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Abstract. We prove a recursive formula for the exterior and symmetric powers of modules
for a cyclic 2-group. This makes computation straightforward. Previously, a complete
description was only known for cyclic groups of prime order.

1. Introduction

The aim of this paper is to provide a recursive procedure for calculating the exterior and
symmetric powers of a modular representation of a cyclic 2-group. Let G ∼= C2n be a cyclic
group of order 2n and k a field of characteristic 2. Recall that there are 2n indecomposable
kG-modules V1, V2, . . . , V2n for which dimVr = r.

Theorem 1.1. For all n ≥ 1, r ≥ 0 and 0 ≤ s ≤ 2n−1 we have

Λr(V2n−1+s) ∼=
⊕
i,j≥0

2i+j=r

Ωi+j
2n (Λi(Vs)⊗k Λj(V2n−1−s))⊕ tV2n ,

where t is a non-negative integer chosen so that both sides have the same dimension.

Here Ω2n is the syzygy or Heller operator over C2n , so Ω2nVs = V2n−s for 1 ≤ s ≤ 2n.
The group action on V1, . . . , V2n−1 factors through C2n−1 so that exterior powers of these
modules can be computed by applying the formula for this smaller group. In particular, one
can determine the exterior powers on the right hand side of the formula in this way. We
also show that there is a simple recursive procedure for calculating tensor products. Since
Λ(A⊕B) ∼= Λ(A)⊗Λ(B), we obtain a complete recursive procedure for calculating exterior
powers of all possible modules. It is sufficiently efficient that it is easy to calculate even by
hand far beyond the range that was previously attainable by machine computation.

For symmetric powers we use the following result from [21].

Theorem 1.2. For all n ≥ 1, r ≥ 0 and 0 ≤ s ≤ 2n−1 we have

Sr(V2n−1+s) ∼=ind Ωr′

2nΛr′(V2n−1−s),

where 0 ≤ r′ < 2n and r′ ≡ r (mod 2n). Here the symbol ∼=ind means up to direct summands
induced from subgroups H � G.

Thus a knowledge of the exterior powers determines the symmetric powers up to induced
summands. In fact it is shown in [21] how such a formula determines the symmetric powers
completely, using a recursive procedure.

This project was supported by the Deutsche Forschungsgemeinschaft under the project KE 964/1-1 (“In-
variantentheorie endlicher und algebraischer Gruppen”).
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Formulas for the exterior and symmetric powers of a module for a cyclic group of prime
order p were given by Almkvist and Fossum [1] and Renaud [19]. These were extended to
cyclic p-groups by Hughes and Kemper [14] provided that the power is at most p − 1.
A formula for Λ2 in the case of cyclic 2-groups was given by Gow and Laffey [11]. Also
Kouwenhoven [15] obtained important results on exterior powers of modules for cyclic p-
groups, including recursion formulas for Λ(Vq±1) where q is a power of p. For p = 2 these
formulas are special cases or direct consequences of Theorem 1.1, so we obtain independent
proofs for some of the results in [11, 15].

Our strategy is to consider Λ(V2n−1+s) as the quotient of S(V2n−1+s) by the ideal generated
by the squares of elements of V2n−1+s. It turns out that we need to consider an intermediate
ring S̃(V2n−1+s), in which we only quotient out the squares of the elements of Vs ⊆ V2n−1+s.
We show that S̃r(V2n−1+s) ∼=ind Λr(V2n−1+s) for r < 2n. But S̃(V2n−1+s) can be resolved by
the Koszul complex over S(V2n−1+s) on the squares of the elements of a basis for Vs. We
show that this Koszul complex is separated in the sense of [21], that is that the image of a
boundary map is contained in a projective submodule. This leads to the formula

S̃r(V2n−1+s) ∼=proj

⊕
2i+j=r

Ωi
2n(Λi(Vs)⊗k Sj(V2n−1+s)),

where the symbol ∼=proj means up to projective summands. Using Theorem 1.2, the right
hand side is easily seen to be equal to the right hand side of the formula in Theorem 1.1 mod-
ulo induced summands. This yields the formula of Theorem 1.1 modulo induced summands.
The strengthening to an equality modulo just projective summands is a formal inductive
argument.

We would like to thank Dikran Karagueuzian for the calculations that were very helpful
in discovering the formula of Theorem 1.1.

2. Koszul Complexes

Let G be a finite group, H a subgroup of G and k a field of characteristic p > 0. All tensor
products will be over k if not otherwise specified. We recall some general facts about chain
complexes of kG-modules from [21, Section 3].

Definition 2.1. ([21, Definition 3.2]) A chain complex C∗ of kG-modules is called:

(a) acyclic if it is 0 in negative degrees and it only has homology in degree 0;
(b) weakly induced from H if each module is induced from H, and weakly induced from H

except in degrees I if each Ci, i 6∈ I, is induced from H;
(c) separated at Ci if Im(di+1)→ Ci factors through a projective kG-module;
(d) separated if it is separated at each Ci.

Write Bi for Im(di+1) ⊆ Ci. If the inclusion Bi ↪→ Ci factors through a projective then
it factors through the injective hull of Bi, call it Pi (injective is equivalent to projective for
modular representations), and Pi ↪→ Ci is injective since it is so on the socle. Thus we can
write Ci = Pi ⊕ C ′i and Bi ⊆ Pi.

Lemma 2.2. ([21, Lemma 3.9]) If the chain complexes C∗, C
′
∗ of kG-modules are separated

then so is the (total) tensor product C∗ ⊗ C ′∗. Similarly for a product of finitely many chain
complexes.
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Proof. Let Pi be a projective module such that Im(di+1) ⊆ Pi ⊆ Ci and similarly for P ′i .
Then, summing over all degrees, Im(d⊗ d′) ⊆ P ⊗C ′+C ⊗P ′ where P :=

⊕
i Pi and P ′ :=⊕

i P
′
i . There is a short exact sequence 0→ P⊗P ′ → P⊗C ′⊕C⊗P ′ → P⊗C+C⊗P → 0.

The first two terms are projective, hence so is the third. �

We need to consider tensor-induced complexes. For details of the construction see [4, II
4.1].

Lemma 2.3. Suppose that every elementary abelian p-subgroup of G is conjugate to a sub-
group of H, and let C∗ be a complex of kH-modules that is separated. Then the tensor-induced
complex C∗↑⊗GH is also separated.

Proof. By the proof of Lemma 2.2 above, the image Im(d↑⊗GH ) is contained in

P ⊗ C ⊗ · · · ⊗ C + C ⊗ P ⊗ · · · ⊗ C + · · ·+ C ⊗ C ⊗ · · · ⊗ P,
which is a kG-submodule of C∗↑⊗GH . But the same proof shows that this module is projective
on restriction to H, so it is projective, by Chouinard’s Theorem [7, Corollary 1.1]. �

The next two results comprise a variation on [21, Proposition 3.3] and have the same
proof.

Proposition 2.4. Let H be an arbitrary subgroup of G. Suppose that the complex K∗ :
Kw → · · · → K0 of kG-modules is:

(a) acyclic,
(b) weakly induced from H except in at most one degree and
(c) K∗ is separated on restriction to H.

Then K∗ is separated.

Recall that the Heller translate ΩV of a kG-module V is defined to be the kernel of the
projective cover P (V ) → V and ΩiV for i ≥ 1 denotes Ω iterated i times. Similarly Ω−1V
is the cokernel of the injective hull V → I(V ) and Ω−iV for i ≥ 1 is its iteration. We
let Ω0V denote V with any projective summands removed. These have the properties that
ΩiΩjV ∼= Ωi+jV and that if V is induced so is ΩiV .

Lemma 2.5. Suppose that the complex K∗ : Kw → · · · → K0 of kG-modules is:

(a) acyclic with H0(K∗) = L, and
(b) separated.

Then L ∼=proj K0 ⊕ Ω−1K1 ⊕ Ω−2K2 ⊕ · · · ⊕ Ω−wKw.

Let V be a kG-module, finite-dimensional as a k-vector space, and W a submodule of V .
We write S = S(V ) =

⊕∞
r=0 S

r(V ) for the symmetric algebra on V and Λ(W ) =
⊕∞

r=0 Λr(W )
for the exterior algebra on W . For r < 0 let Sr(V ) denote the 0 module.

Definition 2.6. Let W be a submodule of a kG-module V and let W p denote the kG-
submodule of Sp(V ) spanned by the p-th powers of elements of W . Let K(V,W p) denote
the Koszul complex of graded kG-modules:

· · · d−→ S(V )⊗ Λ3(W p)
d−→ S(V )⊗ Λ2(W p)

d−→ S(V )⊗W p d−→ S(V ),

where d(f ⊗wp1 ∧w
p
2 ∧· · ·∧w

p
i ) =

∑i
j=1(−1)j+1fwpj ⊗w

p
1 ∧· · ·∧ ŵ

p
j ∧· · ·∧w

p
i for wj ∈ W and

f ∈ S(V ). We write Kr(V,W p) when we consider the complex K(V,W p) in grading-degree r.
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If k = F2 then the squaring map gives an isomorphism between W and W 2, so we can
regard W 2 as a copy of W in degree 2 equipped with a squaring map into S2(V ). From this

point of view, the boundary map is given by d(f ⊗ w1 ∧ w2 ∧ · · · ∧ wi) =
∑i

j=1 fw
2
j ⊗ w1 ∧

· · · ∧ ŵj ∧ · · · ∧ wi for wj ∈ W and f ∈ S(V ).
We will normally take the second point of view, so we will assume that k = F2 in a large

part of this paper. Since any kC2n-module can be written in F2, this is not a significant
restriction.

Lemma 2.7. In the context of Definition 2.6, the complex K(V,W p) is acyclic and its
homology in degree 0 is S(V )/(W p), where (W p) is the ideal generated by all elements wp,
w ∈ W .

