
ON THE CASTELNUOVO-MUMFORD REGULARITY OF THE
COHOMOLOGY RING OF A GROUP

PETER SYMONDS

Abstract. We prove Benson’s Regularity Conjecture that the regularity of the cohomology
of a finite group is zero. We also prove some of his generalizations to other classes of groups.

Dave Benson, in [2], conjectured that for any finite groupG and any prime p the Castelnuovo-
Mumford regularity of the cohomology ring, H∗(G,Fp), is zero. He showed that reg(H∗(G,Fp)) ≥
0 and succeeded in proving equality when the difference between the dimension and the depth
is at most two.

The purpose of this paper is to prove Benson’s Regularity Conjecture as a corollary of the
following result.

Theorem 0.1. If a compact Lie group G acts on a smooth manifold M with finite dimen-
sional mod-p homology then reg(H∗G(M,Fp)) ≤ dimM − dimG.

By taking G to be finite, M to be a point and using Benson’s inequality, we obtain a proof
of Benson’s original conjecture.

Corollary 0.2. For any finite group G we have reg(H∗(G,Fp)) = 0.

We record here one easily-stated consequence.

Proposition 0.3. For any non-trivial finite group, the cohomology ring H∗(G,Fp) is gen-
erated by elements in degree at most |G| − 1 and the relations between them (as a graded
commutative algebra) are generated in degrees at most 2(|G| − 1).

This bound is weak, although it can be improved somewhat at the cost of a more compli-
cated formulation, but previously no such bound was known.

We go on to prove some other conjectures of Benson on the regularity of the cohomology
of other classes of groups [3], specifically for compact Lie groups and virtual Poincaré duality
groups.

The proof uses standard techniques in equivariant cohomology based on work of Quillen
[30] and a paper of Duflot [14].

David Green and Simon King have verified Benson’s Conjecture computationally for all
groups of order less than 256 [20].

There is survey of the properties group cohomology from the point of view of commutative
algebra by Benson [3].

1. Castelnuovo-Mumford Regularity

We will work in the category of Z-graded rings and modules, so maps will respect the
grading, elements will be homogeneous etc. without specific mention. For a module M =
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⊕i∈ZMi, we will write M≥d = ⊕i≥dMi and similarly for other inequalities. Let k be a field
and let R be a finitely generated commutative graded k-algebra in non-negative degrees with
R0 finite dimensional over k. Let m = R>0 denote the ideal of elements in positive grading
(the maximal homogeneous ideal if R0 = k) and let M be a (graded) R-module. For any
(homogeneous) ideal I < R the I-torsion in M is ΓI(M) = {m ∈ M | ∃n ∈ N Inm = 0}.
The local cohomology H i

I(M) is then defined to be the ith right derived functor of ΓI(M).
We will be interested in H i

m(M).
There are other equivalent definitions of local cohomology, which make some of its prop-

erties evident, for example via Čech complexes. For more information on local cohomology
see [12, 9, 16, 24]. Most authors do not treat the graded case explicitly, but the first two of
these sources do.

Let ai(R,M) denote the maximum degree of a non-zero element of H i
m(M) (possibly∞ if

unbounded or −∞ if H i
m(M) = 0). The Castelnuovo-Mumford regularity (or just regularity)

of M over R is, by definition,

reg(R,M) = sup
i
{ai(R,M) + i}.

We refrain from defining regularity for rings that are not noetherian, in order to avoid
problems with local cohomology.

Proposition 1.1. Let R and S be commutative graded noetherian rings and f : R → S
a homomorphism such that S is finite over R. Let M be a graded S-module; then the
regularity of M is the same, whether considered as an S-module or as an R-module, that is
reg(S,M) = reg(R,M).

Proof. This follows easily from the Independence Theorem for local cohomology ([22] 5.7 or
[9] 13.1.6), which in turn follows from the characterisation of local cohomology in terms of
complexes; see [32]. �

If T , say, is a graded commutative noetherian ring, such as a cohomology ring, we set
S = T ev to be the part in even degrees. Then S is a commutative noetherian ring, and
for any T -module V we define reg(V ) = reg(S, V ). By Lemma 1.1 we would get the same
answer by calculating reg(R, V ) for any noetherian subring R of S such that T is finitely
generated over R. In particular, reg(T ) will mean reg(T ev, T ).

For example, if G is a compact Lie group and M is a G-space with H∗(M,Fp) finite,
then the regularity of the equivariant cohomology ring H∗G(M,Fp) can be calculated over
Hev

G (M,Fp), over Hev(G,Fp), or indeed over any convenient noetherian subring of these over
which it is still finite.

A particularly useful case is when R is a Noether normalization of S, that is a polynomial
subring of S over which S is finitely generated. These always exist and their generators are
often referred to as a homogeneous system of parameters. Restricting to any normalization
will yield the same value for the regularity.

