# CYCLIC GROUP ACTIONS ON POLYNOMIAL RINGS 

PETER SYMONDS


#### Abstract

We consider a cyclic group of order $p^{n}$ acting on a module incharacteristic $p$ and show how to reduce the calculation of the symmetric algebra to that of the exterior algebra.


Consider a cyclic group of order $p^{n}$ acting on a polynomial ring $S=k\left[x_{1}, \ldots, x_{r}\right]$, where $k$ is a field of characteristic $p$; this is equivalent to the symmetric algebra $S^{*}(V)$ on the module $V$ generated by $x_{1}, \ldots, x_{r}$. We would like to know the decomposition of $S$ into indecomposables.

This was calculated by Almkvist and Fossum in [1] in the casen $=1$; see also [6]. They reduced the problem to the calculation of the exterior powers of $V$, and then gave a formula for these.

In this note we accomplish the first part for general $n$, that is to say the reduction of the calculation of the symmetric algebra to that of the exterior algebra. Many of the results extend to a group with normal cyclic Sylow $p$-subgroup, in particular to any finite cyclic group.

We wish to thank Dikran Karagueuzian for providing the computer calculations using Magma [4] that motivated this work.

## 1. Periodicity

Let $G$ be a finite group, $k$ a field of characteristic $p$ and $V$ a $k G$-module. Suppose that $V^{\prime}<V$ is a $k G$-submodule of codimension 1 , and let $x \in V \backslash V^{\prime}$. Set $a=\Pi_{g \in G / \operatorname{Stab}_{G}(x)} g x^{r}$, for some $r \in \mathbb{N}$. Choose a basis for $V^{\prime}$ and add $x$ to obtain a basis of $V$. Let $T \leq S=S^{*}(V)$ be the $k G$-submodule spanned by the monomials in the basis elements that are not divisible by $x^{\operatorname{deg} a}$.

Lemma 1.1. As $k G$-modules, $S \cong k[a] \otimes_{k} T$.
Proof. (cf. [7]) Since $V / V^{\prime}$ is a simple module we must have $\operatorname{rad} V \leq V^{\prime}$. Now $x$ is an eigenvector modulo rad $V$, so $a \equiv \lambda x^{\operatorname{deg} a} \bmod T$ for some $0 \neq \lambda \in k$. Since $S=x^{\operatorname{deg} a} S \oplus T$, we obtain $S=a S \oplus T$, and the result follows by repeated substitution for $S$.

Remark. It is easy to extend this to a multiple periodicity, with one polynomial generator for each 1-dimensional summand of $V / \operatorname{rad} V$.

Theorem 1.2. Suppose that $G$ has a normal cyclic Sylow p-subgroup $H$, and that $V$ is a non-zero $k G$-module that is indecomposable on restriction to $H$. Then $S^{*}(V) \cong k[a] \otimes B$ modulo modules projective relative to proper subgroups of $H$, where $a$ is an eigenvector for $G$ of degree $|H|$ and $B$ is a sum of homogeneous submodules of degree strictly less than $\operatorname{deg} a$.

[^0]Remark. This was conjectured in the case $G=H$ by Hughes and Kemper [6].

Proof. There must be a complement $F$ to $H$ in $G$. This is because the extension $H \rightarrow G \rightarrow$ $G / H$ is classified by an element of $H^{2}(G / H, H)$, and this group is 0 since $|G / H|$ is prime to $|H|$, (or invoke the Schur-Zassenhaus Theorem).

Let $\operatorname{dim} V=r$ and $|H|=p^{n}$. We assume that $V$ is faithful, so $r>p^{n-1}$ and hence $n \leq r-1$.

Now $L=V / \operatorname{rad} V$ is 1-dimensional ([2] II 58 ), so can be written over a finite field $\mathbb{F}_{q}$. The map $V \rightarrow L$ splits over $F$, since $|F|$ is not divisible by $p$ : let $x \in V$ be a non-zero element in the image of the splitting. Then $V$ is generated over $G$ by $x$, and $x$ is an eigenvector for $F$. We set $a=\Pi_{h \in H} h x$, so $a$ is an eigenvector for $G$ of degree $p^{n}$.

