
CYCLIC GROUP ACTIONS ON POLYNOMIAL RINGS

PETER SYMONDS

Abstract. We consider a cyclic group of order pn acting on a module incharacteristic p
and show how to reduce the calculation of the symmetric algebra to that of the exterior
algebra.

Consider a cyclic group of order pn acting on a polynomial ring S = k[x1, . . . , xr], where
k is a field of characteristic p; this is equivalent to the symmetric algebra S∗(V ) on the
module V generated by x1, . . . , xr. We would like to know the decomposition of S into
indecomposables.

This was calculated by Almkvist and Fossum in [1] in the casen = 1; see also [6]. They
reduced the problem to the calculation of the exterior powers of V , and then gave a formula
for these.

In this note we accomplish the first part for general n, that is to say the reduction of the
calculation of the symmetric algebra to that of the exterior algebra. Many of the results
extend to a group with normal cyclic Sylow p-subgroup, in particular to any finite cyclic
group.

We wish to thank Dikran Karagueuzian for providing the computer calculations using
Magma [4] that motivated this work.

1. Periodicity

Let G be a finite group, k a field of characteristic p and V a kG-module. Suppose that
V ′ < V is a kG-submodule of codimension 1, and let x ∈ V r V ′. Set a = Πg∈G/ StabG(x)gxr,
for some r ∈ N. Choose a basis for V ′ and add x to obtain a basis of V . Let T ≤ S = S∗(V )
be the kG-submodule spanned by the monomials in the basis elements that are not divisible
by xdeg a.

Lemma 1.1. As kG-modules, S ∼= k[a]⊗k T .

Proof. (cf. [7]) Since V/V ′ is a simple module we must have rad V ≤ V ′. Now x is an
eigenvector modulo rad V , so a ≡ λxdeg a mod T for some 0 6= λ ∈ k. Since S = xdeg aS⊕T ,
we obtain S = aS ⊕ T , and the result follows by repeated substitution for S. �

Remark. It is easy to extend this to a multiple periodicity, with one polynomial generator
for each 1-dimensional summand of V/ rad V .

Theorem 1.2. Suppose that G has a normal cyclic Sylow p-subgroup H, and that V is a
non-zero kG-module that is indecomposable on restriction to H. Then S∗(V ) ∼= k[a] ⊗ B
modulo modules projective relative to proper subgroups of H, where a is an eigenvector for G
of degree |H| and B is a sum of homogeneous submodules of degree strictly less than deg a.
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Remark. This was conjectured in the case G = H by Hughes and Kemper [6].

Proof. There must be a complement F to H in G. This is because the extension H → G →
G/H is classified by an element of H2(G/H, H), and this group is 0 since |G/H| is prime to
|H|, (or invoke the Schur-Zassenhaus Theorem).

Let dim V = r and |H| = pn. We assume that V is faithful, so r > pn−1 and hence
n ≤ r − 1.

Now L = V/ rad V is 1-dimensional ([2] II 5 8), so can be written over a finite field Fq. The
map V → L splits over F , since |F | is not divisible by p: let x ∈ V be a non-zero element
in the image of the splitting. Then V is generated over G by x, and x is an eigenvector for
F . We set a = Πh∈Hhx, so a is an eigenvector for G of degree pn.

Let Wr(k) denote the group of invertible upper-triangular r× r-matrices over k and Ur(k)
its subgroup of matrices with entries 1 on the diagonal.

The projective cover of L is IndG
F L, so V is a quotient of this. It follows that V can be

realized over Fq, and from now on we suppose that k = Fq. It also follows that we may
regard G as a subgroup of Wr(k) and V as the restriction to G of the natural representation
of Wr(k), with x as top basis element. Let dr be the orbit product of x under Ur(k), so
deg dr = qr−1.

The previous Lemma 1.1 tells us that S ∼= k[a] ⊗ T over H, where T is spanned by the
monomials in the basis elements that are not divisible by xpn

, and also S ∼= k[dr]⊗ T ′ over
Ur(k), where T ′ is spanned by the monomials in the basis elements that are not divisible

by xqr−1
. In the first of these isomorphisms, the right hand side is naturally a kG-module,

since a is an eigenvector for G. The natural map from right to left is G-equivariant, so the
isomorphism is valid over G.