Now suppose that R = k[x1, . . . , xn] is a polynomial ring in which the generators have
arbitrary positive degrees |xi| = deg(xi) (polynomial will always imply commutative for us).
We set σ(R) =

∑n
i=1(|xi| − 1).

Let M be an R-module that is zero in large negative degrees and consider the minimal
(graded) projective resolution of M (projective is equivalent to free in this case).

· · · → P1 → P0 →M → 0
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Let ρi(R,M) be the maximum degree of a non-zero element of (R/m)⊗R Pi (possibly ∞
or −∞), which is equal to the maximum degree of a generator of Pi. Define

Preg(R,M) = sup
i
{ρi(R,M)− i} − σ(R).

This form of the definition first appeared in a paper of Benson [2]. The usual definition does
not contain a σ-term, because all the di are supposed to be in degree 1, so σ(R) = 0.

Proposition 1.2. For R a polynomial ring over a field and M a finitely generated R-module,
we have Preg(R,M) = reg(R,M).

This is a consequence of the Local Duality Theorem (see [22] 6.3 or [12] 3.6.19); for a proof
see [2] 5.7 or [32].

We do not really need Preg for the purposes of this paper, but it lies behind many of
the applications of regularity; one of these is to obtain degree bounds on the generators and
relations of a ring.

Given a finitely generated graded k-algebra S in non-negative degrees with dimk S0 <∞,
either commutative or graded commutative, and an integer N , let τ k

NS be the k-algebra
(commutative or graded commutative, the same as S) determined by the generators and
relations of S that occur in degrees at most N . We will normally write just τNS. There is
a canonical map τNS → S, which is an isomorphism in degrees up to and including N . The
next result is taken from [32].

Proposition 1.3. Let S be a commutative or graded commutative, finitely generated, graded
k-algebra in non-negative degrees with dimk S0 <∞. Let R = k[x1, . . . , xm] and suppose that
there is a map f : R → S such that S is finitely generated over R (e.g. if R is a Noether
normalisation of S). Then:

(1) if N ≥ max{reg(S) + σ(R), deg(xi)}, then τNS → S is a surjection;
(2) if N ≥ max{2(reg(S) + σ(R)), reg(S) + σ(R) + 1, deg(xi)}, then τNS → S is an

isomorphism;
(3) if N ≥ max{reg(S) + σ(R) + 1, deg(xi)} and if τNS, considered an R-module, is

generated in degrees at most N , then τNS → S is an isomorphism.

Remark. Benson [2] §10 defines τNS and proves a version of 1.3 in the case when S is the
cohomology of a group.

The other properties of regularity that we will need are summed up in the next lemma.
For any graded R-module V we use V (u) to denote V shifted down in degree by u.

Lemma 1.4. Let R be a commutative noetherian k-algebra in non-negative degrees with
dimk R0 <∞ and let V be an R-module.

(1) reg(V (u)) = reg(V )− u.
(2) If R is a polynomial ring then reg(R) = −σ(R).
(3) If F is a graded R-module that is non-zero only in finitely many degrees then reg(F )

is equal to the top degree in which F is non-zero.
(4) If 0 → A → B → C → 0 is a short exact sequence of R-modules then reg(B) ≤

max{reg(A), reg(C)}, with equality if the sequence is split.
(5) If R′ is another commutative noetherian k-algebra and V ′ is an R′-module then

reg(R⊗k R
′, V ⊗k V

′) = reg(R, V ) + reg(R′, V ′).
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Proof. Part (1) is clear from the definitions.
Part (2) is clear if we calculate Preg(R,R). Alternatively use part (4) to reduce to the

case of one or no variables, where there is an easy explicit injective resolution. In the former
case it is k[x, x−1] → k[x, x−1]/k[x], which shows that a1(R) = −σ(R) − 1 and the other
ai(R) are −∞.

For part (3), take a Noether normalisation P of R in which each of the variables has degree
greater than the difference in degree between the top and bottom. Then the action of P on
F factors through k and by 1.1 we have reg(R,F ) = reg(P, F ) = reg(k, F ), which is equal
to the top degree.

Part (4) follows from the long exact sequence for local cohomology.
Part (5) is a consequence of the Künneth Theorem for local cohomology: H∗(I+I′)(V ⊗k

V ′) ∼= H∗I (V )⊗kH
∗
I′(V

′). This can be seen by using the characterisation of local cohomology
in terms of Čech complexes; the tensor product of such a complex for V with one for V ′ is
one for V ⊗ V ′. Another proof is given in [4] 2.6. �

As an example we calculate the regularity of the cohomology ring of a finite abelian group.

Lemma 1.5. If A is a finite abelian group then reg(H∗(A,Fp)) = 0.