Let $W_{r}(k)$ denote the group of invertible upper-triangular $r \times r$-matrices over $k$ and $U_{r}(k)$ its subgroup of matrices with entries 1 on the diagonal.

The projective cover of $L$ is $\operatorname{Ind}_{F}^{G} L$, so $V$ is a quotient of this. It follows that $V$ can be realized over $\mathbb{F}_{q}$, and from now on we suppose that $k=\mathbb{F}_{q}$. It also follows that we may regard $G$ as a subgroup of $W_{r}(k)$ and $V$ as the restriction to $G$ of the natural representation of $W_{r}(k)$, with $x$ as top basis element. Let $d_{r}$ be the orbit product of $x$ under $U_{r}(k)$, so $\operatorname{deg} d_{r}=q^{r-1}$.

The previous Lemma 1.1 tells us that $S \cong k[a] \otimes T$ over $H$, where $T$ is spanned by the monomials in the basis elements that are not divisible by $x^{p^{n}}$, and also $S \cong k\left[d_{r}\right] \otimes T^{\prime}$ over $U_{r}(k)$, where $T^{\prime}$ is spanned by the monomials in the basis elements that are not divisible by $x^{q^{r-1}}$. In the first of these isomorphisms, the right hand side is naturally a $k G$-module, since $a$ is an eigenvector for $G$. The natural map from right to left is $G$-equivariant, so the isomorphism is valid over $G$.

Observe that a generator of $H$ can not be contained in any of the $s$-row subgroups of $U_{r}(k)$ for $s \leq r-2$, i.e. the subgroups $U_{J}<U_{r}$ for $J \supsetneqq I=\{1, \ldots, r-1\}$ consisting of elements with zero off-diagonal elements in the rows corresponding to the elements of $J$. This is because such a group has a fixed space on the dual module $V^{*}$ of dimension at least 2, and the dimension of the fixed space of $H$ on $V^{*}$ is 1 .

The Main Theorem of [7] as generalized to $W_{r}(k)$ in [8] 7.1 states that, as a $k W_{r}(k)$-module, $T^{\prime}$ is a sum of pieces of the form $D \otimes \bar{X}_{J}(I) \cong D \otimes \operatorname{Ind}_{W_{J}}^{W_{r}} \bar{X}_{J}(J)$, (where $D$ is 1-dimensional and $W_{J}$ is defined analogously to $U_{J}$ ). The double coset formula (see e.g. [3] 3.3.4) and the observation above show that, as $k G$-modules, $T^{\prime} \cong B^{\prime}$ modulo summands induced from subgroups with strictly smaller Sylow $p$-subgroups, where $B^{\prime}$ is the module $\bar{X}_{I}(I)$ of that paper, (which only occurs once in the decomposition of $T^{\prime}$ ), so a sum of homogeneous pieces known to be of degree less than $\operatorname{deg} d_{r}$.

It is easy to check that, over $k G, T^{\prime} \cong T \oplus a T \oplus \cdots \oplus a^{q^{r-1} p^{-n}-1} T$. In particular $T$ can only have a finite number of summands that are not induced; call their sum $B$. Then $B^{\prime} \cong B \oplus a B \oplus \cdots \oplus a^{q^{r-1} p^{-n}-1} B$.

This shows that $\operatorname{deg} B^{\prime}=\operatorname{deg} a^{q^{r-1} p^{-n}-1}+\operatorname{deg} B$ (where deg denotes the maximum degree of the homogeneous pieces). Thus $\operatorname{deg} B=\operatorname{deg} B^{\prime}-q^{r-1}+p^{n}$ and, since $\operatorname{deg} B^{\prime}<q^{r-1}$, we obtain $\operatorname{deg} B<p^{n}$.

Remark. If $F$ is abelian and $k$ is a splitting field then all indecomposable $k G$-modules satisfy the condition of the theorem (see e.g. [2] II 6).

