K∩gH gM in DR(K), where S = StabK×H(g).

Proof. F ((K×H)/S)⊗̌H
M ∼= F ((K×H)/S,M)H ∼= F (((K×(Kg∩H))/S)×Kg∩HH, M)H ∼=

F ((K × (Kg ∩H))/S,M)Kg∩H .
Regard g−1K as a (K × (Kg ∩H))-set by (k1, h1)g

−1k = h1g
−1kk−1

1 , h1 ∈ H, k, k1 ∈ K.
This action is clearly transitive, and StabK×(Kg∩H)(g) = S, so g−1K ∼= (K × (Kg ∩H)/S).
Now the last module in the chain of isomorphisms is isomorphic to F (g−1K, M)Kg∩H ∼=
F (K, gM)K∩gH ∼= CoindK

K∩gK gM . �

This shows that a double coset formula can be obtained as a consequence of a decompo-
sition of a permutation module. For example, we obtain the following easy and well-known
result.

Corollary 2.2. If H\G/K is finite then for any M ∈ DR(H) we have the usual double coset
formula ResG

K CoindG
H M ∼=

⊕
g∈K\G/H CoindK

K∩gH gM and dually for N ∈ CR(H) we have

ResG
K IndG

H N ∼=
⊕

g∈K\G/H IndK
K∩gH gN .

Proof. Since each orbit is closed and there are only finitely many orbits, we see that G ∼=∐
g∈K\G/H(K × H)/Sg is a disjoint union of open and closed subspaces, hence F (G) ∼=⊕
g∈H\G/K F ((K ×H)/Sg). Now use Lemma 2.1 and the discussion preceding it. �

The bewildered reader might wish to consult [1] 3.3.4, where a similar argument is used
in the more familiar context of finite groups.

Our more general decomposition of F (G) is based on [8] 3.21, but we will go over the
proof again because there the stabilizers were assumed to be finite and we do not want this
restriction.

All subgroups and sub-G-sets will be assumed to be closed.
If X is a G-set and Y ≤ X is a sub-G-set then we let F (X, Y ) denote the functions on

X that are zero on Y . Thus there is a short exact sequence F (X, Y )→ F (X)→ F (Y ). In
fact F (X, Y ) ∼= F (X/Y, ∗).

For the next four lemmas we will assume the following hypotheses: G is a profinite group,
H < G, X is a G-set, Y < X and if x ∈ X − Y then StabG(x) is conjugate to H in G.

Lemma 2.3. The G-module F (X, Y ) is a summand of a direct sum of terms CoindG
H T ∼=

F (G/H).
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Proof. The case of a free action, that is when H = 1, is dealt with in [6] 5.6 when Y = ∅
and in [8] 3.11 otherwise. Basically, the idea is to let N be an open normal subgroup of H
and prove the result for the G/N -set X/N ; then use the fact that, in this context, “a direct
limit of injectives is injective”.

The case of general H is almost the same as in [8] 3.17. If Y 6= ∅ then F (X, Y ) ∼= F (X/Y, ∗)
so we can assume that Y = ∗. The case when Y = ∅ is simpler and is left to the reader.

Now apply the case of a free action to the action of NG(H)/H on XH to see that F (XH , ∗)
is a summand of a sum of Coind

NG(H)/H
1 T ∼= Coind

NG(H)
H T ’s. Thus F (G×NG(H)X

H , G×NG(H)

∗) = CoindG
NG(H) F (XH , ∗) is a summand of a sum of CoindG

H T ’s. But the multiplication

map (G ×NG(H) XH)/(G ×NG(H) ∗) → X is a continuous map of compact Hausdorff sets,
hence a homeomorphism, so F (X, ∗) also has this form. �

Lemma 2.4. The short exact sequence F (XH , Y H) → F (XH) → F (Y H) is split over
NG(H)/H.

Proof. F (XH , Y H) is an injective module over NG(H)/H, by 2.3. �

Lemma 2.5. The short exact sequence F (XH ∪ Y, Y )→ F (XH ∪ Y )→ F (Y ) is split over
NG(H).

Proof. If Y H = ∅ then XH ∪ Y is a disjoint union and the result is clear. Otherwise, the
natural map XH/Y H → (XH ∪Y )/Y is a homeomorphism, so F (XH ∪Y, Y ) ∼= F (XH , Y H).