Proof. By the Künneth Theorem in group cohomology and 1.4(5), we can reduce to the case
of a cyclic group. In this case Hev(A) = k[x], with x in degree 2, so has regularity −1.
Also H∗(A) is free over k[x] with basis elements in degrees 0 and 1, so has regularity 0, by
1.4(1,2,4). �

2. Reduction to Elementary Abelian Groups

We present a proof for compact Lie groups, but the reader who is only interested in finite
groups can just take all the groups to be finite (with the exception that the unitary group
must, of course, remain infinite).

Fix a prime p; all cohomology will be taken with coefficients in the field Fp. By the
equivariant (or Borel) cohomology H∗G(X) we mean H∗(EG×GX), where EG→ BG is the
universal principal G-bundle. Following Quillen, we will sometimes write H∗G for H∗(BG)
when this makes the notation less confusing.

A basic property of equivariant cohomology is the following one ([30] 2.2).

Lemma 2.1. For any compact Lie group G, the Fp-algebra H∗G is finitely generated. If G
acts on a space X with finite dimensional homology (i.e. dimFp H

∗(X) <∞) then H∗G(X) is
finite over H∗G.

It follows from 1.1 that reg(H∗G(X)) = reg(H∗G, H
∗
G(X)) (recall that we defined reg(H∗G(X)) =

reg(Hev
G (X), H∗G(X))).

We also need a slight variant on another basic property.

Lemma 2.2. Let G and H be compact Lie groups and suppose that their product G×H acts
on a Hausdorff space X in such a way that H acts freely. Then H∗G×H(X) ∼= H∗G(X/H) as
rings or as H∗G-modules.

Proof. This is proved in [30] 1.12, except that there the group G does not appear. All we
need to do is to replace X by EG×G X in Quillen’s formulation. �
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There is also a well-known version of this result for discrete groups (cf. [11] VII 7).
Given a compact Lie group G, embed it in a unitary group U = U(n). Let S be a maximal

elementary abelian p-subgroup of U .
Given a G-space X, consider the product X×U as a G×S-space, where G acts diagonally

on the left and S acts on the right on the second factor only. We will write X ×G U for
G\(X × U).

Lemma 2.3. If X has finite dimensional homology then

reg(H∗G(X × U/S)) = reg(H∗S(X ×G U)).

Proof. Both G and S act freely on X ×U . Applying Lemma 2.2 in two different ways yields

H∗G(X × U/S) ∼= H∗G×S(X × U) ∼= H∗S(X ×G U)

as rings.
Notice that X × U has finite dimensional homology, by the Künneth Theorem; hence the

rings are noetherian, by 2.1, and the regularity is defined. �

The next result is also due to Quillen ([30] 6.5).

Proposition 2.4. H∗G(X × U/S) ∼= H∗G(X)⊗k H
∗(U/S) as H∗G-modules.

In fact, what Quillen writes is H∗G(X ×U/S) ∼= H∗G(X)⊗H∗U
H∗S. But in the course of the

proof he shows that H∗S
∼= H∗U ⊗k H

∗(U/S) (or just take G = 1 and X = BU in his original
formulation), so our form follows.

We now come to the main result of this section.

Proposition 2.5. Suppose that the G-space X has finite dimensional homology. Then
reg(H∗G(X)) = reg(H∗S(X ×G U))− dimU .

Proof. Apply Lemma 1.4(5) to the formula in Proposition 2.4 to obtain reg(H∗S(X×GU)) =
reg(H∗G(X)) + reg(H∗(U/S)). The last term is equal to dimU , by Lemma 1.4(3). �

Notice that this Proposition implies that, in order to prove Theorem 0.1 for the compact
Lie group G (and the manifold M), it suffices to prove the case of the elementary abelian
p-group S (and the manifold X ×G U), since dim(X ×G U) = dimX + dimU − dimG.

3. A Topological Digression

Quillen in his paper [30] uses sheaf cohomology (with coefficients in the constant sheaf
Z/p), whilst many other authors prefer singular cohomology. Here we endeavour to reconcile
these two theories. None of this material is new, but it is necessary to assemble the facts
from the literature carefully.

One approach is to adapt the proofs of the results of Quillen that we use in section 2 to
use singular cohomology. In that case we want to replace the Leray spectral sequence by the
Serre spectral sequence of a Serre fibration; we need to ensure that the relevant maps are
Serre fibrations.

The best way to do this seems to be to incorporate into the definition of a free action of G
on X the additional condition that the fibre sequence G→ X → X/G should be a principal
G-bundle, that is that it is locally trivial. Locally triviality is transparently well-behaved
with respect to the constructions that we need to make and it guarantees that we have a
Serre fibration (see e.g. [19] 11.4). In any case, this is a very weak condition since, by a
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theorem of Gleason [17], it is automatically satisfied provided that the action is free in the
usual sense and the space X is completely regular. The details of this method are left to the
reader.