## 2. Working modulo induced modules

Let $C_{p^{n}}$ denote the cyclic group of order $p^{n}$ and let $A\left(C_{p^{n}}\right)$ denote the Green ring of $k C_{p^{n}}$-modules, (where $k$ has characteristic $p$ ).

Recall that $k C_{p^{n}} \cong k[X] / X^{p^{n}}$, where $X$ corresponds to $g-1$ for some generator $g \in C_{p^{n}}$. The indecomposable representations of $C_{p^{n}}$ are $V_{t}=k[X] / X^{t}$, up to isomorphism, where $1 \leq t \leq p^{n}$ (see [2], for example). For convenience we let $V_{0}$ denote the 0 module. The decomposition of tensor products is described implicitly in [5] and explicitly in [9].

For $m<n$ there are restriction and induction operators $R_{m}^{n}: A\left(C_{p^{n}}\right) \rightarrow A\left(C_{p^{m}}\right)$ and $I_{m}^{n}: A\left(C_{p^{m}}\right) \rightarrow A\left(C_{p^{n}}\right)$ with the properties that $I_{m}^{n} V_{t}=V_{p^{n-m} t}, \quad R_{m}^{n} I_{m}^{n}=p^{n-m}$ and $I_{m}^{n} R_{m}^{n}=V_{p^{n-m}} \otimes-$.

For any finite dimensional $k C_{p^{n}}$-module $V$, let $H^{n}=H^{n}(V)$ be the element of $A\left(C_{p^{n}}\right)[[t]]$ with $S^{r}(V)$ as coefficient of $t^{r}$. Note that $H^{n}(V \oplus W)=H^{n}(V) H^{n}(W)$.

Let $P^{n}(V)$ be the part of $H^{n}(V)$ where we only consider indecomposables of dimension prime to $p$, or, equivalently, those not induced from a proper subgroup. In other words, we write $S^{n}(V)$ as a sum of indecomposables, omit all the summands of dimension prime to $p$ and put the remainder as the coefficient of $t^{n}$ in $P^{n}(V)$.
Lemma 2.1. If $V$ is indecomposable then $P^{n}(V)=Q^{n}(V)\left(1-t^{p^{n}}\right)^{-1}$, where $Q^{n}(V)$ is a polynomial of degree $<p^{n}$.
Proof. This is part of the periodicity result 1.2 above.
Proposition 2.2. Suppose that we know the $P^{m}(V)$ for $m \leq n$. Then we also know the $H^{n}(V)$, and, in fact,

$$
H^{n}=\left(1-p^{-1} V_{p}\right) P^{n}+p^{-1} I_{n-1}^{n}\left(\left(1-p^{-1} V_{p}\right) P^{n-1}\right)+p^{-2} I_{n-2}^{n}\left(\left(1-p^{-1} V_{p}\right) P^{n-2}\right)+\cdots .
$$

In this formula, $P^{n-r}$ is an abbreviation for $P^{n-r} R_{n-r}^{n} V$, and $V_{p}$ is the indecomposable module of dimension $p$ for $C_{p^{n-r}}$.
Proof. Write $R=R_{n-1}^{n}$ and $I=I_{n-1}^{n}$. Now $I R I=p I$, so on inducedmodules we have $p^{-1} I R=1$. Thus $H^{n}-P^{n}=p^{-1} I R\left(H^{n}-P^{n}\right)=p^{-1}\left(I H^{n-1}-I R P^{n}\right)=p^{-1}\left(I H^{n-1}-V_{p} P^{n}\right)$, and so $H^{n}=p^{-1} I H^{n-1}+\left(1-p^{-1} V_{p}\right) P^{n}$.

