THE MODULE STRUCTURE OF A GROUP ACTION ON A POLYNOMIAL
RING: EXAMPLES, GENERALIZATIONS, AND APPLICATIONS

DIKRAN B. KARAGUEUZIAN AND PETER SYMONDS

ABSTRACT. The proof of a module-structure result for group actions on polynomial rings, which
the authors published in a previous paper, is discussed in some detail. Also examined are possible
generalizations of the result and an application to invariant theory.

1. INTRODUCTION

This article is a commentary on the authors’ paper [12]. We address three main themes. First,
the difficulties in the proof of the main theorem (9.1) of [12]. Second, possible generalizations of
this module-structure result. Third, applications of the result to invariant theory.

The main theorem of [12] can be stated as follows.

Let k be a finite field of characteristic p and order ¢ and let U,, = U, (k) denote the group of
n X n upper triangular matrices over k with 1s on the diagonal. This acts on the polynomial
ring in n variables S = k[x1,...,2,]. The ring of invariants under this group, for which we write
SUn is known to be polynomial in generators {d; : i = 1,...,n}, where the degree of d; is ¢*~'.
Note that any p-group P acting faithfully on S may be considered to be a subgroup of U, after a
change of variables. Our structure theorem describes the kP-module structure of S for any such
P:

Theorem 1.1. There is an isomorphism of graded kP-modules:

S=@Dkldi:ieTu{n}—J @ X;(I),
JCI
where X ;(I) is a finite dimensional graded kP-module, P acts trivially on k[d;], and I is the set
1,2,....,n—1}.

This should be read as saying that S contains one copy of X ;(I) for each monomial in the d;
with i € TU{n} — J.
One consequence of this theorem is a finiteness result.

Corollary 1.2. For any group G (not necessarily a p-group) acting on S, only a finite number
of isomorphism classes of indecomposable kG-modules appear as a summand of S.

Section 2 presents a worked example, illustrating the proof of 1.1 and Section 3 comments on
the trace lemma ([12], 15.1), which is the most complicated part of the proof.

Next, in Section 4, we comment on several possible generalizations of the structure theorem or
its finiteness corollary; in particular Section 5 calculates some examples of a structure theorem
for GLy, (k).
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Some partial results in this direction are proved in Sections 6 and 7. Finally, in Section 8, we
sketch how studying the ring S as a module for kG has been used in calculations in invariant
theory.

2. EXTENDED EXAMPLE

In this section we present an extended example to help the reader sort through the details of
the proof of the main theorem (9.1) of [12]. We take n =3, ¢ =3, and I = (1, 2); i.e. we consider
the proof of the theorem for the group Us over the field k with three elements. For simplicity of
notation we write Uy 2 instead of Uy 9y = Us, and similarly for U; = Uy and Uy = Uygy (even
though this conflicts with the upper triangular matrices definition of these groups).

In this case the polynomial ring S = k[x1, z2, 3] contains the invariant ring Y2 = k[dy, d2, d3],
where the degrees of di, do, and d3 are 1, 3, and 9 respectively. We study the kU 2-module
structure of S by first reducing to the study of the kU; 2-module structure of T = S/(d3), using
Lemma 5.4 of [12] which tells us that, as kU o-modules, S = k[d3] ® T'.

Now we examine the statement of the main theorem (9.1) of [12] in this case. Specializing the
claims, the result tells us that there is a decomposition

T = X<1,2)(<17 2>) @ X(l)(<17 2)) ¥ X<2>(<17 2>) D X®(<17 2))

with certain properties. (In what follows we will eliminate the angle-brackets in the notation.)

Perhaps the simplest property to understand is the statement about Poincaré series. To unwind
this statement ([12], 9.1,(4)) we note that the sets S;(I) here live in P(I) = N} = N3. These four
sets S12(1,2), Si(1,2), S2(1,2), and Sg(1,2) are defined by the inequalities in [12], 4.6. In the
present case, with the natural coordinates a1, as on Ng, we have

S12(1,2) = {(a1,a2) | a2 < 2 and a; + 2as < 6},
S1(1,2) = {(a1,a2) | a2 > 2 and a1 < 4},
S2(1,2) = {(a1,a2) | a2 <2 and a1 + 2a3 > 6}, and
Sz(1,2) = {(a1,a2) | az > 2 and a; > 4}.