An alternative approach is to show that the two cohomology theories coincide on all spaces
in some class. A suitable class is that of paracompact Hausdorff locally contractible spaces,
as is shown in [7] III 1.1. This might look more familiar if we go via Čech cohomology: it is
well known that sheaf cohomology agrees with Čech cohomology on paracompact Hausdorff
spaces ([18] 5.10.1), and Čech cohomology agrees with singular cohomology on paracompact
Hausdorff locally contractible spaces ([31] 6 9 5).

The problem remains that we are usually given information about X and we need to know
about EG ×G X. In fact, if X is paracompact, Hausdorff and locally contractible then so
is EG ×G X, as we now explain. Note that EG and BG have the requisite properties, by
construction.

Hausdorff and locally contractible follow easily from the fact that the fibre map X →
EX×GX → BG is locally trivial, so we concentrate on paracompactness. First we show that
EG×X is paracompact. The product of two paracompact spaces need not be paracompact,
but EG is σ-compact (the union of countably many compact subspaces) and the product of
a paracompact space with a regular σ-compact space is paracompact, by a result of Michael
[28]. That EG×G X is paracompact follows from another result of Michael [29]: the image
of a paracompact space under a proper map is paracompact.

4. The Elementary Abelian Case

All manifolds will be smooth, and if a compact Lie group acts on one, the action will
be supposed to be smooth. But otherwise the manifolds can be quite general, in particular
they can be open or have boundary, and different connected components can have different
dimensions (in which case the dimension will mean the maximum dimension of a component).

The reader will lose little by supposing that the manifold is closed, but the extra generality
will be useful later.

Our aim is to prove the following slight generalisation of the elementary abelian case of
Theorem 0.1.

Proposition 4.1. If a finite elementary abelian p-group S acts on a smooth manifold M
then reg(H∗S, H

∗
S(M)) ≤ dimM . In particular, if M has finite dimensional homology then

reg(H∗S(M)) ≤ dimM .

The second part of the theorem follows from the first because H∗S(M) will be noetherian,
by Lemma 2.1, so reg(H∗S, H

∗
S(M)) = reg(H∗S(M)) by Proposition 1.1.

The remark after Proposition 2.5 shows that Proposition 2.5 and Proposition 4.1 combine
to prove Theorem 0.1.

The proof relies heavily on a paper of Duflot [14]. Her work is also used by Henn, Lannes
and Schwarz [23] to prove a result with a similar flavour to regularity. It is also claimed in
[23] that Duflot’s results, although stated only for odd primes, are also valid at the prime
2. This is not hard to verify: Chern classes are replaced by Stiefel-Whitney classes and
there is no need to find a complex structure on the normal bundles. Duflot also requires the
subspaces M(i) defined below to have only finitely many components, but this is unnecessary.
All that needs to be done is to change sum to product in the proof of [14] proposition 5.
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First observe that we can always remove the boundary of the manifold M . This is because
the inclusion M − ∂M ⊆ M is a homotopy equivalence (there is always a collar on ∂M , [8]
V 1). It therefore induces an isomorphism on equivariant cohomology. The reason for
doing this is that Duflot’s argument depends on finding tubular neighbourhoods for certain
submanifolds, and when the ambient manifold has no boundary these always exist without
preconditions ([8] VI 2.2).

We now summarise Duflot’s results, paraphrasing slightly along the lines of [23]. With
S and M as in the statement of the proposition, define M(i) to be the submanifold of M
consisting of points with isotropy group of rank exactly i and define Mi to be the submanifold
of points with isotropy group of rank at least i. Let

Fi = ker(H∗S(M)→ H∗S(M −Mi)).

It is not hard to see that M(i) is a submanifold of M −Mi+1. Let Ti be the Thom space of
the normal bundle; Theorem 1 of [14] is as follows.

Theorem 4.2. There is an isomorphism of H∗S-modules

Fi/Fi+1
∼= H̃∗S(Ti).

Only an isomorphism of vector spaces is stated in [14], but it is clear from the construction
that it is an isomorphism of H∗S-modules.

Basic properties of Thom spaces imply that if M(i),d, say, is the union of the components
of M(i) with codimension d then

H̃∗S(Ti,d) ∼= H∗S(M(i),d)(−d).

We thus obtain an explicit filtration of H∗S(M), and the basic properties of regularity in
Lemma 1.4 show that

reg(H∗S, H
∗
S(M)) ≤ max

i,d
{reg(H∗S, H

∗
S(M(i),d)) + d}.

Thus it suffices to show that reg(H∗S, H
∗
S(M(i),d)) ≤ dim(M(i),d), since dim(M(i),d) + d =

dim(M). In fact we will split up M(i),d according the isotropy group and prove the bound
on each piece. Let V ≤ S be of rank i and set N = MV

(i),d, a union of components of M(i),d;
let W be a complement to V in S.