Consider the diagram

F (XH ∪ Y, Y ) −−−→ F (XH ∪ Y ) −−−→ F (Y )

∼=
y y y

F (XH , Y H) −−−→ F (XH) −−−→ F (Y H).

The bottom short exact sequence is split, by 2.4, hence the top one is also split. �

Lemma 2.6. The short exact sequence F (X, Y )→ F (X)→ F (Y ) is split over G.

Proof. Let s : F (XH ∪ Y ) → F (XH ∪ Y, Y ) be the splitting of the previous lemma. Define
s′ : F (X) → F (X, Y ) by (s′(f))(x) = (s((gf)|XH∪Y ))(gx), where f ∈ F (X), x ∈ X and
g ∈ G is such that gx ∈ XH .

It is easy to check that s′ is well defined, G-equivariant and a splitting. �

For any two subgroups A, B of G, we write A ≥G B if some G-conjugate of B is a subgroup
of A. We write A >G B if B is conjugate to a proper subgroup of A. Since G is compact we
can not have A >G A.

Given any G-set X, define:

XH = {x ∈ X| StabG(x) ≥ H}, X>H = {x ∈ X| StabG(x) > H},
X(H) = {x ∈ X| StabG(x) ≥G H}, X(>H) = {x ∈ X| StabG(x) >G H}.

Clearly XH is closed; so is X(H), because it is the image of the map G×XH → X, (g, x) 7→
gx. If there are only finitely many conjugacy classes of stabilizers then it is easy to check
that X>H and X(>H) are also closed in X.
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Theorem 2.7. Let X be a profinite G-set such that there are only finitely many conjugacy
classes of stabilizers S1, . . . , Sn. Then F (X) ∼= ⊕n

i=1F (X(Si), X(>Si)). In particular, F (X) is
a summand of a direct sum of the F (X/Si)’s.

Proof. We use induction on n; the case n = 0 is trivial. Let S1, say, be minimal among the
Si and their conjugates and let Y = ∪n

i=2X
(Si).

From 2.6 we have F (X) ∼= F (X,Y )⊕ F (Y ). But F (Y ) is of the right form by induction
and so is F (X, Y ) by 2.3. �

Corollary 2.8. Let H, K ≤ G be profinite groups and let K×H act on G by (k, h)g = kgh−1.
Suppose that the number of conjugacy classes of stabilizers of the action of K ×H on G is
finite and let M ∈ DR(H). Then ResG

K CoindG
H M is a summand of a direct sum of modules

of the form CoindK
K∩gH gM .

Dually, if N ∈ CR(G) then ResG
K IndG

H N is a summand of a direct product of modules of
the form IndK

K∩gH gN .

Proof. This follows immediately from 2.7 and 2.1, using K×H as the group and G as X. �

Remark. If F E H acts trivially on M then we may replace X = G by X = G/F in the
above argument. For example, if M is trivial, so we can take F = H, then we are just
considering G/H as a left K-set.

Remark. There are various general conditions that will ensure that the hypotheses of the
theorem hold. For example if each K ∩ gH is finite then it certainly suffices to know that
K × H has only finitely many conjugacy classes of finite subgroups. This is the case if H
and K are p-adic analytic by [2]. More generally it holds if H and K are pro-p and virtually
of type FP, by [8] 6.15.

For an interesting example of a calculation that uses these ideas see [3, 9].

The statement of the theorem says only a summand of a direct sum of because of the
nature of the proof of 2.3. If we know that this module is in fact free then the statement
can be made to look more like the usual double coset formula.

Corollary 2.9. In the circumstances of 2.8, let J = K ×H and write X for G considered
as a J-set as in 2.8. If either both H and K are pro-p groups or if G is countably based then

ResG
K CoindG

H M ∼=
⊕

S

F (XS/NJ(S), X>S/NJ(S))⊗̌CoindK
K∩gH gM,

where S runs through representatives of the conjugacy classes of stabilizers and S is the
stabilizer of g ∈ X. The action of K is on the second factor only.

Dually,

ResG
K IndG

H N ∼=
∏
S

R[[XS/NJ(S), X>S/NJ(S)]]⊗̂ IndK
K∩gH gN.