Now use recursion in $n$.
For $k G$-modules $W \leq V$, write $(V, W)$ for the pair. There is anobvious definition of direct sum.
Lemma 2.3. For a cyclic $p$-group $G$ and indecomposable $G$-module $V$, every $\operatorname{Res}_{H}^{G}(V, W)$ is a sum of $\left(V^{\prime}, W^{\prime}\right)$ with $V^{\prime}$ (and $W^{\prime}$ ) indecomposable and $\operatorname{codim}\left(V^{\prime}, W^{\prime}\right) \geq\lfloor\operatorname{codim}(V, W) / \mid G$ : $H \mid\rfloor$.
Proof. By induction, we may assume that $H$ is of index $p$ in $G$. So $k G \cong k[X] / X^{p^{n}}$ and $k H \cong k\left[X^{p}\right] / X^{p^{n}} \cong k[Y] / Y^{p^{n-1}}$, where $Y=X^{p}$.

Also we may take $V=k[X] / X^{v}$ and $W=X^{v-w} k[X] / X^{v}$, where $v=\operatorname{dim} V$ and $w=$ $\operatorname{dim} W$.

Now $\operatorname{Res}_{H}^{G} V=k[Y] / X^{v} \oplus \cdots \oplus X^{p-1} k[Y] / X^{v}$ and $\operatorname{Res}_{H}^{G} W=X^{v-w} k[Y] / X^{v} \oplus \cdots \oplus$ $X^{v-w+p-1} k[Y] / X^{v}$.

Write $v-w=p a+b$ with $0 \leq b \leq p-1$. Then, with a little rearranging, $\operatorname{Res}_{H}^{G} W=$ $Y^{a+1} k[Y] / X^{v} \oplus \cdots \oplus X^{b-1} Y^{a+1} k[Y] / X^{v} \oplus X^{b} Y^{a} k[Y] / X^{v} \oplus \cdots \oplus X^{p-1} Y^{a} k[Y] / X^{v}$; each of
these summands is clearly a submodule of the summand of $\operatorname{Res}_{H}^{G} V$ labeled by the same power of $X$, and we need to show that the codimension is at least $a$.

Now $X^{r} Y^{s} k[Y] / X^{v} \leq X^{r} k[Y] / X^{v}$ has codimension $s$ provided that $X^{r} Y^{s-1}$ is not 0 in the module, which happens when $v-r>p(s-1)$, and in our cases $s$ is equal to $a$ or $a+1$.

We claim that in all our cases in fact $v-r>p(s-1)$. In the cases when $s=a+1$ we would otherwise have $v-r \leq p a=v-w-b$, hence $r \geq b+w$. But in these cases $r \leq b-1$, a contradiction. In the cases when $s=a$ a similar argument gives $r \geq b+w+p$, when we know that $r \leq p-1$.

## 3. Symmetric Powers

Let $H<G$, and let $B$ be a $G$-module projective relative to $H$. Let $f: A \rightarrow B$ be a map of $G$-modules.

Lemma 3.1. If $f$, considered as a map of $H$-modules, factors through a projective then it also factors through a projective as a map of $G$-modules. The same claim also holds for any $g: B \rightarrow A$.
Proof. Recall that, for groups $U \leq V \leq G$ and $V$-modules $A, B$, we define $\operatorname{tr}_{U}^{V}: \operatorname{Hom}_{U}(A, B) \rightarrow$ $\operatorname{Hom}_{V}(A, B)$ by $\operatorname{tr}_{U}^{V}(\phi)=\sum_{v \in V / U} v \phi v^{-1}, \quad \phi \in \operatorname{Hom}_{U}(A, B)$.

The hypotheses are equivalent to $f=\operatorname{tr}_{1}^{H} f^{\prime}$ and $\operatorname{Id}_{B}=\operatorname{tr}_{H}^{G} i$, where $i$ is $H$-equivariant (see e.g. [3] 3.6). We need to show that $f$ is in the image of $\operatorname{tr}_{1}^{G}$.
But $\operatorname{tr}_{1}^{G}\left(i f^{\prime}\right)=\operatorname{tr}_{H}^{G} \operatorname{tr}_{1}^{H}\left(i f^{\prime}\right)=\operatorname{tr}_{H}^{G}\left(i \operatorname{tr}_{1}^{H} f^{\prime}\right)=\operatorname{tr}_{H}^{G}(i) f=f$.
The proof of the second claim is similar.
Definition 3.2. A chain complex $C_{*}$ is called:

- acyclic if it only has homology in degree 0 ;
- weakly induced if each module is induced, and weakly induced except in degrees I if each $C_{i}, i \notin I$, is induced; and
- separated if each $\operatorname{Im} d_{i} \rightarrow C_{i}$ factors through a projective.