Proof. If {w1, . . . , wr} is a basis for W then {wp1, . . . , wpr} is a regular sequence in S(V ) and
it spans W p. This is now a standard result about Koszul complexes. �

Lemma 2.8. Let V , V ′ be kG-modules, finite-dimensional as k-vector spaces and let W , W ′

be submodules of V and V ′, respectively. The complex K(V ⊕ V ′, (W ⊕W ′)p) is isomorphic
to the (total) tensor product K(V,W p)⊗K(V ′,W ′p) as a complex of graded kG-modules.

Proof. This is analogous to [21, Lemma 3.8]. �

We also need to deal with tensor induction of graded modules and complexes.

Lemma 2.9. Let H be a subgroup of G and let V,W be kH-modules. Then S(V ↑GH) ∼=
S(V ) ↑⊗GH , Λ(V ↑GH) ∼= Λ(V ) ↑⊗GH as graded kG-modules, and if the characteristic of k is 2
then K(V ↑GH , (W ↑GH)2) ∼= K(V,W 2)↑⊗GH as complexes of graded kG-modules.

Without the restriction on the characteristic of k we would have to deal with the sign
convention that appears in the definition of the action of G on the tensor-induced complex.

Proof. Let {gi} be a set of coset representatives for G/H and write V ↑GH= ⊕gi ⊗ V . The
formulas now follow from the usual formulas for S and Λ of a sum and the definition of the
group action on a tensor induced module. �

3. Modules for Cyclic 2-Groups

From now on, let G = 〈g〉 ∼= C2n be a cyclic group of order 2n, n ≥ 1, and k a field
of characteristic 2. We write a(G) for the Green ring of kG-modules. Up to isomorphism,
there are 2n indecomposable kG-modules V1, V2, . . . , V2n and we choose the notation so that
dimk(Vi) = i. For convenience we write V0 for the 0 module. The generator g ∈ G acts on Vi
with matrix a Jordan block with ones on the diagonal. Choose a k-basis {x1, x2, . . . , xn}
of Vn such that gxi = xi + xi−1 for all 2 ≤ i ≤ n and gx1 = x1. Each element of S(Vi) can
be written uniquely as a polynomial in x1, . . . , xi, and for j ≤ i, we can identify Vj with
the kG-submodule of Vi spanned by x1, x2, . . . , xj. Each Vi is uniserial with composition
series 0 < V1 < V2 < · · · < Vi−1 < Vi. Note that for i ≤ 2n−1 the kernel of Vi is nontrivial
and so Vi can be identified with the i-dimensional indecomposable module for the quotient
group C2n−1 .

Decompositions of tensor products into indecomposables have been studied by several
authors, see for example [2, 3, 9, 13, 16, 17, 18, 20]. In our case, this decomposition can
easily be computed using the Heller translate Ω. We write Ω2n instead of Ω when we want
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to emphasize that we are working with modules for the group C2n . It is easy to check that
Ω2nVi ∼=proj V2n−i for 0 ≤ i ≤ 2n, where proj means modulo projective modules for C2n .

Recall that Ω2n(V ⊗ V ′) ∼=proj (Ω2nV )⊗ V ′, where the projective part can be determined
by comparing dimensions. For cyclic groups, Ω2

2n
∼=proj Id and Ω2nV ⊗ Ω2nV

′ ∼=proj V ⊗ V ′.
This provides an easy recursive method for calculating the decomposition of tensor products
in the case of cyclic 2-groups.

In order to calculate Va ⊗ Vb, we may assume a ≥ b and write a = 2r − a′ for the smallest
possible r such that a′ ≥ 0. Then Va ⊗ Vb ∼= (Ω2rVa′) ⊗ Vb ∼= Ω2r(Va′ ⊗ Vb) modulo copies
of V2r . If b ≥ 2r−1 then it is more efficient to write b = 2r − b′ too.

Example. For V9, V13 ∈ a(C16) we have: V9 ⊗ V13
∼= (Ω16V7)⊗ (Ω16V3) ∼= (V7 ⊗ V3)⊕ copies

of V16. By comparing dimensions we get V9⊗V13
∼= (V7⊗V3)⊕6V16. Now we consider the non-

faithful module V7⊗V3 as a module for the factor group ∼= C8 and get V7⊗V3
∼= Ω8(V1⊗V3)⊕

copies of V8. Again by comparing dimensions we obtain V7⊗V3
∼= Ω8(V1⊗V3)⊕2V8

∼= V5⊕2V8

and hence V9 ⊗ V13
∼= V5 ⊕ 2V8 ⊕ 6V16.

Let H = 〈g2〉 be the unique maximal subgroup of G. For 1 ≤ j ≤ 2n−1 we also denote the
indecomposable kH-module of dimension j by Vj. Of course, this is an abuse of notation,
but we will always make it clear whether we consider Vj as a kG-module or as a kH-module.
An elementary calculation with Jordan canonical forms shows that the restriction operator
↓GH : a(G) → a(H) is given by Vi ↓GH= Vi′ ⊕ Vi′′ where Vi′ is the kH-submodule generated
by {xi, xi−2, xi−4, . . . } and Vi′′ is the kH-submodule generated by {xi−1, xi−3, xi−5, . . . }. In
particular, we have (i′, i′′) = ( i+1

2
, i−1

2
) if i is odd, and (i′, i′′) = ( i

2
, i

2
) if i is even. The

induction operator ↑GH : a(H)→ a(G) is given by Vj↑GH= V2j for 1 ≤ j ≤ 2n−1.
We say that a kG-module is induced if it is induced from proper subgroups. Let aP (G)

be the submodule of a(G) generated by the projective modules and aI(G) the submodule
generated by the induced modules. Notice that aP (G) and aI(G) are ideals of a(G) and that
induction maps aP (H) into aP (G) and aI(H) into aI(G), but restriction only maps aP (G)
into aP (H).

The following lemmas deduce information on kG-modules and short exact sequences of
kG-modules from their restriction to H.

Lemma 3.1. Let A be a kG-module such that A↓GH is induced from a proper subgroup of H.
Then A is induced from H.

Proof. We can assume that A is indecomposable. Since A↓GH is induced, each indecomposable
direct summand of A↓GH has even dimension. Thus dimk(A) is even and so A is induced. �

As in the introduction we write ∼=ind and ∼=proj for isomorphisms modulo induced and
modulo projective summands, respectively.

Lemma 3.2. Let A, B be induced kG-modules such that A↓GH∼=proj B↓GH . Then A ∼=proj B.

Proof. Since A is induced, A↓GH↑GH∼= 2A; the same is true for B. Inducing a projective yields
a projective, so we obtain 2A ∼=proj 2B and the claim follows. �

Lemma 3.3. Let A and B be kG-modules such that A ∼=ind B and A↓GH ∼=proj B↓GH . Then
A ∼=proj B.

Proof. We have A ⊕ X ∼= B ⊕ Y for some induced modules X and Y . On restriction, we
obtain X ↓GH∼=proj Y ↓GH and so X ∼=proj Y by Lemma 3.2. Now cancel the non-projective
summands of X and Y in the original formula. �



EXTERIOR AND SYMMETRIC POWERS OF MODULES FOR CYCLIC 2-GROUPS 6

Lemma 3.4. Let 0 → A → B → C → 0 be a short exact sequence of kG-modules that is
separated at B on restriction to H and such that C ∼=ind B ⊕ Ω−1

2nA as kG-modules. Then
the sequence is separated at B (as a sequence of kG-modules).

Proof. The hypotheses imply that there are induced modules X and Y such that C ⊕X ∼=
B ⊕ Ω−1

2nA ⊕ Y and also C↓GH ∼=proj B↓GH ⊕ Ω−1
2n−1A↓GH ∼=proj (B ⊕ Ω−1

2nA)↓GH by Lemma 2.5
applied to 0 → A↓GH → B↓GH → 0. It follows that X↓GH ∼=proj Y ↓GH , hence, by Lemma 3.2,
X ∼=proj Y and then C ∼=proj B ⊕ Ω−1

2nA.

Thus our short exact sequence is 0 → A
d→ B

e→ B ⊕ Ω−1
2nA → 0, up to projective

summands. Consider the long exact sequence for Tate Ext:

(1) · · · → HomkG(A,A)
d∗→ HomkG(A,B)

e∗→ HomkG(A,B ⊕ Ω−1
2nA)→ Ext1(A,A)→ · · · ,

where HomkG denotes homomorphisms modulo those that factorize through a projective.
Since Ext1(A,A) ∼= HomkG(A,Ω−1

2nA) we have

dim Im(e∗) + dim Ext1(A,A) ≥ dim HomkG(A,B ⊕ Ω−1
2nA) =

dim HomkG(A,B) + dim HomkG(A,Ω−1
2nA) =

dim HomkG(A,B) + dim Ext1(A,A)

and therefore dim Im(e∗) ≥ dim HomkG(A,B). Hence e∗ is injective and so d∗ = 0. But
d = d∗(IdA), so d factors through a projective, as required. �

The next lemma describes tensor induction from H to G modulo induced modules and
gives information on the structure of the exterior algebra Λ(V2j) as a kG-module in terms
of the kH-module Λ(Vj).

Lemma 3.5. Let r, j be integers such that r ≥ 0 and 1 ≤ j ≤ 2n−1. We consider Vj as a
kH-module and V2j = Vj↑GH as a kG-module.

(a) Let A and B be kH-modules. Then (A ⊕ B) ↑⊗GH ∼= A ↑⊗GH ⊕B ↑⊗GH ⊕X for some
induced kG-module X.

(b) There is an induced kG-module X such that Λ2r(V2j) ∼= Λr(Vj)↑⊗GH ⊕X.
(c) If r is odd, then the kG-module Λr(V2j) is induced from H.
(d) If j is even, then the kG-module Vj↑⊗GH is induced from H.
(e) If j is odd, then Vj↑⊗GH ∼=ind V1.

Proof. (a) follows from [4, I 3.15.2 (iii)].