Because V acts trivially on N , we have ES ×S N ∼= BV × (EW ×W X). Now H∗S
∼=

H∗V ⊗H∗W and as a module over this we have H∗S(N) ∼= H∗V ⊗H∗W (N), the two sides of the
tensor products not interacting. It follows from 1.4(5) that reg(H∗S, H

∗
S(N)) = reg(H∗V ) +

reg(H∗W , H
∗
W (N)).

ButW acts freely onN , and thus Lemma 2.2 tells us thatH∗W (N) ∼= H∗(N/W ), which van-
ishes in degrees higher than dimN . It follows from Lemma 1.4(3) that reg(H∗W , H

∗
W (N)) ≤

dimN ≤ dimM(i),d.
This completes the proofs of Proposition 4.1 and Theorem 0.1.

Remark. It really is necessary to require the space M in the theorems to be a manifold, or
at least to impose some significant restrictions on it. The following example was described
to us by Jean Lannes [27].

Let p = 2 and let G be an elementary abelian 2-group of rank 2. Let G act on a set
Z of six points in such a way that each subgroup of rank 1 appears as an isotropy group.
Consider the suspension SZ: then reg(H∗G(SZ)) = 3.
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This means that for a G-space X the regularity reg(H∗G(X)) can be regarded as an obstruc-
tion to the possibility of X being G-homotopy equivalent to a manifold of given dimension.
It is left to the reader to verify that in the example above SZ is G-homotopy equivalent to
a 3-manifold; so the obstruction is sharp in this case.

5. Discrete Groups

Let G be a Lie group with finitely many components, not necessarily compact. There is a
maximal compact subgroup K ≤ G and G/K ∼= Rc as smooth manifolds, where c = c(G) =
dimG− dimK (see e.g. [26] XV 3).

Proposition 5.1. Let G be a Lie group with finitely many components and let Γ < G be a
discrete subgroup. Suppose that H∗Γ is noetherian. Then reg(H∗Γ) ≤ c(G).

Proof. As in the proof of Lemma 2.3 we can use Lemma 2.2 twice to obtain

H∗Γ
∼= H∗Γ(G/K) ∼= H∗Γ×K(G) ∼= H∗K(Γ\G).

So reg(H∗Γ) ≤ dimG− dimK = c(G), by Theorem 0.1. �

Now suppose that Γ is a discrete group with a normal subgroup Γ′ of finite index and
that Γ/Γ′ acts on a manifold M in such a way that the natural map H∗Γ → H∗Γ/Γ′(M) is an

isomorphism. This applies to a great many classes of groups (see e.g. [23] after II 2.3). We
know from Theorem 0.1 that reg(H∗Γ) ≤ dimM .

Proposition 5.2. Suppose that a discrete group Γ acts properly discontinuously with finite
stabilisers on a contractible manifold X, and that there is a normal subgroup Γ′ of Γ of finite
index, torsion free and with H∗Γ′ finite dimensional. Then reg(H∗Γ) ≤ dimX.

Proof. Take M = X/Γ′ in the above discussion. H∗(M) ∼= H∗(Γ′), so is finite dimensional.
�

Remark. If X/Γ′ is a closed manifold then Γ′ will be a Poincaré duality group of dimension
dimX, by [11] VIII 10 example 1.

6. Fusion Systems

It is now easy to deal with the cohomology of a fusion system in the sense of [10]. This
includes block cohomology.

Proposition 6.1. If F is a saturated fusion system on a finite p-group then reg(H∗(F)) ≤ 0.

Proof. The cohomologyH∗(F) is a subring of the cohomology of the underlying groupH∗(S).
Furthermore H∗(F) is noetherian, H∗(S) is noetherian over it and H∗(F) is a summand of
H∗(S) as an H∗(F)-module, by [10] 5.2, 5.5.

This is what we need to see that reg(H∗(F)) ≤ reg(H∗(S)) ≤ 0. �

7. Lower Bounds

For a finite group G there is a Greenlees spectral sequence [21, 1] Hs,t
m (H∗(BG)) ⇒

Hs+t(BG). Since H0(BG) ∼= k 6= 0 we must have Hs,−s(H∗(BG)) 6= 0 for some s. This
implies that as(H

∗(BG)) ≥ −s and thus reg(H∗(BG)) ≥ 0, as was proved by Benson ([4]
4.2). Combining this with Theorem 0.1 for M a point we obtain Corollary 0.2.
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When G is a compact Lie group there is a question of orientability if G is not connected
and char k 6= 2. The group G acts on itself by conjugation, hence on Hdim G(G,Z) ∼= Z.
This action induces a homomorphism ε : π0(G) → {±1}, which we may also regard as
a 1-dimensional module for G. We say that G is orientable if ε is trivial. Otherwise let
H = ker(ε), in which case

H∗(BH, k) ∼= H∗(BG, k[G/H]) ∼= H∗(BG)⊕H∗(BG, ε).
Thus reg(H∗(BG, ε)) ≤ − dimH = − dimG, by Theorem 0.1.