Observe that a generator of H can not be contained in any of the s-row subgroups of
Ur(k) for s ≤ r − 2, i.e. the subgroups UJ < Ur for J � I = {1, . . . , r − 1} consisting of
elements with zero off-diagonal elements in the rows corresponding to the elements of J .
This is because such a group has a fixed space on the dual module V ∗ of dimension at least
2, and the dimension of the fixed space of H on V ∗ is 1.

The Main Theorem of [7] as generalized to Wr(k) in [8] 7.1 states that, as a kWr(k)-module,
T ′ is a sum of pieces of the form D⊗ X̄J(I) ∼= D⊗ IndWr

WJ
X̄J(J), (where D is 1-dimensional

and WJ is defined analogously to UJ). The double coset formula (see e.g. [3] 3.3.4) and
the observation above show that, as kG-modules, T ′ ∼= B′ modulo summands induced from
subgroups with strictly smaller Sylow p-subgroups, where B′ is the module X̄I(I) of that
paper, (which only occurs once in the decomposition of T ′), so a sum of homogeneous pieces
known to be of degree less than deg dr.

It is easy to check that, over kG, T ′ ∼= T ⊕ aT ⊕ · · · ⊕ aqr−1p−n−1T . In particular T
can only have a finite number of summands that are not induced; call their sum B. Then
B′ ∼= B ⊕ aB ⊕ · · · ⊕ aqr−1p−n−1B.

This shows that deg B′ = deg aqr−1p−n−1 +deg B (where deg denotes the maximum degree
of the homogeneous pieces). Thus deg B = deg B′ − qr−1 + pn and, since deg B′ < qr−1, we
obtain deg B < pn. �

Remark. If F is abelian and k is a splitting field then all indecomposable kG-modules satisfy
the condition of the theorem (see e.g. [2] II 6).
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2. Working modulo induced modules

Let Cpn denote the cyclic group of order pn and let A(Cpn) denote the Green ring of
kCpn-modules, (where k has characteristic p).

Recall that kCpn ∼= k[X]/Xpn
, where X corresponds to g − 1 for some generator g ∈ Cpn .

The indecomposable representations of Cpn are Vt = k[X]/X t, up to isomorphism, where
1 ≤ t ≤ pn (see [2], for example). For convenience we let V0 denote the 0 module. The
decomposition of tensor products is described implicitly in [5] and explicitly in [9].

For m < n there are restriction and induction operators Rn
m : A(Cpn) → A(Cpm) and

In
m : A(Cpm) → A(Cpn) with the properties that In

mVt = Vpn−mt, Rn
mIn

m = pn−m and
In
mRn

m = Vpn−m ⊗−.
For any finite dimensional kCpn-module V , let Hn = Hn(V ) be the element of A(Cpn)[[t]]

with Sr(V ) as coefficient of tr. Note that Hn(V ⊕W ) = Hn(V )Hn(W ).
Let P n(V ) be the part of Hn(V ) where we only consider indecomposables of dimension

prime to p, or, equivalently, those not induced from a proper subgroup. In other words, we
write Sn(V ) as a sum of indecomposables, omit all the summands of dimension prime to p
and put the remainder as the coefficient of tn in P n(V ).

Lemma 2.1. If V is indecomposable then P n(V ) = Qn(V )(1 − tp
n
)−1, where Qn(V ) is a

polynomial of degree < pn.

Proof. This is part of the periodicity result 1.2 above. �

Proposition 2.2. Suppose that we know the Pm(V ) for m ≤ n. Then we also know the
Hn(V ), and, in fact,

Hn = (1− p−1Vp)P
n + p−1In

n−1((1− p−1Vp)P
n−1) + p−2In

n−2((1− p−1Vp)P
n−2) + · · · .

In this formula, P n−r is an abbreviation for P n−rRn
n−rV , and Vp is the indecomposable

module of dimension p for Cpn−r .

Proof. Write R = Rn
n−1 and I = In

n−1. Now IRI = pI, so on inducedmodules we have
p−1IR = 1. Thus Hn−P n = p−1IR(Hn−P n) = p−1(IHn−1−IRP n) = p−1(IHn−1−VpP

n),
and so Hn = p−1IHn−1 + (1− p−1Vp)P

n.
Now use recursion in n. �

For kG-modules W ≤ V , write (V, W ) for the pair. There is anobvious definition of direct
sum.