(b) By the construction of induced modules, we have V2j = Vj ⊕ gVj as vector spaces and
the action of the generator g of G on V2j is given by g(v + gv′) = g2v′ + gv. So there is a
natural isomorphism

Λ2r(V2j) = Λ2r(Vj ⊕ gVj) ∼=
⊕

r′,r′′≥0
r′+r′′=2r

(Λr′(Vj)⊗ Λr′′(gVj))

of vector spaces, and thus

Λ2r(V2j) ∼= (Λr(Vj)⊗ gΛr(Vj))⊕
⊕

0≤r′<r′′
r′+r′′=2r

((Λr′(Vj)⊗ Λr′′(gVj))⊕ g(Λr′(Vj)⊗ Λr′′(gVj))).
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Via this isomorphism, the right hand side becomes a kG-module and from the action of g,
we see that (Λr′(Vj) ⊗ Λr′′(gVj)) ⊕ g(Λr′(Vj) ⊗ Λr′′(gVj)) is a kG-submodule isomorphic to
(Λr′(Vj)⊗ Λr′′(gVj))↑GH and Λr(Vj)⊗ gΛr(Vj) is a submodule isomorphic to Λr(Vj)↑⊗GH .

(c) The proof is similar to that of (b). Note that, if r is odd, the summand corresponding
to r′ = r′′ which leads to the tensor induced submodule in (b) does not occur.

(d),(e) We say that a kG-module is induced except for possibly one trivial summand if it is
isomorphic to A↑GH or A↑GH⊕V1 for some kH-module A. We prove (d) and (e) simultaneously
by showing that for all 1 ≤ j ≤ 2n−1 the kG-module Vj↑⊗GH is induced except for possibly
one trivial summand. The claim then follows from the fact that dimk(Vj↑⊗GH ) is even if and
only if j is even.

The proof is by induction on j. Because V1↑⊗GH ∼= V1 we can assume j > 1. If j is
even, then the kH-module Vj is induced from a proper subgroup of H. So [4, I 3.15.2 (iv)]
implies that Vj↑⊗GH is a direct sum of modules induced from H (even from proper subgroups
of H). Assume that j is odd. So we can write j = 2m + j′ with 1 ≤ m < n − 1 and
1 ≤ j′ < 2m. First, we treat the case j′ = 1. By the Mackey formula for tensor induction
[4, I 3.15.2 (v)] we have Vj ↑⊗GH ↓GH∼= V2m+1 ⊗ V2m+1

∼= V1 ⊕ (2m − 2)V2m ⊕ 2V2m+1 , and so
Vj↑⊗GH ∼= V1 ⊕ (2m−1 − 1)V2m+1 ⊕ V2m+2 , which is induced up to one trivial summand. Now
assume j′ > 1. Then Vj′ ⊗ V2m+1

∼= Vj ⊕ (j′ − 1)V2m as kH-modules. By [4, I 3.15.2 (i)]
and (a) we get

(2) (Vj′↑⊗GH )⊗ (V2m+1↑⊗GH ) ∼=ind (Vj↑⊗GH )⊕ (j′ − 1)(V2m↑⊗GH ).

By induction and the case j′ = 1, we know that the left hand side of (2) is induced except
for possibly one trivial summand. Hence, Vj↑⊗GH is induced except for possibly one trivial
summand. �

We can now see that the symmetric and exterior powers of even dimensional indecompos-
able modules have a particularly restricted form.

Corollary 3.6. Suppose that we have non-negative integers j, s, t, u with u, j odd and s ≥ 1.
Furthermore, assume that 2tu < 2n and 2sj ≤ 2n. Then Λ2tu(V2sj) and S2tu(V2sj) are both

induced unless t ≥ s. If t ≥ s then Λ2tu(V2sj) ∼= mV1 ⊕X and S2tu(V2sj) ∼= m′V1 ⊕ Y , where
X, Y are induced modules and m and m′ are the numbers of non-induced indecomposable
summands in Λ2t−su(Vj) and Λ2t−su(V2n−s−j), respectively.

Proof. Using Lemma 3.5 (a),(b),(d) we see that, up to induced direct summands, Λ2tu(V2sj)
is tensor-induced from a subgroup of index 2min{s,t}. If t < s then, up to induced direct
summands, it is tensor-induced from Λu(V2s−tj) and thus is induced, by part (c) of the same
lemma. If t ≥ s then, again up to induced direct summands, it is tensor-induced from
Λ2t−su(Vj); the description given is then seen to be valid using parts (a), (d) and (e). The

case of S2tu(V2sj) reduces to that of Λ2tu(V2n−2sj), by Theorem 1.2. �

Corollary 3.7. If X is a kG-module such that every direct summand has dimension divisible
by 4 then S2(X) is induced.

Proof. By the identity S2(A ⊕ B) ∼= S2(A) ⊕ S2(B) ⊕ A ⊗ B, we may assume that X is
indecomposable, say X = V4u. The claim now follows from Corollary 3.6. �
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In the proof of our main result we will often have information only modulo induced direct
summands. The following definition and lemmas deal with the splitting of maps in such
situations.

Recall that a map f : A→ B of kG-modules is split injective, if there is a map g : B → A
of kG-modules such that g ◦ f = IdA. For maps f : A→ B, f ′ : A→ B′ of kG-modules we
write (f, g) : A→ B ⊕B′, a 7→ (f(a), f ′(a)).

Definition 3.8. Let f : A → B be a map of kG-modules. We say that f is split injective
modulo induced summands if there exists an induced kG-module X and a map f ′ : A→ X
of kG-modules such that (f, f ′) : A→ B ⊕X is split injective.

Split injective modulo induced summands behaves in much the same way as split injective.

Lemma 3.9. Given maps f : A→ B, g : B → C and h : D → E of kG-modules:

(a) if f and g are split injective modulo induced summands then so is g ◦ f ,
(b) if g ◦ f is split injective modulo induced summands then so is f ,
(c) if f , h are split injective modulo induced summands then so is f⊗h : A⊗D → B⊗E.

Proof. (a) By assumption, we have induced modules X, Y and maps f ′ : A→ X, u : B → A,
u′ : X → A, g′ : B → Y , v : C → B, v′ : Y → B such that u ◦ f + u′ ◦ f ′ = IdA and
v ◦ g + v′ ◦ g′ = IdB. We define (g ◦ f)′ : A→ X ⊕ Y, a 7→ (f ′(a), g′ ◦ f(a)), w : C → A, c 7→
u ◦ v(c) and w′ : X ⊕Y → A, (x, y) 7→ u′(x) +u ◦ v′(y). Then w ◦ (g ◦ f) +w′ ◦ (g ◦ f)′ = IdA.

Parts (b) and (c) are proved in a similar way; the proofs are left to the reader. �

Lemma 3.10. Let f : A→ B be a map of kG-modules and write A = A′⊕A′′, where A′ has
only non-induced summands and A′′ has only induced summands. Let i denote the inclusion
of A′ in A. Then f is split injective modulo induced summands if and only if f ◦ i is split
injective.

Proof. Suppose that f is split injective modulo induced summands; we want to show that
f ◦ i is split injective. By Lemma 3.9 (a), the map f ◦ i is split injective modulo induced
summands, so we can assume that A = A′ and we have to show that f is split injective.

Since f is split injective modulo induced summands we have an induced module X and
maps f ′ : A→ X, u : B → A, u′ : X → A such that u◦f+u′◦f ′ = IdA. Since X and A have
no summands in common, we know that u′ ◦ f ′ lies in the radical of EndkG(A) (note that
if A =

⊕
Ai with Ai indecomposable and we write elements of EndkG(A) as matrices with

entries in HomkG(Ai, Aj) then the radical consists of the morphisms for which no component
is an isomorphism). Thus u ◦ f is surjective, hence an automorphism of A, and f is split
injective.

Conversely, suppose that f ◦ i : A′ → B is split injective, so there is a map g : B → A′

such that g ◦ (f ◦ i) = IdA′ . Let j denote the inclusion of X := A′′ in A and f ′ the projection
of A onto A′′. We define v := i ◦ g : B → A, and v′ : X → A, x 7→ −(i ◦ g ◦ f ◦ j)(x) + j(x).
Then v ◦ f + v′ ◦ f ′ = IdA, so f is split injective modulo induced summands. �

Remark. The proof above shows that the induced module X in Definition 3.8 can always be
chosen in such a way that X only contains indecomposable direct summands that also occur
in A.

Remark. Definition 3.8 makes sense for any finite group and any class of indecomposable
modules and Lemmas 3.9(a,b) and 3.10 remain true.
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It will turn out that certain symmetric and exterior powers of modules for cyclic 2-groups
are contained in the Z-submodule c(G) of the Green ring a(G) spanned by the indecompos-
able modules Vr for r satisfying r 6≡ 2 (mod 4). We describe some properties of c(G).

Lemma 3.11. The submodule c(G) is

(a) a subring of a(G) and
(b) closed under Ω2n.

Proof. Part (b) is clear from the definitions.
For part (a) we need to show that Vi ⊗ Vj ∈ c(G) for all 0 ≤ i, j ≤ 2n, i, j 6≡ 2 (mod 4).