It is not always true that reg(H∗(BG)) = − dimG (consider O(2)), so we consider
H∗(BG, ε) instead.

We can prove another conjecture of Benson ([3] 14.9).

Theorem 7.1. For any compact Lie group G we have reg(H∗(BG, ε)) = − dimG.

Proof. The relevant Greenlees spectral sequence appears in [5]:

Hs,t
m (H∗(BG))⇒ Hs+t+dim G(BG, ε).

If G is orientable then the same argument as before proves the result. If G is not orientable
then we would like a spectral sequence that starts with cohomology with coefficients, (like
the one we will use for discrete groups later), but this does not appear explicitly in the
literature, so we use a trick instead.

Let G act on U(1) via ε by sending an element to its inverse. Then the semi-direct product
F = U(1)oG is orientable, so reg(H∗(BF )) = − dimF = − dimG− 1.

Note that H∗(BH) = H∗(BH)+ ⊕ H∗(BH)−, where + and − indicate the eigenspaces
under the action of G/H. Also H∗(BH)+

∼= H∗(BG) and H∗(BH)− ∼= H∗(BG, ε).
From the short exact sequence U(1)×H → F → C2 we obtain

H∗(BF ) ∼= H∗(BU(1)×BH)C2 ∼= (k[x]⊗H∗(BH))C2 ,

where deg x = 2 and C2 sends x to ±x.
Thus

H∗(BF ) ∼= (k[x2]⊗H∗(BH)+)⊕ (xk[x2]⊗H∗(BH)−),

and so, using Lemma 1.4,

reg(H∗(BF )) = max{reg(H∗(BH)+)− 3, reg(H∗(BH)−)− 1}.
But reg(H∗(BH)+) ≤ reg(H∗(BH)) = − dimG, and reg(H∗(BF )) = − dimG − 1. This
forces − dimG− 1 = reg(H∗(BH)−)− 1 and thus − dimG = reg(H∗(BG, ε)). �

For discrete groups Γ that are virtual Poincaré duality groups over k there is also an
orientation ε given by the action of Γ on Hd(BΓ, kΓ) ∼= k, where d = vcdk Γ. In [6] there is
constructed a Greenlees spectral sequence Hs,t

m (H∗(BΓ,M))⇒ Hs+t−d(BΓ,M ⊗ ε).
This time we can just let M = ε−1 and use the same argument as for finite groups to show

that reg(H∗(BΓ, ε−1)) ≥ d.
If there is a contractible manifold X on which Γ acts with finite isotropy groups in such a

way that X/Γ is compact, then ε corresponds to the action of Γ on Hdim X
c (X,Z) ([11] VIII

7.5 and exercise 4) so factors through ±1.
Just as for compact Lie groups, reg(H∗(BΓ, ε)) ≤ reg(H∗(BΓ)) (at least if the image of ε

is finite). By Proposition 5.2 and the remark afterwards, if Γ is virtually torsion free then
reg(H∗(BΓ)) ≤ dimX = vcd Γ.
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We have proved part of another conjecture of Benson ([3] 14.10), originally made for any
orientable virtual Poincaré duality group over k.

Theorem 7.2. Let Γ be a discrete group that is a virtual Poincaré duality group by virtue
of being virtually torsion free and of acting properly discontinuously on a manifold without
boundary in such a way that the isotropy groups are finite and the quotient is compact. Then
reg(H∗(BΓ, ε)) = vcdk Γ.

8. Characteristic Zero

All our results remain valid if the field k has characteristic zero, with a few minor changes.
Of course, this is only of interest for infinite compact Lie groups. The main difference is that
the maximal elementary abelian p-subgroup S of U(n) must be replaced by the maximal
torus T .

In Lemma 2.2 the action of H can be allowed to have finite stabilisers. The conclusion
of Proposition 2.5 becomes reg(H∗G(X)) = reg(H∗T (X ×G U))− dimU + dimT . Duflot also
treats the case of H∗T (M); the submanifold Mi is now the set of points for which the isotropy
groups have dimension i. In the argument at the end of Section 4, N must now be the
part of M(i),d consisting of all the points for which the identity component of the isotropy
group is V . The complement W to V no longer acts freely on N , but it does act with finite
stabilizers, so the new version of Lemma 2.2 applies.

9. The Strong Conjecture

It was remarked by Benson that the bound on the ai(H
∗
G) could be improved by 1 in all

except the top case, the one in which i is equal to the dimension of H∗G ([2] before 3.4).
(In fact, he phrased this in terms of the existence of a very strongly quasi-regular sequence,
but the two are equivalent, by [2] 4.7.) He gave a proof when the difference between the
dimension and the depth is at most two ([2] 9.11). The general case was dubbed the Strong
Conjecture by Nick Kuhn [25].