Write $B_{i}$ for $\operatorname{Im} d_{i} \subseteq C_{i}$. If the inclusion $B_{i} \rightarrow C_{i}$ factors through a projective then it factors through the injective hull of $B_{i}$, call it $P_{i}$ (injective is equivalent to projective here), and $P_{i} \rightarrow C_{i}$ is injective since it is so on the socle. Thus we can write $C_{i}=P_{i} \oplus C_{i}^{\prime}$ and $B_{i} \subseteq P_{i}$.

Recall that the Heller translate $\Omega V$ of a module $V$ is defined to be the kernel of the projective cover $P_{V} \rightarrow V$ and $\Omega^{i} V$ for $i \geq 1$ is $\Omega$ iterated $i$ times. Similarly $\Omega^{-1} V$ is the cokernel of the injective hull $V \rightarrow I_{V}$ and $\Omega^{-i}$ for $i \geq 1$ is its iteration. We let $\Omega^{0} V$ denote $V$ with any projective summands removed.
In our context, projective is equivalent to injective, so $\Omega^{i} \Omega^{j} V \cong \Omega^{i+j} V$ and if $V$ is induced so is $\Omega^{i} V$. Also $\left(\Omega^{i} V\right)^{*} \cong \Omega^{-i}\left(V^{*}\right)$ and $\Omega(V \otimes W) \cong(\Omega V) \otimes W$ modulo projectives. See [3] 2.4, 3.1.6.

Note that $\Omega^{2}=1$ modulo projectives for cyclic $p$-groups.
Proposition 3.3. Suppose that the chain complex of $G$-modules $K_{w} \rightarrow \cdots \rightarrow K_{0}$ is:

- acyclic and $H_{0}\left(K_{*}\right)=L$, say;
- weakly induced from $H$ except in at most one degree;
- on restriction to $H, K_{*}$ is separated.

Then $K_{*}$ is separated and $L \oplus P \cong K_{0} \oplus \Omega^{-1} K_{1} \oplus \Omega^{-2} K_{2} \oplus \cdots$, for some projective module $P$.

Proof. We use induction on $w$, so first consider the case $w=1$, where we have a short exact sequence $K_{1} \rightarrow K_{0} \rightarrow L$.

Now one of $K_{0}, K_{1}$ is induced from $H$, and $K_{1} \rightarrow K_{0}$ factors through a projective over $H$, so we can apply lemma 3.1 to see that $K_{1} \rightarrow K_{0}$ factors through a projective over $G$. The shifted triangle $K_{0} \rightarrow L \rightarrow \Omega^{-1} K_{1}$ is stably split, so $L \cong K_{0} \oplus \Omega^{-1} K_{1}$ stably, and thus there are projective modules $P$ and $Q$ such that $L \oplus P \cong K_{0} \oplus \Omega^{-1} K_{1} \oplus Q$.

We claim that we can take $Q=0$. Since $L$ is a quotient of $K_{0}$, any projective summand of $L$ is also isomorphic to a summand of $K_{0}$, and we can cancel, so we can assume that $L$ has no projective summands. But then $Q$ must be isomorphic to a summand of $P$ and we can cancel.

Now for $w \geq 2$ we break up our complex into two: $K_{w} \rightarrow K_{w-1}$, which we shift so that $K_{w-1}$ is in degree 0 and the homology there is $\operatorname{Im} d_{w-1}$, and $\operatorname{Im} d_{w-1} \rightarrow K_{w-2} \rightarrow \cdots \rightarrow K_{0}$.