Lemma 2.3. For a cyclic p-group G and indecomposable G-module V , every ResG
H(V, W ) is

a sum of (V ′, W ′) with V ′ (and W ′) indecomposable and codim(V ′, W ′) ≥ bcodim(V, W )/|G :
H|c.

Proof. By induction, we may assume that H is of index p in G. So kG ∼= k[X]/Xpn
and

kH ∼= k[Xp]/Xpn ∼= k[Y ]/Y pn−1
, where Y = Xp.

Also we may take V = k[X]/Xv and W = Xv−wk[X]/Xv, where v = dim V and w =
dim W .

Now ResG
H V = k[Y ]/Xv ⊕ · · · ⊕ Xp−1k[Y ]/Xvand ResG

H W = Xv−wk[Y ]/Xv ⊕ · · · ⊕
Xv−w+p−1k[Y ]/Xv.

Write v − w = pa + b with 0 ≤ b ≤ p − 1. Then, with a little rearranging, ResG
H W =

Y a+1k[Y ]/Xv ⊕ · · · ⊕Xb−1Y a+1k[Y ]/Xv ⊕XbY ak[Y ]/Xv ⊕ · · · ⊕Xp−1Y ak[Y ]/Xv; each of



CYCLIC GROUP ACTIONS ON POLYNOMIAL RINGS 4

these summands is clearly a submodule of the summand of ResG
H V labeled by the same

power of X, and we need to show that the codimension is at least a.
Now XrY sk[Y ]/Xv ≤ Xrk[Y ]/Xv has codimension s provided that XrY s−1 is not 0 in

the module, which happens when v− r > p(s− 1), and in our cases s is equal to a or a + 1.
We claim that in all our cases in fact v − r > p(s − 1). In the cases when s = a + 1 we

would otherwise have v− r ≤ pa = v−w− b, hence r ≥ b + w. But in these cases r ≤ b− 1,
a contradiction. In the cases when s = a a similar argument gives r ≥ b + w + p, when we
know that r ≤ p− 1. �

3. Symmetric Powers

Let H < G, and let B be a G-module projective relative to H. Let f : A → B be a map
of G-modules.

Lemma 3.1. If f , considered as a map of H-modules, factors through a projective then it
also factors through a projective as a map of G-modules. The same claim also holds for any
g : B → A.

Proof. Recall that, for groups U ≤ V ≤ G and V -modules A, B, we define trV
U : HomU(A, B) →

HomV (A, B) by trV
U (φ) =

∑
v∈V/U vφv−1, φ ∈ HomU(A, B).

The hypotheses are equivalent to f = trH
1 f ′ and IdB = trG

H i, where i is H-equivariant
(see e.g. [3] 3.6). We need to show that f is in the image of trG

1 .
But trG

1 (if ′) = trG
H trH

1 (if ′) = trG
H(i trH

1 f ′) = trG
H(i)f = f .

The proof of the second claim is similar. �

Definition 3.2. A chain complex C∗ is called:

• acyclic if it only has homology in degree 0;
• weakly induced if each module is induced, and weakly induced except in degrees I if

each Ci, i 6∈ I, is induced; and
• separated if each Im di → Ci factors through a projective.

Write Bi for Im di ⊆ Ci. If the inclusion Bi → Ci factors through a projective then it
factors through the injective hull of Bi, call it Pi (injective is equivalent to projective here),
and Pi → Ci is injective since it is so on the socle. Thus we can write Ci = Pi ⊕ C ′

i and
Bi ⊆ Pi.

Recall that the Heller translate ΩV of a module V is defined to be the kernel of the
projective cover PV → V and ΩiV for i ≥ 1 is Ω iterated i times. Similarly Ω−1V is the
cokernel of the injective hull V → IV and Ω−i for i ≥ 1 is its iteration. We let Ω0V denote
V with any projective summands removed.

In our context, projective is equivalent to injective, so ΩiΩjV ∼= Ωi+jV and if V is induced
so is ΩiV . Also (ΩiV )∗ ∼= Ω−i(V ∗) and Ω(V ⊗W ) ∼= (ΩV )⊗W modulo projectives. See [3]
2.4, 3.1.6.

Note that Ω2 = 1 modulo projectives for cyclic p-groups.