Following [9], given an integer ` and a graded R-module M we define the regularity at
and below level ` to be

reg≤`(R,M) = sup
i≤`
{ai(R,M) + i}.

Similarly, for a polynomial ring R, we set

Preg≥`(R,M) = sup
i≥`
{ρi(R,M)− i}.

The proof that Preg(M) = reg(M) works by downward induction on the terms of the minimal
projective resolution of M , so we still have

Preg≥`(R,M) = reg≤n−`(R,M),

where n is the dimension of R, or equivalently the number of polynomial variables. In
particular, Preg≥1(R,M) = reg≤n−1(R,M).

The Strong Conjecture can now be written in the following form.

Conjecture. For G any compact Lie group, reg≤dim H∗G−1(H∗G) ≤ − dimG− 1.
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(Kuhn’s formulation was for finite groups and included the bound on adim H∗G
(H∗G) from

the ordinary conjecture.)
Green’s calculations [20] have also verified this conjecture for all groups of order less than

256.
Our methods only yield a partial result in this direction.

Proposition 9.1. For G any finite group, reg≤dim H∗G−1(H∗G) ≤ − dimG−1 except, perhaps,
if there exists an elementary abelian p-subgroup of G that:

(1) is maximal by inclusion (amongst the elementary abelian p-subgroups of G),
(2) is not maximal by rank,
(3) has rank that exceeds the depth of H∗G by at least 2.

David Green has informed us that of the 2-groups of order less than 256 there is only
one that does not satisfy the hypotheses of the proposition. It has order 128 and maximal
elementary abelian subgroups of orders 3 and 4. The depth of its cohomology is 1. (It is
number 780 in the Small Groups Library.)

Examining our proof of the Regularity Conjecture, we see that it all depends on the fact,
used in the proof of Proposition 4.1, that H∗(N) vanishes in degrees above dimN , where
N = MV

(i),d. If no connected component of N is closed then Hdim N(N) = 0, so we can
improve this bound by 1.

In the case of H∗G we are applying Duflot’s filtration to the right action of S on G\U . For
ease of notation we will reflect this and consider S acting on the left of U/G.

Let E ≤ S; then

(U/G)E = {uG | EuG = uG} = {uG | Eu ≤ G}.
Given a u ∈ U such that Eu ≤ G, its connected component in (U/G)E is CU(E)uG, since
CU(E) is a product of U(ni), one for each isotypic component of the representation of E
corresponding to the inclusion of Eu in U , and these are connected.

Let us write X for this connected component and set i = rkE. Then X(i) = X −⋃
E�F≤S X

F . The only way that a fixed-point submanifold XF can separate is if it has

codimension 1 and the group swaps the two sides. The quotient space will still be connected.
In this way we see that if X(i) is non-empty then S\X(i) is connected. Also S\X(i) is closed
if and only if X = X(i), i.e. every point has isotropy group exactly E.

Lemma 9.2. Let SuE be a point of S\(U/G)E
(i). Then its connected component is closed if

and only if Eu is maximal by inclusion amongst the elementary abelian p-subgroups of G.

Proof. If there is a subgroup F with E � F ≤ S that fixes cuG for some c ∈ CU(E) then
Eu � F cu ≤ G.

Conversely, if Eu � F ′ ≤ G then E � uF ′ ≤ CU(E). Since CU(E) is connected and S is
a maximal elementary abelian p-subgroup, uF ′ must be conjugate to a subgroup of S, i.e.
there is a c ∈ CU(E) such that E �cu F ′ ≤ S and cuF ′ fixes cuG. �

Now we consider the Greenlees spectral sequence [21] Hs,t
m (H∗(BG)) ⇒ Hs+t(BG), in

particular the Es,−s diagonal. It was shown by Benson (in [1] proof of 4.1) that it is the
En,−n

2 -term with n = dimH∗G that survives to give H0(BG) ∼= k. (This is the only place in
the argument where we require G to be finite, and it is probably not necessary.) Any other
terms on this diagonal must fail to survive. We have shown that such a term can only possibly
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occur for some s which is equal to the rank of a maximal elementary p-subgroup of G. Any
differential leaving such a term lands in a 0-group, by the original Regularity Conjecture,
now Corollary 0.2. The hypotheses of the proposition imply that any differential arriving in
an Es,−s

r -term with s < n must have departed from some Es−r,−s+r−1
r with s − r less than

the depth of H∗G. But the local cohomology H i
m vanishes for i less than the depth ([22] 3.10,

[12] 3.5.7).
This shows that no Es,−s

2 -term can be 0 for s < n, proving the proposition.