For n = 1 we only have V1 ⊗ V1 = V1 ∈ c(G). Suppose that n > 1. By the remarks on
the computation of tensor products at the beginning of this section, we have Vi ⊗ Vj =
Ωm

2n(Vi′ ⊗ Vj′)⊕m′V2n for some integers m,m′, where 0 ≤ i′, j′ ≤ 2n−1 and i′ ≡ ±i (mod 4)
and j′ ≡ ±j (mod 4). We can consider Vi′ and Vj′ as modules for H ∼= C2n−1 and the claim
follows from induction and part (b). �

4. Main Theorem

From now on we assume that k = F2 is a field with 2 elements and G is a cyclic group of
order 2n. For 0 ≤ s ≤ 2n−1, we know from Lemma 2.7 that K(V2n−1+s, V

2
s ) is acyclic and

that its homology in degree 0 is S(V2n−1+s)/(V
2
s ). It will turn out that S(V2n−1+s)/(V

2
s ) is

closely related to the exterior algebra Λ(V2n−1+s), so it is natural to study the structure of

the graded ring S̃(V2n−1+s) =
⊕

r≥0 S̃
r(V2n−1+s) := S(V2n−1+s)/(V

2
s ) as a kG-module. For a

non-negative integer m write S̃<m(V2n−1+s) =
⊕m−1

r=0 S̃r(V2n−1+s) and use a similar notation

for other graded modules. Let Ñ(V2n−1+s) denote the kernel of the natural epimorphism

S̃(V2n−1+s)→ Λ(V2n−1+s).
Choose a k-basis {x1, x2, . . . , x2n−1+s} of V2n−1+s as in Section 3. For simplicity, write

xtop := x2n−1+s, xtop−1 := x2n−1+s−1 and so on. Each element of S(V2n−1+s) can be written

uniquely as a polynomial in x1, x2, . . . , xtop. Set a :=
∏2n

i=1(gixtop) ∈ S(V2n−1+s). If s < 2n−1

let ã be the image of a in S̃(V2n−1+s), and if s = 2n−1 let ã be the image of the element∏
t∈G/C2

(tx2
top) in S̃(V2n). In the latter case ã is still invariant, because g2n−1

x2n = x2n +x2n−1

and so x2
top ∈ S̃(V2n) is invariant under C2. In all cases, a is homogeneous of degree 2n, has

degree 2n when considered as a polynomial in xtop, the elements a and ã are invariant under

the action of G, and the image of ã in Λ(V2n−1+s) is 0. If s = 2n−1 then we also write b̃ for

the image of the element
∏2n

i=1(gixtop) in S̃(V2n).
The next theorem is our main result. Since any representation of G ∼= C2n over a field of

characteristic 2 can be written in F2, part (d) implies Theorem 1.1, but we record the other
parts since they are also of interest and they form an integral part of the proof.

Theorem 4.1. Let n and s be integers such that n ≥ 1 and 0 ≤ s ≤ 2n−1.

(a) (Separation) The complex K(V2n−1+s, V
2
s ) of kG-modules is separated.

(b) (Periodicity) For s < 2n−1 we have S̃(V2n−1+s) ∼=ind k[ã] ⊗ S̃<2n(V2n−1+s) as graded

kG-modules. For s = 2n−1 we have S̃(V2n) ∼=ind k[ã]⊗ (S̃<2n(V2n)⊕kb̃). In both cases

the isomorphism from right to left is induced by the product in S̃(V2n−1+s).
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(c) (Splitting) The short exact sequence of graded kG-modules

0 −→ Ñ(V2n−1+s) −→ S̃(V2n−1+s) −→ Λ(V2n−1+s) −→ 0

is split and Ñ(V2n−1+s) = ãS̃(V2n−1+s)⊕ Ĩ, where Ĩ is a kG-module induced from H.
(d) (Exterior powers) For each r ≥ 0 we have the following isomorphism of kG-modules

Λr(V2n−1+s) ∼=proj

⊕
i,j≥0

2i+j=r

Ωi+j
2n (Λi(Vs)⊗ Λj(V2n−1−s)).

The case s = 0 is a little unnatural, but we need it for the induction, because the restriction
of V2n−1+1 is V2n−2+1 ⊕ V2n−2 .

It is sometimes more succinct to consider Hilbert series with coefficients in the Green ring
(possibly modulo projectives or induced modules). For more details see [12]. In particular,
we consider the following series associated to a kG-module V :

λt(V ) =
∞∑
r=0

Λr(V )tr, σt(V ) =
∞∑
r=0

Sr(V )tr,

σ̃t(V ) =
∞∑
r=0

S̃r(V )tr, λΩ
t (V ) =

∞∑
r=0

ΩrΛr(V )tr.

The last of these requires G to be specified in order for the Ω to be determined; it is
naturally considered modulo projectives. They all commute with restriction and turn direct
sums of modules into products of series. This is all an easy consequence of the corresponding
properties of the corresponding functors on modules, except perhaps for λΩ

t (V ⊕W ), where
we need the formula ΩrV ⊗ ΩsW ∼=proj Ωr+s(V ⊗W ).

Many of our statements about modules imply Hilbert series versions.

(3)

σt(V2n−1+s) =ind λ
Ω
t (V2n−1−s)(1− t2

n
)−1 Theorem 1.2

σ̃t(V2n−1+s) =ind λ
Ω
t2(Vs)σt(V2n−1+s) Separation 4.1(a)

σ̃t(V2n−1+s) =ind λt(V2n−1+s)(1− t2
n
)−1 Splitting and periodicity 4.1(b),(c)

λt(V2n−1+s) =proj λ
Ω
t2(Vs)λ

Ω
t (V2n−1−s) Exterior powers 4.1(d),

where the symbols =ind and =proj mean that we consider the coefficients only modulo induced
or projective direct summands, respectively. The first and last of the above identities are, in
fact, equivalent to the original versions. The second identity follows from Theorem 4.1 (a),
Lemma 2.5 and Lemma 2.7 (once the theorem is proved).

Remark. An easy calculation shows that, for fixed n and s, the last of the formulas in (3)
follows formally from the first three if we are satisfied with only =ind.

Remark. The proof of Theorem 1.2 in [21] actually gives a more precise formula than the
first one in (3). It works by showing that the complex K(V2n , V2n−1−s) defined in [21] is
separated and then applying Lemma 2.5; note that the definition of K(V2n , V2n−1−s) in [21]
is different from our Definition 2.6. The result is that σt(V2n−1+s) =proj σt(V2n)λΩ

t (V2n−1−s).
Since V2n can be given a basis that is permuted by G, each Sr(V2n) has a monomial basis
that is permuted. For small n, the decomposition of σt(V2n) can be calculated by hand;
in general the calculation can be organized using [21, Proposition 2.2]. Alternatively, [21,
Proposition 2.2] can be applied directly to σt(V2n−1+s).

The next six sections are devoted to the proof of Theorem 4.1 by induction on n.
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5. The Case n = 1

In this section we start the inductive proof of Theorem 4.1. Suppose that n = 1, so we
have to prove the statements in Theorem 4.1 for s ∈ {0, 1}. With these assumptions on n
and s, parts (b)-(d) of Theorem 4.1 can easily be verified by a direct calculation. In fact,
in (b) one obtains isomorphisms of kG-modules (not only modulo induced summands), and

in (c) one gets Ĩ = 0. Separation for s = 0 is trivial.
Let us consider part (a) for n = s = 1. We have to show that for each r > 0 the short

exact sequence 0→ Sr−2(V2)→ Sr(V2)→ S̃r(V2)→ 0 of kG-modules is separated at Sr(V2).
If r is odd, then Sr(V2) is induced by Theorem 1.2, hence projective, and so separation is
obviously true. Separation is trivial for r = 0. For even r > 0, a direct calculation and

Theorem 1.2 show that S̃r(V2) ∼= V1 ⊕ V1
∼=ind Sr(V2) ⊕ Ω−1

2 Sr−2(V2), and so separation
follows from Lemma 3.4.

Sections 6-10 comprise the inductive step in the proof of Theorem 4.1. In these sections
we always assume that n > 1 is an integer and that Theorem 4.1 holds for all smaller values
of n. Throughout these sections the notation remains the same as in Sections 3 and 4; thus
G = 〈g〉 ∼= C2n is a cyclic group of order 2n, k = F2 is a field with two elements and s is an
integer such that 0 ≤ s ≤ 2n−1.

6. Periodicity

In this section we prove part (b) of Theorem 4.1, assuming that parts (a)-(d) of the
theorem hold for all smaller values of n.

Let H be the unique maximal subgroup of G and let {x1, x2, . . . , xtop} be a k-basis
of V2n−1+s as in Section 4. We choose G-invariant elements a ∈ S2n(V2n−1+s) and ã ∈
S̃2n(V2n−1+s) as in Section 4. Let T (V2n−1+s) be the kG-submodule of S(V2n−1+s) spanned
by the monomials in x1, . . . , xtop that are not divisible by x2n

top. We have S(V2n−1+s) ∼=
k[a] ⊗ T (V2n−1+s) as kG-modules; see [21, Lemma 1.1]. So T<2n(V2n−1+s) = S<2n(V2n−1+s).
Notice that the periodicity of S(V2n−1+s) in [21, Theorem 1.2] is equivalent to T≥2n(V2n−1+s)
being induced. In fact, we know something stronger from [21, Corollary 3.11], namely that

T>2n−1−s(V2n−1+s) is induced.

We can make the same construction for S̃(V2n−1+s), obtaining S̃(V2n−1+s)∼= k[ã]⊗T̃ (V2n−1+s)
as kG-modules.

Define L(V2n−1+s, V
2
s ) to be the subcomplex of K(V2n−1+s, V

2
s ) defined using T (V2n−1+s)

instead of S(V2n−1+s), that is

· · · d−→ T (V2n−1+s)⊗ Λ2(Vs)
d−→ T (V2n−1+s)⊗ Vs

d−→ T (V2n−1+s),

where the boundary morphisms are as in Definition 2.6 (this can be done since the xtop used
in the definition of T (V2n−1+s) is not contained in Vs). Thus L(V2n−1+s, V

2
s ) is a complex of

graded kG-modules; it is exact except in degree 0, where the homology is H0(L(V2n−1+s, V
2
s )),

which is isomorphic to T̃ (V2n−1+s) as a kG-module. Notice that, by construction, the com-
plexes K(V2n−1+s, V

2
s ) and k[a]⊗L(V2n−1+s, V

2
s ) of kG-modules are isomorphic. In particular,

note for later use that one of them is separated (over G or over H) if and only if the other
is so too.