Proof. The proof is the same as that of 2.8 except that we need to identify each term
F (X(Si), X(>Si)) in the statement of 2.7 as an explicit sum of F (X/Si)’s. Let J = K × H
and write S for some Si.

Recall that, for a pro-p group P , every projective module is a product of R[[P ]]’s by
[11] 7.5.4, 7.4.1 or [8] 2.5, so every injective module is a sum of F (P )’s. We can tell how
many by considering the fixed point module; if we denote the injective module by I then
I ∼= IP ⊗̌F (P ).
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But F (X(Si), X(>Si))J ∼= (CoindJ
NJ (S) F (XS, X>S))J ∼= F (XS, X>S)NJ (S) and F (XS, X>S)

is an injective module over NJ(S)/S by 2.3, so F (XS, X>S) ∼= F (XS, X>S)NJ (S)⊗̌F (NJ(S)/S) ∈
DR(NJ(S)). Now observe that F (XS, X>S)NJ (S) ∼= F (XS/NJ(S), X>S/NJ(S)).

If G is countably based then so is XS, so the quotient map XS → XS/NJ(S) has a
continuous section s by [6] 5.6.7. But then the map Im(s) × NJ(S)/S → XS induces
an isomorphism F (XS, X>S) ∼= F ((XS/NJ(S)) × NJ(S)/S, (X>S/NJ(S)) × NJ(S)/S) ∼=
F (XS/NJ(S), X>S/NJ(S))⊗̌F (NJ(S)/S).

In either case F (X) ∼= ⊕SF (XS/NJ(S), X>S/NJ(S))⊗̌F (J/S), and hence the claim. �

3. The General Case

A completely different approach to these formulas is given by Mel’nikov [4, 5]. He succeeds
in expressing R[[X]] ∼=

⊕
x∈G\X R[[G/ StabG(x)]], where the ⊕ is not normally the usual

direct sum, but some sort of completion of it. For example, if G is the trivial group then we
have R[[X]] ∼=

⊕
x∈X R.

This ⊕ does, however, have the good property of commuting with Tor.
By the discussion in section 2, we can now write ResG

K IndG
H M ∼=

⊕
g∈H\G/K IndK

Hg∩K g−1M ,
suitably interpreted, for any H, K ≤ G.

We now present a result that is essentially dual to this.
Recall that for any N ∈ CR(G), M ∈ DR(G) there are well-behaved Galois Ext-groups

Extn
G(N, M) (see [6] 6.1, [8] 2.6).

For any left G-set X let Ox(G, X) = Gx denote the orbit of x ∈ X. By abuse of notation
we will often allow x ∈ X/G and write just Ox. The inclusion of Ox in X induces a restriction
map rx : Extn

G(N, F (X))→ Extn
G(N, F (Ox)) for any N ∈ CR(G).

We give all the groups Extn
G(N, F (Ox)) the discrete topology and form their direct product,

giving it the product topology. The rx combine to induce a map θ : Extn
G(N, F (X)) →∏

x∈X/G Extn
G(N, F (Ox)).

When we take n = 0 and N = R[[G]] this reduces to the more basic homomorphism
θ : F (X)→

∏
x∈X/G F (Ox).

Theorem 3.1. The map θ is injective with dense image.

Proof. The map θ is certainly an isomorphism when X is finite.
In order to simplify the notation we write E(−) for Extn

G(N, F (−)). Write X = lim←−Xi,
an inverse limit of finite G-sets indexed by some set I (this is always possible by [6] 5.6.4).
Thus there are G-equivariant morphisms pi : X → Xi and we say that Xj covers Xi if there
is a morphism Xj → Xi in the system. We know that E(X) ∼= lim−→E(Xi).

For any a ∈ E(X) there is an s ∈ I and an as ∈ E(Xs) such that a = p∗sas. Suppose that
θ(a) = 0 and consider θ(as).

Given x ∈ X, the restriction of ps to Ox(G, X) yields a map E(Ops(x)(G, Xs))→ E(Ox(G, X)),
under which the image of rps(x)as is zero. Thus for each x ∈ X there is some Xi, say Xi(x),
that covers Xs and such that the image of rps(x)as under the natural map E(Ops(x)(G, Xs))→
E(Opi(x)(x)(G, Xi(x))) is zero.