Proposition 3.3. Suppose that the chain complex of G-modules Kw → · · · → K0 is:

• acyclic and H0(K∗) = L, say;
• weakly induced from H except in at most one degree;
• on restriction to H, K∗ is separated.
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Then K∗ is separated and L⊕ P ∼= K0 ⊕Ω−1K1 ⊕Ω−2K2 ⊕ · · · , for some projective module
P .

Proof. We use induction on w, so first consider the case w = 1, where we have a short exact
sequence K1 → K0 → L.

Now one of K0, K1 is induced from H, and K1 → K0 factors through a projective over H,
so we can apply lemma 3.1 to see that K1 → K0 factors through a projective over G. The
shifted triangle K0 → L → Ω−1K1 is stably split, so L ∼= K0⊕Ω−1K1 stably, and thus there
are projective modules P and Q such that L⊕ P ∼= K0 ⊕ Ω−1K1 ⊕Q.

We claim that we can take Q = 0. Since L is a quotient of K0, any projective summand
of L is also isomorphic to a summand of K0, and we can cancel, so we can assume that L
has no projective summands. But then Q must be isomorphic to a summand of P and we
can cancel.

Now for w ≥ 2 we break up our complex into two: Kw → Kw−1, which we shift so that
Kw−1 is in degree 0 and the homology there is Im dw−1, and Im dw−1 → Kw−2 → · · · → K0.

These both satisfy the hypotheses of the proposition; in particularif a Ki with i ≤ w − 2
is not induced then both Kw and Kw−1 are induced, hence so is Im dw−1 by the case w = 1.

Thus both complexes are separated, hence so is K∗. Also L ⊕ P ′ ∼= K0 ⊕ Ω−1K1 ⊕ · · · ⊕
Ωw−2Kw−2⊕Ωw−1 Im dw−1 and Im dw−1⊕P ′′ ∼= Kw−1⊕Ω−1Kw, so the last claim follows. �

Definition 3.4. For any pair (V, W ) of G-modules we have a Koszul complex K(V, W ):

· · · → Λ2(W )⊗ Sr−2(V ) → W ⊗ Sr−1(V ) → Sr(V ),

the boundary map is d(w1 ∧ · · · ∧ wj ⊗ s) =
∑j

i=1(−1)j−iw1 ∧ · · · ∧ ŵi ∧ · · · ∧ wj ⊗ wis,
wi ∈ W, s ∈ S∗(V ).

Lemma 3.5. K(V, W ) is exact except at S∗(V ), where its homology is S∗(V/W ).

Proof. Ignoring the group action, K(V, W ) ∼= K(W, W ) ⊗ S∗(V/W );now K(W, W ) is a
standard Koszul complex, so known to be exact except in degree 0, where its homology is
k. �

Lemma 3.6. ([1]) K(V, V ) is split exact in degrees r not divisible by p.

Proof. The splitting is given by e(λ ⊗ v1 · · · vj) = r−1
∑j

i=1 λ ∧ vi ⊗ v1 · · · v̂i · · · vj, λ ∈
Λ∗(W ), vi ∈ V . �

Remark. This can be used (inductively on r) to obtain a formula for Sr(V ) in terms of Λ∗(V )
for r < p. For cyclic groups of order p, this fact and periodicity are all that is needed to
obtain the reduction for all r (see [1]).

Lemma 3.7. For G cyclic of prime power order and H < G of index p, Sr(Vpu) is induced in

degrees not divisible by p, and Sps(Vpu) is the tensor induced module (↑⊗,G
H Ss(Vu)), modulo

induced modules.

Proof. Note that Vpu
∼= IndG

H Vu. The first part follows from the lemma above. In general
use S∗(Vu ⊕ t2Vu ⊕ · · · ⊕ tpVu) ∼= S∗(Vu)⊗ t2S

∗(Vu)⊗ · · · ⊗ tpS
∗(Vu), where {1, t2, . . . , tp} is

a set of coset representatives for G/H. �

The next lemma is clear.

Lemma 3.8. K((V1, W1)⊕ (V2, W2)) ∼= K(V1, W1)⊗K(V2, W2).
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Lemma 3.9. If C1
∗ and C2

∗ are separated then so is C1
∗ ⊗ C2

∗ .