From now on we fix s and abbreviate the notation to just S, T , K, L, etc.
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Suppose that s < 2n−1. We claim that Lri = T r−2i⊗Λi(Vs) is induced for all i ≥ 0, r ≥ 2n.
We may assume that i ≤ s. Then r− 2i ≥ 2n− 2s > 2n−1− s and so T r−2i is induced. Thus
Lr is a complex of induced kG-modules for each r ≥ 2n.

Consider the restriction of the complex K to the subgroup H. It decomposes as a tensor
product of two complexes, by Lemma 2.8. Each of these is separated, by induction and
Theorem 4.1 (a), hence so is their product, by Lemma 2.2. It follows that for each r ≥ 0,
the complex Lr is separated on restriction to H. We have just seen that Lr is a complex
of induced modules for all r ≥ 2n. Thus, for each r ≥ 2n, the complex Lris separated, by

Proposition 2.4. Now Lemma 2.5 shows that H0(L≥2n) is induced. But this is exactly T̃≥2n ,

so S̃(V2n−1+s) ∼= k[ã]⊗ T̃ ∼=ind k[ã]⊗ T̃<2n = k[ã]⊗ S̃<2n is periodic if s < 2n−1.

Now suppose that s = 2n−1. By the same argument as for s < 2n−1, we see that T̃>2n is

induced. To complete the proof of Theorem 4.1 (b) we have to show that S̃2n ∼=ind kã⊕ kb̃.
Set yi := g2n−ix2n for i = 1, 2, . . . , 2n, so {y1, . . . , y2n} is a k-basis of V2n which is permuted

by G. A basis for V2n−1 < V2n is given by g2n−1
yi − yi = yi+2n−1 − yi for i = 1, 2, . . . , 2n−1.

Write ỹi for the image of yi in S̃(V2n), so ỹ2
i = ỹ2

i+2n−1 for i = 1, . . . , 2n−1. The set consisting
of all monomials of degree 2n in all the ỹi such that ỹ1, . . . , ỹ2n−1 only occur to the power

at most 1 forms a k-basis for S̃(V2n). The group G permutes these monomials and it is

straightforward to check that there are two invariant monomials, namely ỹ1ỹ2 · · · ỹ2n = b̃ and
ỹ2

2n−1+1ỹ
2
2n−1+2 · · · ỹ2

2n = ã; the rest span induced submodules. This completes the proof of
periodicity.

7. Splitting

In this section we prove part (c) of Theorem 4.1, assuming the whole of the theorem for
smaller n.

Let H be the unique maximal subgroup of G and {x1, x2, . . . , xtop} a k-basis of V2n−1+s as

in Section 4. As in Theorem 4.1 we write Ñ(V2n−1+s) for the kernel of the natural surjection

S̃(V2n−1+s)
f→ Λ(V2n−1+s). The following proposition deals with the structure of S̃(V2n−1+s)

in degrees less than 2n.

Proposition 7.1. For any integer s such that 0 ≤ s ≤ 2n−1, the short exact sequence

(4) 0 −→ Ñ<2n(V2n−1+s) −→ S̃<2n(V2n−1+s)
f−→ Λ<2n(V2n−1+s) −→ 0

of graded kG-modules is split, and Ñ<2n(V2n−1+s) is induced from H.

Before starting with the proof of Proposition 7.1 we introduce some further notation. As
described at the beginning of Section 3, we have V2n−1+s ↓GH= V2n−2+s′ ⊕ V2n−2+s′′ where
0 ≤ s′, s′′ ≤ 2n−2 and s′ = s′′ or s′ = s′′ + 1. The kH-submodule V2n−2+s′ of V2n−1+s

has the k-basis {xtop, xtop−2, xtop−4, . . . } and the kH-submodule V2n−2+s′′ has the k-basis

{xtop−1, xtop−3, xtop−5, . . . }. We write S̃ ′(V2n−2+s′) and S̃ ′′(V2n−2+s′′) for S(V2n−2+s′)/(V
2
s′) and

S(V2n−2+s′′)/(V
2
s′′), respectively. So the xi with odd i and the xi with even i provide natural

embeddings S̃ ′(V2n−2+s′) → S̃(V2n−1+s) and S̃ ′′(V2n−2+s′′) → S̃(V2n−1+s) of kH-modules, and
we have

S̃(V2n−1+s) ∼= S̃ ′(V2n−2+s′)⊗ S̃ ′′(V2n−2+s′′)

as kH-modules, where the isomorphism is given by f1 ⊗ f2 7→ f1 · f2.
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Choose a′ ∈ S(V2n−2+s′), ã
′ ∈ S̃(V2n−2+s′) according to the description preceding Theo-

rem 4.1, but working over H. Thus a′ is homogeneous of degree 2n−1, has degree 2n−1 when
considered as a polynomial in xtop. Furthermore, a′ and ã′ are invariant under the action of H

and ã′ has image 0 in Λ(V2n−2+s′). Similarly, choose a′′ ∈ S(V2n−2+s′′) and ã′′ ∈ S̃ ′′(V2n−2+s′′).
So a′′ is homogeneous of degree 2n−1, has degree 2n−1 when considered as a polynomial in
xtop−1 and a′′ and ã′′ are invariant under the action of H and ã′′ has image 0 in Λ(V2n−2+s′′).

By induction, ã′ and ã′′ are periodicity generators of S̃ ′(V2n−2+s′) and S̃ ′′(V2n−2+s′′), re-
spectively. That is, we have

S̃ ′(V2n−2+s′) ∼=ind k[ã′]⊗ S̃ ′<2n−1

(V2n−2+s′′) and S̃ ′′(V2n−2+s′′) ∼=ind k[ã′′]⊗ S̃ ′′<2n−1

(V2n−2+s′′)

or the variant with b̃′ or b̃′′ if s′ = 2n−2 or s′′ = 2n−2.

Lemma 7.2. Let s be an integer such that 0 ≤ s ≤ 2n−1 and let ã′ be a periodicity generator

for S̃ ′(V2n−2+s′) as above. Then

S̃<2n(V2n−1+s)↓GH = S̃<2n−1

(V2n−1+s)⊕ ã′S̃<2n−1

(V2n−1+s)⊕ (gã′)S̃<2n−1

(V2n−1+s)⊕ X̃

as kH-modules, where the kH-submodule X̃ is generated as a k-vector space by the images
of all monomials x ∈

⊕2n−1
r=2n−1 Sr(V2n−1+s) such that x has degree strictly less than 2n−1 when

considered as a polynomial in xtop and x has degree strictly less than 2n−1 when considered
as a polynomial in xtop−1.

Proof. We give all monomials in S(V2n−1+s) the lexicographic order with xtop−1 > xtop >

xtop−2 > · · · > x1. Let h ∈
⊕2n−1

r=2n−1 Sr(V2n−1+s). Since gã′ has leading term x2n−1

top−1 we

can write h as h = h1 · gã′ + h2 where h1 ∈ S̃<2n−1
(V2n−1+s) and h2 ∈ S̃<2n(V2n−1+s) such

that h2 has degree < 2n−1 when considered as a polynomial in xtop−1. Then, because ã′

has leading term x2n−1

top and only involves monomials in xtop, xtop−2, xtop−4, . . . , we can find

h3 ∈ S̃<2n−1
(V2n−1+s) and h4 ∈ X̃ such that h2 = h3 · ã′ + h4. Thus,

⊕2n−1
r=2n−1 Sr(V2n−1+s) is

the sum of ã′S̃<2n−1
(V2n−1+s), (gã′)S̃<2n−1

(V2n−1+s) and X̃. Comparing dimensions, we see
that this sum has to be direct and Lemma 7.2 follows. �

We are now ready to prove Proposition 7.1.

Proof. (of Proposition 7.1) We study the restriction of the sequence (4) to the maximal
subgroup H. By Lemma 7.2, the middle term is

S̃<2n(V2n−1+s)↓GH = S̃<2n−1

(V2n−1+s)⊕ J̃ ⊕ X̃,

where J̃ := ã′S̃<2n−1
(V2n−1+s) ⊕ (gã′)S̃<2n−1

(V2n−1+s). Owing to the choice of ã′, we have

ã′ ∈ Ñ<2n(V2n−1+s) and therefore J̃ ⊆ Ñ<2n(V2n−1+s). In fact, by construction, J̃ is a kG-

submodule of
⊕2n−1

r=2n−1 Ñ r(V2n−1+s) and is induced from H. We consider the exact sequence
of kG-modules

(5) 0 −→ J̃ −→
2n−1⊕
r=2n−1

S̃r(V2n−1+s) −→ X −→ 0,

where X :=
⊕2n−1

r=2n−1 S̃r(V2n−1+s)/J̃ . We know from Lemma 7.2 that the sequence (5) is

split when restricted to H and X↓GH ∼= X̃ as kH-modules. Since J̃ is induced from H it
is relatively H-injective, and so the sequence (5) splits over kG (see [8, Theorem (19.2)]).
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Thus J̃ is a direct summand of S̃<2n(V2n−1+s) over kG, so there is a kG-submodule J̃ ′′ of

S̃<2n(V2n−1+s) such that S̃<2n(V2n−1+s) = J̃ ⊕ J̃ ′′. Since J̃ ⊆ Ñ<2n(V2n−1+s), it follows that

Ñ<2n(V2n−1+s) = J̃ ⊕ J̃ ′, where J̃ ′ := J̃ ′′ ∩ Ñ<2n(V2n−1+s). We have

J̃↓GH = ã′S̃<2n−1

(V2n−1+s)↓GH ⊕ (gã′)S̃<2n−1

(V2n−1+s)↓GH .

Because S̃<2n−1
(V2n−1+s)↓GH ∼= (S̃ ′(V2n−2+s′)⊗ S̃ ′′(V2n−2+s′′))

<2n−1
, we have, by induction and

ignoring the grading,

(6) J̃↓GH ∼=ind (Λ′ ⊗ Λ′′)<2n−1 ⊕ (Λ′ ⊗ Λ′′)<2n−1

.