Note that these sets form a partition of NZ, as shown in Proposition 4.10 of [12].
It follows from the definition of the s ([12], 7.5) that the sequence /{Z(-?’_l) is1,3,6,8,9,9,9,...

and that the sequence /15»3_2) is 1,2,3,3,3,.... We are interested in the matrix of products
m&f‘%ﬁg‘”, which looks like this:

13 6 8 9 9 9 9 9

2 6 12 16 18 18 18 18 18

3 9 18 24 27 27 27 27 27

3 9 18 24 27 27 27 27 27

By noting the regions corresponding to the S;(I), we can obtain explicitly the Poincaré Series
for the X j(I) claimed in the result ([12], 9.1). For example, the Poincaré Series of X 2(1,2) is
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1+ 3t +6t2 + (84 2)t3 + (94 6)t* + (94 12)t° + 16t5. This is the only Poincaré series which is a
polynomial; the others are

9t6 + 18¢7
PS(X(1,2)) =
3t6 + 9t7 + 1848 + 24¢9
PS(X1(1,2)) = 2 1+_t3 T and
2710
PS(Xx(1,2)) = —— .

It follows from Lemma 7.8 of [12] that these four Poincaré series add up to the Poincaré series of
T'; here this can be checked directly by adding the four rational functions.

Properties (1), (2), (3), and (4) of the decomposition of [12], 9.1 will be treated as we examine
the proof of this result in the case at hand. (Observe that thus far we have only written down the
desired Poincaré series, rather than constructing modules which actually have the corresponding
series, so further discussion of (4) is required.) We note that the proof of this decomposition
depends through the induction on other decompositions (for smaller groups), and so we describe
these now.

We consider S as a module for the group U; (of order 9); to understand its structure we study
T(1) = klx1, 22, 73]/ (d2,e3), where SUL = k[x1,da, e3]. (In fact e3 may be written explicitly as
73 — 22x3.) As a kUj-module, T(1) splits into a projective part and a non-projective part By (1)
with Poincaré series 1 + 3t + 6t2 + 8t3. The module B;(1) is easy to describe: it is just the part
of T(1) with degree less than 4.

The kU; 2 module X;(1,2) is obtained by induction from Bj(1): as noted in the proof of
Proposition 8.4 of [12], there is a map Indgi’2 Bi(1) — T defined by g @b+ g-(G(1,2 | 1) - b).
The proof that this map is injective requires the Trace Lemma ([12], 15.1); in this special case
that lemma states that

TrU2 @ ‘/I}?l = _d% : liv
da
for i =0,1,2,3. We omit any discussion of filtration and terms lying in the “error ideal” since in
this case, and in the other cases of the trace lemma being treated here, there are no such terms,
and we may arrange the modules coming from lower stages of the induction to have monomial
socles also. The proof of the injectivity gives an identification (generally in the sense of leading
terms, but here exactly) of the socle of X;(1,2); since the module Xi(1,2) is obtained from
X1(1,2) by propagating by da, it follows that we have identified the socle of X7(1,2).

This means that X;(1,2) has the properties (1), (2), (3), and (4) required by the statement of
[12], 9.1: (1) is automatic from the propagation construction, (2) follows from the construction
of X1(1,2) by mapping in an induced module, while (3) comes from the proof of injectivity in
Proposition 8.4 of [12], which gives an identification of the socle of X(1,2). Finally, property (4)
follows from our knowledge of the Poincaré series of By(1).

The constructions of Xs(1,2) and Xg(1,2) are similar; we abbreviate the treatments because
we have already discussed X1(1,2) in detail.
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To construct X»(1,2) we start with the preliminary module Bg(2), which is the part of T'(2) with
degree less than 2; this module has Poincaré series 1+ 2¢t. Note that T'(2) = k[z1, z2, x3]/ (22, f3),
where f3 = x3 — 2373. Ba(2) is a Uy-module, which we induce to Uj s, and map to T by
g®b— g-(G(1,2]2)-b). We prove that this map is injective and indentify (in the sense of
leading terms) the socle using the following special case of the Trace Lemma:

']:‘I‘U1 3 5 Jﬁ'é = —d(li72i . é,
where ¢ = 0,1. We then propagate by d1; the resulting module X2(1,2) has the desired properties.