These both satisfy the hypotheses of the proposition; in particularif a $K_{i}$ with $i \leq w-2$ is not induced then both $K_{w}$ and $K_{w-1}$ are induced, hence so is $\operatorname{Im} d_{w-1}$ by the case $w=1$.

Thus both complexes are separated, hence so is $K_{*}$. Also $L \oplus P^{\prime} \cong K_{0} \oplus \Omega^{-1} K_{1} \oplus \cdots \oplus$ $\Omega^{w-2} K_{w-2} \oplus \Omega^{w-1} \operatorname{Im} d_{w-1}$ and $\operatorname{Im} d_{w-1} \oplus P^{\prime \prime} \cong K_{w-1} \oplus \Omega^{-1} K_{w}$, so the last claim follows.
Definition 3.4. For any pair $(V, W)$ of $G$-modules we have a Koszul complex $K(V, W)$ :

$$
\cdots \rightarrow \Lambda^{2}(W) \otimes S^{r-2}(V) \rightarrow W \otimes S^{r-1}(V) \rightarrow S^{r}(V)
$$

the boundary map is $d\left(w_{1} \wedge \cdots \wedge w_{j} \otimes s\right)=\sum_{i=1}^{j}(-1)^{j-i} w_{1} \wedge \cdots \wedge \hat{w}_{i} \wedge \cdots \wedge w_{j} \otimes w_{i} s$, $w_{i} \in W, s \in S^{*}(V)$.
Lemma 3.5. $K(V, W)$ is exact except at $S^{*}(V)$, where its homology is $S^{*}(V / W)$.
Proof. Ignoring the group action, $K(V, W) \cong K(W, W) \otimes S^{*}(V / W)$;now $K(W, W)$ is a standard Koszul complex, so known to be exact except in degree 0 , where its homology is $k$.

Lemma 3.6. ([1]) $K(V, V)$ is split exact in degrees $r$ not divisible by $p$.
Proof. The splitting is given by $e\left(\lambda \otimes v_{1} \cdots v_{j}\right)=r^{-1} \sum_{i=1}^{j} \lambda \wedge v_{i} \otimes v_{1} \cdots \hat{v}_{i} \cdots v_{j}, \lambda \in$ $\Lambda^{*}(W), v_{i} \in V$.
Remark. This can be used (inductively on $r$ ) to obtain a formula for $S^{r}(V)$ in terms of $\Lambda^{*}(V)$ for $r<p$. For cyclic groups of order $p$, this fact and periodicity are all that is needed to obtain the reduction for all $r$ (see [1]).
Lemma 3.7. For $G$ cyclic of prime power order and $H<G$ of index $p, S^{r}\left(V_{p u}\right)$ is induced in degrees not divisible by $p$, and $S^{p s}\left(V_{p u}\right)$ is the tensor induced module $\left(\uparrow_{H}^{\otimes, G} S^{s}\left(V_{u}\right)\right)$, modulo induced modules.

Proof. Note that $V_{p u} \cong \operatorname{Ind}_{H}^{G} V_{u}$. The first part follows from the lemma above. In general use $S^{*}\left(V_{u} \oplus t_{2} V_{u} \oplus \cdots \oplus t_{p} V_{u}\right) \cong S^{*}\left(V_{u}\right) \otimes t_{2} S^{*}\left(V_{u}\right) \otimes \cdots \otimes t_{p} S^{*}\left(V_{u}\right)$, where $\left\{1, t_{2}, \ldots, t_{p}\right\}$ is a set of coset representatives for $G / H$.

The next lemma is clear.
Lemma 3.8. $K\left(\left(V_{1}, W_{1}\right) \oplus\left(V_{2}, W_{2}\right)\right) \cong K\left(V_{1}, W_{1}\right) \otimes K\left(V_{2}, W_{2}\right)$.