Here we write Λ′ ⊗Λ′′ for the graded kH-module Λ(V2n−2+s′)⊗Λ(V2n−2+s′′). Restricting the
sequence (4) to H, we obtain the sequence

0→ Ñ<2n(V2n−1+s)↓GH → (S̃ ′(V2n−2+s′)⊗ S̃ ′′(V2n−2+s′′))
<2n → (Λ′ ⊗ Λ′′)<2n → 0

of kH-modules, which is split by induction. Thus, by induction again, we obtain

(7) Ñ<2n(V2n−1+s)↓GH ∼=ind ã
′(Λ′ ⊗ Λ′′)<2n−1 ⊕ ã′′(Λ′ ⊗ Λ′′)<2n−1

.

Equations (6) and (7) imply that J̃↓GH⊕J̃ ′↓GH ∼= (J̃ ⊕ J̃ ′)↓GH ∼= Ñ<2n(V2n−1+s)↓GH ∼=ind J̃↓GH . It

follows that J̃ ′↓GH is induced from proper subgroups of H. By Lemma 3.1 the kG-module J̃ ′

is induced from H, and hence Ñ<2n(V2n−1+s) = J̃ ⊕ J̃ ′ is induced from H. We have just seen

that sequence (4) is split on restriction to H; since Ñ<2n(V2n−1+s) is relatively H-injective
the sequence must split over kG. This completes the proof of Proposition 7.1. �

The following corollary provides a connection between S̃(V2n−1+s) and the exterior powers
of V2n−1+s in degrees less than 2n.

Corollary 7.3. For r and s integers such that 0 ≤ s ≤ 2n−1 and 0 ≤ r < 2n, the map f
induces an isomorphism of kG-modules modulo induced summands

S̃r(V2n−1+s) ∼=ind Λr(V2n−1+s).

Proof. This is clear from Proposition 7.1 (for n > 1) and Section 5 (for n = 1). �

We can now prove Theorem 4.1 (c). For s < 2n−1 we have S̃<2n(V2n−1+s) ∼= Λ(V2n−1+s)⊕X,
where X is induced, so part (c) of Theorem 4.1 follows from part (b). For s = 2n−1 we have

S̃<2n(V2n−1+s)⊕kb̃ ∼= Λ(V2n−1+s)⊕X ′, where X ′ is induced. Note that b̃ maps to a generator
of Λ2n(V2n−1+s). Again, part (c) of Theorem 4.1 is a consequence of (b).

8. Preparation for Separation

In this section we prepare for the proof of part (a) of Theorem 4.1, assuming the whole of
the theorem for smaller n.

Let H be the unique maximal subgroup of G and let {x1, x2, . . . , xtop} be a k-basis of
V2n−1+s as in Section 4. The main goal of this section is to develop useful criteria for the
complex K(V2n−1+s, V

2
s ) to be separated.

Lemma 8.1. Let r, s be non-negative integers such that 0 ≤ s ≤ 2n−1. Suppose that for each
0 ≤ r′ < r with r′ ≡ r mod 2, the complex Kr′(V2n−1+s, V

2
s ) is separated at Kr′

0 (V2n−1+s, V
2
s ) =

Sr
′
(V2n−1+s). Then Kr(V2n−1+s, V

2
s ) is separated at Kr

i (V2n−1+s, V
2
s ) = Sr−2i(V2n−1+s)⊗Λi(Vs)

for all i ≥ 1. The same is true when K and S are replaced by L and T from Section 6.
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Proof. We only demonstrate the proof for K and S; the proof for L and T is analogous.
We write V := V2n−1+s and W := Vs for short. Fix i ≥ 1 and consider the boundary mor-

phism di+1 : Sr−2i−2(V )⊗Λi+1(W )→ Sr−2i(V )⊗Λi(W ) in Kr(V,W 2). We have to show that
Im(di+1)→ Sr−2i(V )⊗Λi(W ) factors through a projective kG-module. Since Kr−2i(V,W 2)
is separated at Kr−2i

0 (V,W 2) the inclusion (W 2)r−2i → Sr−2i(V ) factors through a projective
kG-module P r−2i. We can write the inclusion Im(di+1)→ Sr−2i(V )⊗Λi(W ) as a composition
of inclusions

Im(di+1)→ (W 2)r−2i ⊗ Λi(W )→ Sr−2i(V )⊗ Λi(W ),

where the last map factors through the projective kG-module P r−2i ⊗ Λi(W ). �

Lemma 8.2. Let s and r be integers such that 0 ≤ s ≤ 2n−1 and 0 < r < 2n, and suppose
that the complex Ki(V2n−1+s, V

2
s ) is separated for all 0 ≤ i < r. Then the following statements

are equivalent:

(a) Kr(V2n−1+s, V
2
s ) is separated,

(b) The natural map Sr(V2n−1+s)
g−→ Λr(V2n−1+s) is split injective modulo induced sum-

mands,
(c) Λr(V2n−1+s) ∼=ind

⊕
i,j≥0

2i+j=r
Ωi+j

2n (Λi(Vs)⊗ Λj(V2n−1−s)).

Proof. We write Sr := Sr(V2n−1+s), S̃
r := S̃r(V2n−1+s) and Ki := Ki(V2n−1+s, V

2
s ). The

conditions on Ki and Lemma 8.1 show that Kr is separated except, perhaps, at Kr
0 = Sr.

The restriction of the complex Kr to H decomposes as a tensor product of two complexes,
by Lemma 2.8. Each of these is separated by our continuing induction hypothesis, hence so
is their product, by Lemma 2.2, and so Kr is separated on restriction to H. Thus the short
exact sequence

(8) 0 −→ Im(d1)
i−→ Sr

j−→ S̃r −→ 0

from Kr is separated at Sr on restriction to H (the maps i, j should not be confused with the
indices in part (c) of the lemma). The separation of Kr in positive (complex-) degrees and
Lemma 2.5 yield the formula Im(d1) ∼=proj

⊕
i≥1, j≥0
2i+j=r

Ωi−1
2n (Λi(Vs))⊗Sj(V2n−1+s). Theorem 1.2

now shows that

(9) Im(d1) ∼=ind

⊕
i≥1, j≥0
2i+j=r

Ωi+j−1
2n (Λi(Vs)⊗ Λj(V2n−1−s)).

(a) ⇒ (b) Let f : S̃r → Λr be the natural surjection, so g = f ◦ j. By Proposition 7.1,
the map f is split injective modulo induced summands, and, by Lemma 3.9, it is enough
to show that j is split injective modulo induced summands. By assumption, Sr = X ⊕M
for some submodules X and M of Sr such that X is projective and ker(j) = Im(d1) ⊆ X.
Let j′ : Sr → X be the projection onto X and u′ : X → Sr the natural embedding. Define

u : S̃r = j(X) ⊕ j(M) → Sr, j(x) + j(m) 7→ m (note that the restriction of j to M is
injective). Then u ◦ j + u′ ◦ j′ = IdSr and so j is split injective modulo induced summands.

(b)⇒ (c) Assume (b). The factorization g = f◦j and Lemma 3.9 (b) imply that j is also split
injective modulo induced summands. Write Sr = A′ ⊕ A′′, where A′ has only non-induced
summands and A′′ is induced. By Lemma 3.10, the restriction of j to A′ is split injective,

so j maps A′ injectively into S̃r and j(A′) is a direct summand of S̃r. Factoring out A′ and

j(A′) in (8) we obtain the short exact sequence 0 −→ Im(d1)
i−→ Sr/A′

j−→ S̃r/j(A′) −→ 0.
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As we have seen at the beginning of the proof, i factors through a projective on restriction
to H, and so the same is true for i. Thus the complex Im(d1) → Sr/A′ is separated on re-
striction to H. Because Sr/A′ ∼= A′′ is induced, the complex is separated, by Proposition 2.4.

Lemma 2.5 yields S̃r/j(A′) ∼=proj S
r/A′ ⊕ Ω2n Im(d1) ∼=ind Ω2n Im(d1). Using (9) we obtain

(10) S̃r/j(A′) ∼=ind

⊕
i≥1, j≥0
2i+j=r

Ωi+j
2n (Λi(Vs)⊗ Λj(V2n−1−s)).

Theorem 1.2 implies j(A′) ∼= A′ ∼=ind S
r ∼=ind Ωr

2nΛr(V2n−1−s). Adding the summand j(A′)
to both sides of (10) and using Corollary 7.3 gives us the formula in (c).

(c) ⇒ (a) Assume that (c) holds. From Corollary 7.3, Theorem 1.2 and (9) we get S̃r ∼=ind

Sr⊕Ω−1
2n Im(d1). Separation of Kr now follows from applying Lemma 3.4 to the short exact

sequence (8). �

Separation of Kr(V2n−1+s, V
2
s ) for r = 0, 1 is trivial. We will now prove it for r = 2. Notice

that if a non-zero map Va → Vb of kG-modules is to factor through a projective over C2n ,
then we must have a+ b > 2n. This is because the map must factor through the projective
cover V2n � Vb, which has kernel V2n−b, into which Va will certainly be mapped if a ≤ 2n− b.

Lemma 8.3. For any integer s such that 0 ≤ s ≤ 2n−1 the complex K2(V2n−1+s, V
2
s ) is

separated.

Proof. The complex in question is Vs ↪→ S2(V2n−1+s). By induction, the map factors through
a projective on restriction to H. Write S2(V2n−1+s) = A′⊕A′′, where A′ has only non-induced
summands and A′′ has only induced summands. The component Vs → A′′ factors through a
projective, by Proposition 2.4.