Proof. We omit sub- and superscripts. We have B ⊆ P ⊆ C (in the notation established after
3.2). The boundary in C⊗C has image in (B⊗C)+(C⊗B) ⊆ (P⊗C)+(C⊗P ). The + looks
unpromising, but we have a left exact sequence 0 → P ⊗P → (P ⊗C)⊕ (C ⊗P ) → C ⊗C.
This must split, since everything with a P in it is projective, hence injective, so the image
on the right is projective. �

Theorem 3.10. Let G be a cyclic group of order pn. For any 0 ≤ t ≤ pn − pn−1, K(Vpn , Vt)
is separated.

Proof. Use induction on n. First consider n = 1. Because Sr(Vp) isprojective except in
degrees divisible by p, and because we do not allow t = p, all but one of the terms in K are
projective, and this forces separability.

For general n, write S = k[a] ⊗ T , as in 1.1, and let K ′ be the subcomplex of K defined
using T instead of S. This is consistent with the boundary morphisms, because the x used
in the definition of T is not in the submodule Vt (this is why we need an upper bound on t).
Thus K = k[a]⊗K ′, and we need only consider K ′.

From 3.7 we know that Sr(Vpn) is induced except whenr is divisible by pn, so T r is induced
except when r = 0. But for r = 0 the corresponding term in K ′ is either 0 or the last one
in that degree, so (graded module)-degree-wise K ′ is weakly induced except in the highest
(complex)-degree.

Now restrict to H of order pn−1. By 2.3, (Vpn , Vt) will decompose as ⊕p
i=1(Vpn−1 , Wi) with

dim Wi ≤ pn−1 − pn−2, and ResG
H K(Vpn , Vt) ∼= ⊗iK(Vpn−1 , Wi), by 3.8.

By induction, as a complex for H, each K(Vpn−1 , Wi) is acyclic and separated, hence so is
K(Vpn , Vt), by 3.9, and thus K ′(Vpn , Vt). Now apply 3.3. �

Corollary 3.11. For G ∼= Cpn, r < pn and pn−1 ≤ t ≤ pn we have Sr(Vt) ∼= Ω−rΛr(Vpn−t)
modulo induced modules.

In particular, if r + t > pn then Sr(Vt) is induced.

Proof. S∗(Vt) is the homology of K(Vpn , Vpn−t). Use Theorem 3.10 and the last part of
Proposition 3.3. As in the proof above, the only possible non-induced term in (module-)
degree r is Λr(Vpn−t)⊗ S0(Vpn). �

We adopt the convention that Sr = 0 for r < 0.

Corollary 3.12. With the same conditions as above, Sr(Vt) ∼= Ωpn−tSpn−t−r(Vt) modulo
induced modules.

Proof. Sr(Vt) ∼= Ω−rΛr(Vpn−t) ∼= Ω−rΛpn−t−r(Vpn−t) ∼= Ωpn−t−2rSpn−t−r(Vt) modulo induced
modules. �

Remark. It is thus only necessary to calculate Sr(Vt) for r ≤ (pn − t)/2: the rest will follow.

Corollary 3.13. Suppose that G has normal Sylow p-subgroup H ∼= Cpn and that V is a
kG-module such that ResG

H V ∼= Vt. If r < pn and pn−1 ≤ t ≤ pn then Sr(V ) ∼= Ω−rΛr(ΩV ) ∼=
Ωt−pn

(Spn−t−r(V )∗) ⊗ det(ΩV ) modulo summands projective relative to proper subgroups of
H (where ∗ denotes the contragredient).
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Proof. As in 1.2, H has complement F , V/ rad V = L and the projective cover of V is IndG
F L.

We consider the Koszul complex K(IndG
F L, ΩV ). On restriction to H this becomes

K(Vpn , Vpn−t). The property of a map factoring through a projective depends only on the
restriction to H, so we obtain the same conclusion as in 3.11, which is the first isomor-
phism. The second follows as in 3.12, but being more careful about the duality. Modulo
induced modules, Λr(ΩV ) ∼= Hom(Λpn−t−r(ΩV ), Λpn−t(ΩV )) ∼= Λpn−t−r(ΩV )∗ ⊗ det(ΩV ),
and Λpn−t−r(ΩV )∗ ∼= (Ωpn−t−rSpn−t−r(V ))∗ ∼= Ωr+t−pn

(Spn−t−r(V )∗). �
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