Let Yx = p−1
i(x)(Opi(x)(x)(G, Xi(x))). The Yx, x ∈ X provide an open cover of X so, by

compactness, there is an open subcover Yi1 , . . . , Yiu . Let Xt be a set that covers all of
Xi1 , . . . Xiu .
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By construction, the image of θ(as) in
∏

x∈Xt/G E(Ox(G, Xt)) is zero. It follows that the

image of as in E(Xt) must be zero, so a = 0, proving injectivity.
For the density statement, notice that it just means that, given a finite set of disjoint orbits

Ox1 , . . . , Oxv and elements at ∈ E(Oxt), we can find an a ∈ E(X) such that rxt(a) = at for
t = 1, . . . , v.

There must be some Xi, say Xk, such that the orbits Oxt(G, Xk) for t = 1, . . . , v are
distinct. Also, for each xt there is an Xi, say Xi(t), such that at is the image of some
āt ∈ E(Opi(t)(xt)(G, Xi(t))). Let Xw, say, cover Xk and all the Xi(t) and let ãt be the image of

āt in E(Opw(xt)(G, Xw)).
Certainly there is an element ã ∈ E(Xw) such that rpw(xt)(ã) = ãt for each t, so if a denotes

the image of ã in E(X) then rxt(a) = at for t = 1, . . . , v, as required. �

Corollary 3.2. Whenever we have subgroups H, K ⊆ G, the K-equivariant map

F (G/H)→
∏

g∈K\G/H

F (Og(K, G/H)) ∼=
∏

x∈K\G/H

F (K/(K ∩ gH))

and, for N ∈ CR(K), M ∈ DR(H), the map

Extn
K(N, CoindG

H M)→
∏

g∈K\G/H

Extn
K(N, F (Og(K, G/H))⊗̌H

M) ∼=
∏

g∈K\G/H

Extn
K∩gH(N, gM).

are injective with dense image.

Proof. The first part follows immediately from 3.1 and 2.1 in the same way as 2.8.
For the second part we also consider G as a K × H-set, but first let X be an arbitrary

K ×H-set on which H acts freely and consider Extn
K×H(N⊗̂M∗, F (X)).

Since H acts freely, F (X) is injective over H. So a standard spectral sequence ar-
gument shows that Extn

K×H(N⊗̂M∗, F (X)) ∼= Hn(K, HomH(N⊗̂M∗, F (X))) and in turn
this is isomorphic to Hn(K, Hom(N, HomH(M∗, F (X)))) ∼= Extn

K(N, HomH(M∗, F (X))) ∼=
Extn

K(N, F (X)⊗̌H
M).

If we do take X = G then this becomes Extn
K(N, CoindG

H M). But we can also decompose
F (X) into orbits first and we then obtain the terms in the middle direct product. These
are isomorphic to those in the right hand product by 2.1 and Shapiro’s Lemma. Now apply
3.1. �

Remark. A theorem for which this result plays a key role in the proof can be found in [10].

4. Example

Let G be the group of matrices of the form

1 a b
0 1 c
0 0 1

 with a ∈ Fp and b, c ∈ Fp[[T ]]. This

acts on V = Fp[[T ]]2, considered as column vectors

x
y
1

. This action is transitive and the

stabilizer of

x
y
1

 consists of those matrices with c = 0 and b = −ay, so is cyclic of order p.
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Let H consist of those matrices with b = c = 0: then V ∼= G/H. Let K consist of those
matrices with c = 0 (an infinite elementary abelian p-group) and consider V as a K-set.

Let F denote the continuous functions with values in Fp. Suppose that some F (K/S)
is a summand of F (V ) as a K-module, where S is a stabilizer of some point of V . Then
because of the action of G, which conjugates the S’s, every F (K/S) is a summand. These are
pairwise non-isomorphic and their endomorphism rings are local, by [9]. Thus, by the proof
of the Krull-Schmidt property, any finite direct sum of distinct F (K/S)’s is a summand of
F (V ), hence the full direct sum ⊕SF (K/S) is a submodule of F (V ). But F (V ) is countable
and the indexing set of the S’s is not: a contradiction.

Thus there can be no formula of the type discussed above for ResG
K CoindG

H Fp.

There is a similar example with a, b, c ∈ Ẑp. In this case K ∼= Ẑ2
p and each S ∼= Ẑp.
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