We claim that the component Vs → A′ must be 0. From Theorem 1.2, we know that
S2(V2n−1+s) =ind Λ2(V2n−1−s); but V2n−1−s is a module for C2n−1 , and it follows that A′

contains only summands of dimension ≤ 2n−1. Let Vt be such a summand, so t ≤ 2n−1 and
suppose that there is a non-zero component Vs → Vt. It must factor through a projective on
restriction, where it is a map Vs′⊕Vs′′ → Vt′⊕Vt′′ , with s′, s′′, t′, t′′ ≤ 2n−2. By the discussion
above, none of the components can factor through a projective module over C2n−1 unless
they are 0. �

We can readily prove separation when s is even.

Lemma 8.4. For any even integer s such that 0 ≤ s ≤ 2n−1, the complex K(V2n−1+s, V
2
s ) of

kG-modules is separated.

Proof. Write s = 2s′. From Lemma 2.9 we know that K(V2n−1+s, V
2
s ) ∼= K(V2n−2+s′ , V

2
s′)↑⊗GH .

The right hand side is separated by Lemma 2.3 and our induction hypothesis. �

In view of this lemma, we assume now that s is odd.

Lemma 8.5. Let s be an odd integer such that 0 < s < 2n−1. Then (given our induction
hypothesis):

(a) Λr(V2n−1−s) ∈ c(G) for all r ≥ 0 and
(b) Sr(V2n−1+s) ∈ c(G) for all 0 ≤ r < 2n−1.

Here c(G) is the subgroup of the Green ring in Lemma 3.11.
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Proof. For part (a), the dimension d = 2n−1 − s of the module is in the range where we
know that our formula for exterior powers (see Theorem 4.1 (d)) is valid by our continuing
induction hypothesis. The statement is clearly true for d = 1 and we can employ induction
on d, using the formula and the properties of c(G) in Lemma 3.11.

For part (b) we use the formula σt(V2n−1+s) =proj σt(V2n)λΩ
t (V2n−1−s) from the remark at

the end of Section 4 and part (a). The summands of S(V2n) are permutation modules on a
monomial basis, so are in c(G) unless the stabilizer of a monomial is of index 2. But this first
happens in degree 2n−1, because if a monomial fixed by a subgroup of order 2n−1 contains yi,
it must also contain all 2n−1 elements of the orbit of yi. �

9. Separation

First we make some general constructions related to symmetric and exterior powers of
vector spaces. It is convenient to do this integrally first and then reduce modulo 2. Let U
be a free module over the integers localized at 2, Z(2). For r ≥ 0 set

T r(U) = U ⊗Z(2)
· · · ⊗Z(2)

U (r times).

Let the symmetric group Σr act on T r(U) by permuting the factors. Factoring out the action
of Σr we get Sr(U) = T r(U)/Σr = T r(U) ⊗Z(2)Σr Z(2). We can also let Σr act on T r(U) by
permuting the factors and multiplying by the signature of the permutation, in which case we
write T r(U)σ. Similarly, on factoring out the action of Σr we obtain Λr(U) = T r(U)σ/Σr.

For any subset I ⊆ {1, . . . , r} we set ΣI := {π ∈ Σr | π(i) = i for all i 6∈ I} (so ΣI is a
subgroup of Σr isomorphic to Σ|I|). For r ≥ 2, write r = 2p + t with 1 ≤ t ≤ 2p. Consider
the subgroup

Qr :=

{
Σ{1,...,2p} × Σ{2p+1,...,r} if t < 2p

(Σ{1,...,2p} × Σ{2p+1,...,2p+1})o 〈τ〉 if t = 2p

of Σr, where τ ∈ Σr is the involution mapping i to 2p + i for i = 1, 2, . . . , 2p. The im-
portance of Qr lies the fact that the index |Σr : Qr| is odd. This can been seen as fol-
lows: |Σ2p+t|/(|Σ2p | · |Σt|) =

(
2p+t
t

)
, which is equal to the coefficient of xt in (1 + x)2p+t ≡

(1 + x2p)(1 + x)t (mod 2); also (1 + x)2p+1
= (1 + x2p + 2X))2 ≡ 1 + 2x2p + x2p+1

(mod 4).
Define LrS(U) := T r(U)/Qr and LrΛ(U) := T r(U)σ/Qr. There are natural quotient maps

qS : LrS(U) → Sr(U) and qΛ : LrΛ(U) → Λr(U), which have sections trS : Sr(U) → LrS(U)
and trΛ : Λr(U) → LrΛ(U) given by trx := 1

|Σr:Qr|
∑

π∈Σr/Qr
πx. These have the property

that qS ◦ trS = IdSr(U) and qΛ ◦ trΛ = IdΛr(U). These maps are all natural transformations of
functors on free Z(2)-modules.

Writing r = 2p + t as before, we see from the description of Qr that

LrS(U) ∼=

{
S2p(U)⊗ St(U) if t < 2p

(S2p(U)⊗ S2p(U))/C2
∼= S2(S2p(U)) if t = 2p.

Similarly, if r ≥ 3 we have

LrΛ(U) ∼=

{
Λ2p(U)⊗ Λt(U) if t < 2p

(Λ2p(U)⊗ Λ2p(U))/C2
∼= S2(Λ2p(U)) if t = 2p,

because the involution τ has signature 1, provided that p ≥ 1.
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Now let V be an F2-vector space and let U be a free Z(2)-module such that V ∼= F2⊗Z(2)
U .

Let Lr denote one of the functors Sr,Λr, LrS, L
r
Λ above and use it to define a functor with the

same name on F2-vector spaces by Lr(V ) = F2 ⊗Z(2)
Lr(U). This gives the expected result

for Sr(V ) and Λr(V ).
In order to verify that Lr is really a functor on vector spaces, notice that if U and U ′ are

two free Z(2)-modules then the natural map HomZ(2)
(U,U ′)→ HomF2(F2⊗Z(2)

U,F2⊗Z(2)
U ′)

is surjective, so all maps of vector spaces lift. Furthermore, a map in the kernel has image
in 2U ′, so factors through multiplication by 2 on U ′. But multiplication by 2 on U ′ induces
multiplication by 2r on T r(U ′)σ, thus it induces 0 on F2 ⊗Z(2)

Lr(U ′).
It follows that the formulas above are also valid for F2-vector spaces. A difference is that

we now have natural transformations er : Sr → Λr and Lre : LrS → LrΛ induced by reducing
modulo squares.

The above functors induce functors on modules for a group in the obvious way.

Remark. Any representation of G over a field of characteristic 2 can be written in F2, so
this is sufficient for our purposes. If we really needed functors on vector spaces over a bigger
field, this could be achieved by starting with a larger ring than Z(2).

In the rest of this section we prove part (a) of Theorem 4.1, assuming the whole of the
theorem for smaller n. We use the same notation as before.

Lemma 9.1. Suppose that V is a kG-module, r ≥ 2 and Lre : LrS(V ) → LrΛ(V ) is split
injective modulo induced summands. Then er : Sr(V ) → Λr(V ) is split injective modulo
induced summands.

Proof. Consider the commutative diagram

Sr(V )
er−−−→ Λr(V )

trS

y ytrΛ

LrS(V )
Lr
e−−−→ LrΛ(V ).

The map trS is split injective, so if Lre is split injective modulo induced summands then so
is Lre ◦ trS, by Lemma 3.9 (a). But this is equal to trΛ ◦ er and Lemma 3.9 (b) shows that er

is split injective modulo induced summands. �

Lemma 9.2. If s is an odd integer such that 0 < s < 2n−1 and r is an integer such that
0 ≤ r < 2n, then er : Sr(V2n−1+s)→ Λr(V2n−1+s) is split injective modulo induced summands.

Proof. We use induction on r. The cases r = 0, 1 are trivial and r = 2 is covered by
Lemma 8.3 combined with Lemma 8.2. Let r ≥ 3 and write r = 2p + t with 1 ≤ t ≤ 2p.
Abbreviate V2n−1+s to V . By Lemma 9.1, it is sufficient to check that Lre : LrS(V )→ LrΛ(V )
is split injective modulo induced summands.

If t < 2p then Lre = e2p ⊗ et : S2p(V ) ⊗ St(V ) → Λ2p(V ) ⊗ Λt(V ). This is split injective
modulo induced summands by induction and Lemma 3.9 (c).

If t = 2p then Lre = S2(e2p) : S2(S2p(V ))→ S2(Λ2p(V )). By induction, e2p is split injective
modulo induced summands, so it extends to a split injective map M : S2p(V )→ Λ2p(V )⊕X
with left inverse N , where X is induced. By the remark after Lemma 3.10, we may assume
that X only contains summands that are also summands of S2p(V ); by Lemma 8.5 and the
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assumption that r < 2n (and hence 2p < 2n−1, since t = 2p), these are of dimension divisible
by 4. Applying S2, we see that S2(e2p) extends to

S2(M) : S2(S2p(V ))→ S2(Λ2p(V ))⊕ S2(X)⊕ (Λ2p(V )⊗X),

with left inverse S2(N). Certainly Λ2p(V )⊗X is induced, and S2(X) is induced, by Corol-
lary 3.7. Thus Lre and thus er are split injective modulo induced summands. �

Again, let s be an odd integer such that 0 < s < 2n−1. It follows from Lemmas 8.1, 8.2
and 9.2 that the complex Kr(V2n−1+s, V

2
s ) is separated for all 0 ≤ r < 2n.

Recall that K(V2n−1+s, V
2
s ) is separated if and only if the complex L(V2n−1+s, V

2
s ) from

Section 6 is separated. For the rest of this section we will write just K,L etc. . Now Lr is
separated for all 0 ≤ r < 2n, because it coincides with Kr in this range. We will show that
Lr is separated for r ≥ 2n by induction on r, so let r ≥ 2n and assume that the complex is
separated in all lower degrees.

By Lemma 8.1, we can also assume that Lr is separated in positive (complex-)degrees, so
it is enough to prove that the short exact sequence

(11) 0→ Im(dr1)→ T r → T̃ r → 0

is separated at T r. By Lemma 2.8, the restriction of K to the maximal subgroup H of G
decomposes as a tensor product of two complexes, and each of these is separated, by our
continuing induction hypothesis and Theorem 4.1(a). Their product is also separated, by
Lemma 2.2, hence so is Lr. It follows that the sequence (11) is separated at T r on restriction
to H.