To construct Xg(1,2) we need only note that the following special case of the Trace Lemma

implies the existence of a projective module in the degree 10 part of 7"

ds d
Ty, , G(1,2 | @) = Ty, , ;fo

=d} - d2.
We then propagate by d; and ds; the resulting module X4(1,2) has the desired properties.

We turn to the construction of Xj2(1,2), the complement to the direct sum of the other
three. The existence and properties of this module follow from Proposition 8.1 of [12]. We review
the proof of this proposition to call attention to a subtle point. To show the existence of the
complement X 2(1,2), we note that the other modules we have constructed do not intersect
(because it is clear from our bookkeeping that their socles do not), and in large degrees, their
Poincaré series add up to the Poincaré series of T'. It follows that the modules X;(1,2), X2(1,2),
and Xg(1,2) are summands of 7" in large degrees, and from this it easily follows that they are
indiwidually summands in small degrees ([12], 6.18). The subtle point is that our control of the
socles is sufficient to show that these modules are simultaneously summands in small degrees, i.e.
that the complement X 2(1,2) exists. This is handled in Lemma 6.19 of [12].

From the decomposition of 1" we have studied, a similar decomposition for S follows, using
[12], 5.4. This completes our study of the extended example.

3. REMARKS ON THE TRACE LEMMA

The proof of the main result of [12] is a very detailed exercise in bookkeeping, and it is natural
to wonder if the effort required could somehow be reduced by a slightly different approach. Many
of the complications of the trace lemma ([12]) are connected with the “higher terms” which must
be handled in the accounting.

The reader of Section 2 may wonder if such higher terms are ever nonzero. Below we give an
explicit example in which these higher terms are not zero.

Example 3.1. Let n = 4, ¢ = 3. We write U for the upper-triangular group over k, which we
take to act on k[w,z,y, 2] in such a way as to preserve the flag of subspaces (w) C (w,z) C
(w,z,y) C (w,z,y, z). We write dy,, dg, dy, and d, for the orbit polynomials of w, z, y, and z. In
the notation of [12], we will study Try, : k[w, 2, v, 2]V — k[w,z,y, 2]V. We recall for the reader’s
convenience that Uj is the “add w” group, isomorphic to (k7)3, and Uss is the “add z,3” group,
isomorphic to the group of upper-triangular 3 x 3 matrices over k. This group acts on k[z,y, z];
its invariants are generated by the orbit polynomials (under Us3!) of x, y, and z, which we write
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ez, ey, and e,. In this notation we have G(1,2,3 | 2,3) = d./e.. We now give a short table of
traces:

| i=0 1 2 3 4 5
j =0 _d18 ledm 4 ledS _d14d2 T d8 d4 d12d3 _d10d4 d8 d5
j=1]|d2d, —dSd2d, —d¥d,.d, d8 d2d, —dSd3d, 0 0

TABLE 3.2. Try, G(1,2,32,3) - ele

In this table of values there are three examples where the trace is not a monomial in the chosen
generators of the invariant ring; i.e. where the “higher terms” are nonzero. The energetic reader
may wish to verify that the leading terms are as specified in the trace lemma ([12], 15.1).

The proof of the trace lemma would be vastly simplified if one could produce a basis with the
convenient property that the required traces took basis elements to basis elements (as opposed
to linear combinations of these). Such a basis would eliminate all of the complications of “higher
terms”. Needless to say, the authors have not managed to produce such basis.

The authors noted in [11] that a very appealing proof of the main theorem of [12], based on a
“factorization” of the module structure, was possible for n = 3, ¢ = 2, but that this proof did not
generalize to other values of n and ¢. (The proof was given in detail in [2].) One possible avenue to
creating a generalization of the proof in [2] would be to take the components of the factorization,
which are n submodules, each with Krull dimension 1, then invent a construction which takes
these components as input and yields the full polynomial ring. However, it is not clear what sort
of construction this might be. For example, when n = 3 and ¢ = 3, one would expect to construct
k[z,vy, z] out of three components, one having Poincaré series (14 3t + 6t2 +8t3 4+ 9t* + 95 +- - ),
and corresponding to the successive radicals of the module k[U; 2/Us] in the notation of Section 2.
Thus, one would expect the Jacobson radical Jg of k[U; 2/Us] to figure in the construction of S3.
However, it can be verified with MAGMA that Jg is neither a submodule nor a quotient of S3.