Lemma 3.9. If $C_{*}^{1}$ and $C_{*}^{2}$ are separated then so is $C_{*}^{1} \otimes C_{*}^{2}$.
Proof. We omit sub- and superscripts. We have $B \subseteq P \subseteq C$ (in the notation established after 3.2). The boundary in $C \otimes C$ has image in $(B \otimes C)+(C \otimes B) \subseteq(P \otimes C)+(C \otimes P)$. The + looks unpromising, but we have a left exact sequence $0 \rightarrow P \otimes P \rightarrow(P \otimes C) \oplus(C \otimes P) \rightarrow C \otimes C$. This must split, since everything with a $P$ in it is projective, hence injective, so the image on the right is projective.

Theorem 3.10. Let $G$ be a cyclic group of order $p^{n}$. For any $0 \leq t \leq p^{n}-p^{n-1}, K\left(V_{p^{n}}, V_{t}\right)$ is separated.

Proof. Use induction on $n$. First consider $n=1$. Because $S^{r}\left(V_{p}\right)$ isprojective except in degrees divisible by $p$, and because we do not allow $t=p$, all but one of the terms in $K$ are projective, and this forces separability.

For general $n$, write $S=k[a] \otimes T$, as in 1.1, and let $K^{\prime}$ be the subcomplex of $K$ defined using $T$ instead of $S$. This is consistent with the boundary morphisms, because the $x$ used in the definition of $T$ is not in the submodule $V_{t}$ (this is why we need an upper bound on $t$ ). Thus $K=k[a] \otimes K^{\prime}$, and we need only consider $K^{\prime}$.

From 3.7 we know that $S^{r}\left(V_{p^{n}}\right)$ is induced except whenr is divisible by $p^{n}$, so $T^{r}$ is induced except when $r=0$. But for $r=0$ the corresponding term in $K^{\prime}$ is either 0 or the last one in that degree, so (graded module)-degree-wise $K^{\prime}$ is weakly induced except in the highest (complex)-degree.

Now restrict to $H$ of order $p^{n-1}$. By 2.3, $\left(V_{p^{n}}, V_{t}\right)$ will decompose as $\oplus_{i=1}^{p}\left(V_{p^{n-1}}, W_{i}\right)$ with $\operatorname{dim} W_{i} \leq p^{n-1}-p^{n-2}$, and $\operatorname{Res}_{H}^{G} K\left(V_{p^{n}}, V_{t}\right) \cong \otimes_{i} K\left(V_{p^{n-1}}, W_{i}\right)$, by 3.8.

By induction, as a complex for $H$, each $K\left(V_{p^{n-1}}, W_{i}\right)$ is acyclic and separated, hence so is $K\left(V_{p^{n}}, V_{t}\right)$, by 3.9 , and thus $K^{\prime}\left(V_{p^{n}}, V_{t}\right)$. Now apply 3.3.

Corollary 3.11. For $G \cong C_{p^{n}}, r<p^{n}$ and $p^{n-1} \leq t \leq p^{n}$ we have $S^{r}\left(V_{t}\right) \cong \Omega^{-r} \Lambda^{r}\left(V_{p^{n-t}}\right)$ modulo induced modules.

In particular, if $r+t>p^{n}$ then $S^{r}\left(V_{t}\right)$ is induced.
Proof. $S^{*}\left(V_{t}\right)$ is the homology of $K\left(V_{p^{n}}, V_{p^{n}-t}\right)$. Use Theorem 3.10 and the last part of Proposition 3.3. As in the proof above, the only possible non-induced term in (module-) degree $r$ is $\Lambda^{r}\left(V_{p^{n}-t}\right) \otimes S^{0}\left(V_{p^{n}}\right)$.

We adopt the convention that $S^{r}=0$ for $r<0$.
Corollary 3.12. With the same conditions as above, $S^{r}\left(V_{t}\right) \cong \Omega^{p^{n-t}} S^{p^{n-t-r}}\left(V_{t}\right)$ modulo induced modules.

Proof. $S^{r}\left(V_{t}\right) \cong \Omega^{-r} \Lambda^{r}\left(V_{p^{n}-t}\right) \cong \Omega^{-r} \Lambda^{p^{n}-t-r}\left(V_{p^{n}-t}\right) \cong \Omega^{p^{n}-t-2 r} S^{p^{n}-t-r}\left(V_{t}\right)$ modulo induced modules.