10. Consequences

Benson explains various consequences of the cohomology of a group having regularity
zero, notably in terms of the existence of quasi-regular sequences and in terms of Hilbert
polynomials. An application of the Regularity Conjecture to estimating central detection
numbers in the cohomology of finite groups is given by Kuhn [25].

We will point out just two other applications. The first is that the method of the proof
can be used to give an explicit formula for the additive structure of H∗G(X) in terms of the
cohomology of the strata of X×GU under the action of S. This is best expressed in terms of
Hilbert series. For any graded vector space over k that is finite dimensional in each degree,
set H(M, t) =

∑
i(dimMi)t

i.
From 2.5 we see that

H(H∗S(X ×G U), t) =
H(H∗G(X), t) · H(H∗S, t)

H(H∗U , t)
.

The filtration of Duflot yields (cf. [14] theorem 2).

H(H∗S(X ×G U), t) =
∑

E≤S, d

H(H∗((X ×G U)E
rk E, d/S), t) · H(H∗E, t) · td.

Combining these we obtain an expression for the Hilbert series of H∗G(X).

Proposition 10.1. If H∗G(X) is noetherian then

H(H∗G(X), t) =
n∏

i=1

1− te

1− t2i
·

∑
E≤S, d

H(H∗((X ×G U)E
rk E, d/S), t) · td

(1− te)rk E
,

where e is 1 in finite characteristic and 2 in characteristic 0.

In the case when X is a point, we saw in Section 9 that the action of S on G\U can be
described in terms of representation theory, but it is not easy to calculate the cohomology
of the pieces.

Our second application is to the degrees of generators and relations for the cohomology of
a group. Knowing a bound for these is extremely important for computer calculations; see
[13].

Proposition 1.3 bounds the degrees of the generators and relations once we have found
some polynomial ring R over which H∗G is finite. If G can be embedded in the unitary
group U(n) then H∗U(n) is such a ring, by a result of Venkov ([30] 2.2, [34]). But H∗U(n)

∼=
k[c1, . . . , cn], where the degree of ci is 2i. The bound in Proposition 1.3(1) becomes max{n2−
dimG, 2n}. If the corresponding representation is a sum of irreducibles of dimensions ni then
the embedding factors through one into ×iU(ni) and we obtain the bound maxi{

∑
j n

2
j −

dimG, 2ni}.
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It is possible to refine these bounds further, but the method of computer calculation of
cohomology by constructing a projective resolution lends itself to finding a good ring R in
any case, so we just record some attractive formulations.

Proposition 10.2. If the finite group G is not cyclic and has a faithful complex represen-
tation of dimension n, then H∗G is generated as a ring by elements of degree at most n2. If
this representation is a sum of irreducibles of dimensions ni then the bound becomes

∑
i n

2
i .

For any finite group G the cohomology is generated by elements of degree at most |G| − 1.
In all cases the bound for the relations is twice this.

Proof. Because, in the first part of the proposition, we assume that the group is not cyclic,
we are not embedding it in just one copy of U(1) and it is easy to see that the first of the
terms over which we take the maximum is always the largest. It is bounded by

∑
i n

2
i by the

discussion above.
One uneconomical way to obtain a faithful representation is to take one copy of every

irreducible representation except the trivial one. By elementary character theory this leads
to the bound |G| − 1, which is easily checked to be valid for cyclic groups too. �

It is interesting that Burt Totaro considers the Chow ring of the classifying space of an
algebraic group over a field in [33] and obtains essentially the same bounds for the degrees
of the generators.

Remark. Part (3) of 1.3 suggests an algorithm for determining when, in a computer calcu-
lation of H∗(G), a sufficiently high degree N has been attained that τN(H∗(G)) ∼= H∗(G).
This is based on algorithms in [2] and [13]. For finite groups G is is as follows.

(1) Compute up to a sufficiently high degree that it is possible to find a set of homoge-
neous elements {x̃i} such that H∗(G) must be finite over the ring generated by the
{x̃i}. It is known how to do this by considering the restrictions to elementary abelian
p-subgroups [13]. Let R = k[x1, . . . , xn] be the corresponding polynomial ring and
let f : R→ H∗(G) be given by xi 7→ x̃i. Calculate σ(R) =

∑
(deg(x̃i)− 1).

(2) Compute further so that N ≥ σ(R) + 1.
(3) Calculate τN(H∗(G)) and determine whether it is generated as an R-module in de-

grees at most N . If it is, then τN(H∗(G)) ∼= H∗(G) and the computation is complete.
If not, then compute to a higher value of N and repeat.

(4) The process is guaranteed to terminate with N ≤ 2σ(R), except in the trivial case
when σ(R) = 0, where it stops with N = 1.

In the presence of the Strong Conjecture it suffices to take N ≥ σ(R) in (2).
The condition in (3) is necessary, so the procedure does not take us further past degree

σ(R) + 1 than necessary.
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