4. EXAMPLES OF POSSIBLE GENERALIZATIONS

The reader of [12] will note that the proof of the main theorem in that paper seems to depend
on a remarkable collection of coincidences; it is not easy to see how to generalize the module-
structure finiteness result.

In this section we give some examples which suggest that the phenomenon of module-structure
finiteness may hold in a more general setting than that of our theorem. There are limits to this
generality, as seen in Examples 4.4 and 4.5.

Example 4.1 (Hopf Algebras). Let B = A(a,b), an exterior algebra on two generators over the
field of two elements, which we write k in this example. We regard B as an algebra of cohomology
operations by taking a to act as Sq' and b to act as Sq® + Sq® Sq'. We let this algebra act on
the cohomology of Zs X Zsy, which we write k[x,y]. We have the following module-structure
decomposition:

klz,y) 2 k@ (k[z®,y*] © F) & (L1 & Lo ® L3)
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where k = (1) is the trivial B-module, F' = (zy, 2%y + 232, vty + 2y, 2%y? + 229*) is a free
B-module of rank 1, Ly = (z,22,23,...), Ly = (y,9%,9°%,...), and L3 = (z%y, 2%y, 2%y3,...).
(We have given vector-space bases for each module appearing.)

We note that, as B-modules, Ly = Ly = L3, thus only the three isomorphism classes k, F', and
L appear.

We sketch a proof of the above assertions. Note that the Poincaré series of all these modules
add up to the Poincaré series of the polynomial ring. So, to get the decomposition result, we
need only prove the surjectivity of the map from the decomposition to the polynomial ring.

Using the given basis of the module L3, plus an induction, we can show that the free module
22'y?I F lets us obtain the monomials g2 H1y2it1 g2ty 2542 52440 241 and 2244242 This
gives us every monomial of z%y”, where o > 0 and 3 > 0. The rest of the monomials are covered
by Ll, LQ, and k.

To see that all of the given modules are indecomposable is standard; The only tricky part is
to show that the L; are indecomposable. Perhaps the simplest method of doing this is to use the
isomorphism A(a, b) = Fo[Zg x Zs] and quote the results on infinitely generated modules for this
group ring in [5].

Remark 4.2. The reader should be aware that there is some question of whether a module-
structure decomposition is well-defined in a context involving modules which are not finite-
dimensional. Since we have not chosen hypotheses or made specific conjectures, we will not
address this issue.

The finiteness corollary still holds over the algebraic closure of a finite field, because any
representation over such a field can be written inside a finite field. It is not clear that this
remains the case for other infinite fields.

The next example, which was considered indepedently by Derksen and Kemper, shows that
the finiteness result can continue to hold even when the field contains transcendentals.

Example 4.3 (Infinite Fields). Let K = k(s,t) D k be the extension of k generated by two
algebraically independent elements s,¢. Then G = {y — y+ (As+ ut)z, z— x| \,u € k} is a
group of automorphisms of S = K[z,y]. We note that S¢ = K|z, dy], where d, = H(A,u)ek2 (y +
(As + pt)x).

We will show, by the method of [12], that

s 2 {Klz,d,) 0 57} o {Kld)] @ (8§ 5},

i.e. we will prove that the main theorem of [12] holds in this context.

To see this, note that by [7], Proposition 9.5, we have that Trg yq2_l = oz:vq2_1, where « is a
nonzero element of K. Thus, the submodule of Ga*—1 generated by yq2_1 is free. By dimension-
counting, this module is S4°~1 itself. In this setting, projective and injective are the same, so
we may propagate ge° -1 by any monomial in z and d, to obtain new summands, which do not
intersect as their socles are different. ) ‘

The other summand in the decomposition, K [d,]® (] 29 "), can be mapped to the polynomial
ring by multiplication, and does not intersect the first summand. (Again, consider the socles.)
Thus, the map we have constructed from the decomposition to the polynomial ring is injective. By
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counting graded dimensions using Poincaré series, we see that the map is surjective and therefore
an isomorphism.

The point of this example is not so much that the finiteness result continues to hold, but that
the method of proof of [12] still works. This is because (as noted in [11]) cases where there
are three or fewer variables in the polynomial ring have special characteristics which may make
alternate proofs of the finiteness result possible. In fact, in Section 6 we will prove that the
finiteness result holds for the action of a finite group on a polynomial ring in three variables over
any field.

The next example shows that the finiteness result fails for free modules over a polynomial ring.