But T r is induced for this range of r. Separation of (11) follows immediately from Propo-
sition 2.4 applied to Im(dr1)→ T r.

This proves that the complex Kr(V2n−1+s, V
2
s ) is separated for all r ≥ 0, and part (a) of

Theorem 4.1 follows.

10. Exterior Powers

In this section we prove part (d) of Theorem 4.1, assuming the whole of the theorem for
smaller n.

Because we have already proved separation, periodicity and splitting we know that

λt(V2n−1+s) =ind λ
Ω
t2(Vs)λ

Ω
t (V2n−1−s);

see the first remark at the end of Section 4. In order to obtain the formula with =proj, we
first consider the restriction to the subgroup H of index 2. Writing V2n−1+s ↓GH= V2n−2+s′ ⊕
V2n−2+s′′ , the two sides of the formula become

λt(V2n−2+s′)λt(V2n−2+s′′) and λΩ
t2(Vs′)λ

Ω
t2(Vs′′)λ

Ω
t (V2n−2−s′)λ

Ω
t (V2n−2−s′′).

But we know, by induction, that λt(V2n−2+s′) =proj λ
Ω
t2(Vs′)λ

Ω
t (V2n−2−s′) and similarly for s′′.

Thus, on restriction, the two sides are equal modulo projectives. Now use Lemma 3.3 in
order to see that the two sides are equal modulo projectives even before restriction. This
finally completes the proof of Theorem 4.1.
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11. A Bound on the Number of Non-Induced Summands

The description of the tensor product given in Section 3 shows that the decomposition of
Vr ⊗ Vs into indecomposable summands involves a summand of odd dimension if and only
both r and s are odd, in which case it contains precisely one odd-dimensional summand.

Let us write summ(V ) for the number of indecomposable summands in the module V .

Proposition 11.1. The number of non-induced summands in Λ(V ) is at most

2
1
2

(dim(V )+summ(V )) =
√

2summ(V ) dim(Λ(V )).

Proof. Let f(V ) denote the number of non-induced summands in Λ(V ). The comment about
the tensor product above shows that f(V ⊕W ) = f(V )f(W ). The proposed bound also
turns sums into products, so it suffices to consider the case when V = Vr is indecomposable
and show that f(Vr) ≤ 2

1
2

(r+1).
We use induction on r. Since the cases r = 0, 1 are trivial we can assume that r ≥ 2,

and we can write r = 2n−1 + s, where 1 ≤ s ≤ 2n−1. Setting t = 1 in the formula
λt(V2n−1+s) =proj λ

Ω
t2(Vs)λ

Ω
t (V2n−1−s) and using induction we obtain

f(Λ(V2n−1+s)) = f(λ1(V2n−1+s)) = f(λΩ
1 (Vs))f(λΩ

1 (V2n−1−s)) = f(λ1(Vs))f(λ1(V2n−1−s))

≤ 2
1
2

(2n−1−s+1)2
1
2

(s+1) = 2
1
2

(2n−1+2) ≤ 2
1
2

(2n−1+s+1).

�

For an indecomposable kG-module Vr, if we assume that the group acts faithfully then
r > 1

2
|G|, and the dimension of any direct summand of Λ(Vr) is at most |G|. It follows that

the dimension of the non-induced part of Λ(Vr) divided by the dimension of the whole of

Λ(Vr) is at most 2
1
2

(3−r)r.

12. Remarks

(a) As already mentioned in the introduction, the formula in Theorem 1.1 reduces the com-
putation of Λr(V2n−1+s) to the computation of tensor products of exterior powers of modules
of smaller dimension. Since tensor products can easily be determined recursively (see Sec-
tion 3), this gives an efficient recursive method for calculating the decomposition of exterior
powers of modules for cyclic 2-groups into indecomposables. A program based on this re-
currence relation was implemented in GAP [10] by the first author.

A restriction on the use of Theorem 1.1 is the growth of the multiplicities of direct sum-
mands of the form V2m . For example, the multiplicity of V128 as a direct summand of Λ57(V147)
is 8197519886357582844587268803532720. If one is only interested in the non-induced part
of Λr(V2n−1+s) the recurrence relation can be applied modulo induced summands to keep the
multiplicities relatively small.

Together with the results in [21], the recurrence relation in Theorem 1.1 also provides an
algorithm for computing the decomposition of the symmetric powers Sr(Vm) into indecom-
posables for arbitrary m and r.
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Example. We determine the decomposition of Λ6(V13) into indecomposables:

Λ6(V13) ∼=proj Ω0+6
16 (Λ0(V5)⊗ Λ6(V3))⊕ Ω1+4

16 (Λ1(V5)⊗ Λ4(V3))⊕
Ω2+2

16 (Λ2(V5)⊗ Λ2(V3))⊕ Ω3+0
16 (Λ3(V5)⊗ Λ0(V3))

∼=proj (Λ2(V5)⊗ V3)⊕ Ω16(Λ3(V5)).

Furthermore Λ3(V5) ∼= Λ2(V5), by duality, and

Λ2(V5) ∼= Ω0+2
8 (Λ0(V1)⊗ Λ2(V3))⊕ Ω1+0

8 (Λ1(V1)⊗ Λ0(V3)) ∼= V3 ⊕ Ω8(V1) ∼= V3 ⊕ V7.

Thus

Λ6(V13) ∼=proj (V3 ⊕ V7)⊗ V3 ⊕ Ω16(V3 ⊕ V7) ∼=proj (V3 ⊗ V3)⊕ (V7 ⊗ V3)⊕ Ω16(V3 ⊕ V7)
∼=proj (V1 ⊕ 2V4)⊕ (V5 ⊕ 2V8)⊕ (V13 ⊕ V9) ∼=proj V1 ⊕ 2V4 ⊕ V5 ⊕ 2V8 ⊕ V9 ⊕ V13.

Comparing dimensions, we obtain Λ6(V13) ∼= V1 ⊕ 2V4 ⊕ V5 ⊕ 2V8 ⊕ V9 ⊕ V13 ⊕ 104V16.

(b) Obviously, Gow and Laffey’s formula for exterior squares [11, Theorem 2] is the special
case r = 2 of Theorem 1.1. Furthermore, setting s = 2n−1 − 1 in Theorem 1.1 gives
Kouwenhoven’s formula [15, Theorem 3.4] for Λr(Vq−1) when q is a power of 2 (for all r).

In [15, Theorem 3.5] Kouwenhoven proved the formula

(12) λt(Vq+1 − Vq−1) = 1 + (Vq+1 − Vq−1)t+ t2

in a(Cq·p)[[t]], where q is a power of a prime p; see Section 4 for a definition of λt. We will
show how this can be derived from Theorem 1.1 in the case that p = 2. Note that, since
the dimension series of the two sides match, it is sufficient to prove this modulo projectives.
The theorem gives us:

λt(V2n−1+1) = (1 + V2n−1t
2)λΩ2n

t (V2n−1−1)

modulo V2n and

λt(V2n−1−1) = (1 + V2n−1−1t)λ
Ω2n−1

t2 (V2n−2−1)

modulo V2n−1 . The latter can be written as

λt(V2n−1−1) = (1 + V2n−1−1t)(λ
Ω2n−1

t2 (V2n−2−1) + V2n−1f(t))

exactly (the last term can be written inside the parentheses, since (1+V2n−1−1t) is invertible).
Applying Ω2n in odd degrees we obtain

λΩ2n

t (V2n−1−1) = (1 + V2n−1+1t)(λ
Ω2n−1

t2 (V2n−2−1) + V2n−1f(t)).

Substituting into the left hand side of (12) yields

(1 + V2n−1t
2)(1 + V2n−1+1t)(1 + V2n−1−1t)

−1

modulo V2n , and it is easy to verify that

(1 + V2n−1t
2)(1 + V2n−1+1t) = (1 + V2n−1−1t)(1 + (V2n−1+1 − V2n−1−1)t+ t2)

modulo V2n .

(c) Theorem 1.1 can also be used to calculate the Adams operations on the Green ring
a(C2n), as was shown to us by Roger Bryant and Marianne Johnson. For each r > 0 and
j ∈ {1, . . . , 2n}, define an element ψrΛ(Vj) ∈ a(C2n) by

ψ1
Λ(Vj)− ψ2

Λ(Vj)t+ ψ3
Λ(Vj)t

2 − · · · = ψΛ,t(Vj) = d
dt

log λt(Vj).
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By Z-linear extension there is a map ψrΛ : a(C2n)→ a(C2n), called the rth Adams operation
defined by the exterior powers. It can be shown that if r is odd, then ψrΛ is the identity map

on a(C2n) and that ψ2ir
Λ = ψ2i

Λ for all i ≥ 1, so all that remains is to describe ψ2i

Λ for i ≥ 1
(see [5] and [6] for details). For j ≥ 2, write j = 2m + s with m ≥ 0 and 1 ≤ s ≤ 2m; then

ψ2i

Λ (V2m+s) = 2ψ2i−1

Λ (Vs) + ψ2i

Λ (V2m−s)

for all i ≥ 2 and

ψ2
Λ(V2m+s) = 2V2m+1 − 2V2m+1−s + ψ2

Λ(V2m−s).

This can be seen by applying the definition of the Adams operations to the Hilbert series
form of Theorem 1.1, obtaining (in the obvious notation)

ψΛ,t(V2m+s) =proj 2tψΩ
Λ,t2(Vs) + ψΩ

Λ,t(V2m−s).

References

[1] G. Almkvist, R.M. Fossum, Decompositions of exterior and symmetric powers of indecomposable Z/pZ-
modules in characteristic p and relations to invariants, in Sém. d’Algèbre P. Dubreil, Lecture Notes in
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