Remark. It is thus only necessary to calculate $S^{r}\left(V_{t}\right)$ for $r \leq\left(p^{n}-t\right) / 2$ : the rest will follow.
Corollary 3.13. Suppose that $G$ has normal Sylow p-subgroup $H \cong C_{p^{n}}$ and that $V$ is a $k G$-module such that $\operatorname{Res}_{H}^{G} V \cong V_{t}$. If $r<p^{n}$ and $p^{n-1} \leq t \leq p^{n}$ then $S^{r}(V) \cong \Omega^{-r} \Lambda^{r}(\Omega V) \cong$ $\Omega^{t-p^{n}}\left(S^{p^{n}-t-r}(V)^{*}\right) \otimes \operatorname{det}(\Omega V)$ modulo summands projective relative to proper subgroups of $H$ (where * denotes the contragredient).

Proof. As in 1.2, $H$ has complement $F, V / \operatorname{rad} V=L$ and the projective cover of $V$ is $\operatorname{Ind}_{F}^{G} L$. We consider the Koszul complex $K\left(\operatorname{Ind}_{F}^{G} L, \Omega V\right)$. On restriction to $H$ this becomes $K\left(V_{p^{n}}, V_{p^{n}-t}\right)$. The property of a map factoring through a projective depends only on the restriction to $H$, so we obtain the same conclusion as in 3.11, which is the first isomorphism. The second follows as in 3.12, but being more careful about the duality. Modulo induced modules, $\Lambda^{r}(\Omega V) \cong \operatorname{Hom}\left(\Lambda^{p^{n}-t-r}(\Omega V), \Lambda^{p^{n}-t}(\Omega V)\right) \cong \Lambda^{p^{n}-t-r}(\Omega V)^{*} \otimes \operatorname{det}(\Omega V)$, and $\Lambda^{p^{n}-t-r}(\Omega V)^{*} \cong\left(\Omega^{p^{n}-t-r} S^{p^{n}-t-r}(V)\right)^{*} \cong \Omega^{r+t-p^{n}}\left(S^{p^{n}-t-r}(V)^{*}\right)$.

## References

[1] G. Almkvist, R.M. Fossum, Decompositions of exterior and symmetric powers of indecomposable $\mathbb{Z} / p \mathbb{Z}$ modules in characteristic p and relations to invariants, in Séminaire d'Algèbre P. Dubreil, Lecture Notes in Math. 641 1-111, Springer, Berlin 1977.
[2] J.L. Alperin, Local Representation Theory, Cambridge U.P. 1986.
[3] D.J. Benson, Representations and Cohomology I, Cambridge U.P. 1991.
[4] W. Bosma, J.J. Cannon, C. Playoust, The Magma algebra system I: the user language, Jour. Symbolic computation 24 (1997) 235-265.
[5] J.A. Green, The modular representation algebra of a finite group, Illinois Jour. Math. 6 (1962) 607-619.
[6] I. Hughes, G. Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm. Algebra 28 (2000) 2059-2080.
[7] D. Karagueuzian, P. Symonds, The module structure of a group action on a polynomial ring: a finiteness theorem, preprint http://www.ma.umist.ac.uk/pas/preprints/npaper.pdf .
[8] D. Karagueuzian, P. Symonds, The module structure of a group action on a polynomial ring: examples, generalizations, and applications, CRM proceedings and lecture notes 35 (2004) 139-158.
[9] B. Srinivasan, The modular representation ring of a cyclic p-group, Proc. London Math. Soc. 14 (1964) 677-688.

School of Mathematics, University of Manchester, P.O. Box 88, Manchester M60 1QD, England

E-mail address: Peter.Symonds@manchester.ac.uk


[^0]:    2000 Mathematics Subject Classification. Primary: 20C02; Secondary: 13D02.
    Partially supported by a grant from the Leverhulme Trust.