Example 4.4 (Free Modules over a Polynomial Ring). Let k£ be the field of two elements and
let V = (a, ) = Zs X Zg act on k[x,y|(1,2) by a: z— z+z and 8: z — z +y. We can regard
klx,y](1, z) as a subset of k[x,y, z] or as a free k[z,y]-module of rank two.

If n € Ny, we write Q"k for the n-th Heller translate of the trivial £V -module k. These modules
are pairwise nonisomorphic, since their ranks over k are all different. 2"k can be pictured using
the diagrams popularized by Benson and Carlson [4]. Writing a = 1+« € kV, b = 1+ 3 we have:

Q'k = o[dllodr]’ o0 O’k = o[dl]s[dr]" o [dl]u[dr]" e e e

D3k = o[dl],[dr]” e [dl]o[dr]® e [dl],[dr]° e e e e etc.
The dots represent basis vectors and the arrows the action of the group ring; see [4].
Now we note that if we attach a grading to our module by assigning x, y, and z grading 1, then
M = E[z,y|(1, z) is the direct sum &5°,M;. Further, the basis of M; consisting of the monomials
of total degree i has exactly the same diagram as Q'k:

M, = z[dl),[dr]’zy My = zz[dl),[dr]’zy[dl]o[dr)° =2 zyy? etc.
This gives an explicit isomorphism M; = Q%k, and therefore
M = @2 M; = a2 Q'k.
Thus, the module-structure finiteness property does not hold for M.

Example 4.5 (Tensor Algebras). In this example once again k is the field of two elements and
V the elementary abelian group of order 4. We write T for the tensor algebra of Q'k, so that
T, = (Q'k)®". Then T, & Q"k @ F, where F is a free kV-module. As noted above, the modules
QO"k are pairwise nonisomorphic, so that the finiteness result does not hold in this context either.

Various results about the modules for which a finiteness result does hold for the tensor algebra
are given by Feit in [10], IL.5. The obvious generalization of the example above to any prime and
the results of Feit show that the only groups for which there is a finiteness result for all modules
are those of finite representation type.

5. THE GENERAL LINEAR GROUP

In this section we indicate the form a module-structure theorem for the general linear group
should take by giving two examples. We will study the cases of two and three variables over the
field of two elements. Thus, throughout this section, we take k& = F5. The reader should note
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that in our examples, we will be proving “best possible” module-structure theorems in the sense
that all the summands exhibited are indecomposable.

Our first goal is to handle the case of two variables. We want to describe the module structure
that results when G = GLa(k) acts on kly, z] by homogeneous linear substitutions. We begin by
recalling the following standard result:

Lemma 5.1. There are exactly three indecomposable kG-modules: the Steinberg module St, the
trivial module k and the free module for the quotient Co, M.

Now we identify instances of these modules in k[y,z]. Recall that k[y, 2] = k[cs, c3], where
co =y? +yz+ 2% c3 = y?z +y22

Lemma 5.2. (y,2) = (y*,2%) = St, (y> +yz +2%) 2k, and (y* +y°z + 2°) = M.

Writing St St and M®) for the copies of these modules we have identified in kly, z|, we
have

Proposition 5.3. k[y, 2] = k[ca] @ k[cz, c3] @ (St @ St?) @ k[ca, c3] @ MB).

Proof. We construct a map from the decomposition on the right-hand-side to the polynomial
ring using the inclusion of the submodules exhibited in Lemma 5.2 and multiplication by the
invariants. We note that the Poincaré Series of the right-hand-side is

2t + 2t* N 2 Lot 1
1—-2)1—-13) (1-t3)(1-13) B

1—-t2  (1-1t)%
i.e. the same as the Poincaré Series of the left-hand side. So, to prove that the map is an
isomorphism, it suffices to show that it is injective.
To show this, we show that there is no linear relation between the socles of the three parts of
our decomposition. Such a relation would have the form

fle2) +e3 - g(ea,c3) + (ax + by + cx® + dy2) -h(ca,c3) =0,

where f, g, and h are polynomials and a, b, ¢, and d are elements of k. If we rearrange the equation
so that all the invariants are on one side, we see that (ax + by + cz? + dy?) must be invariant,
and it follows that a, b, ¢, and d are all zero. Then we have reduced to f(c2) + c3 - g(c2,c3) = 0,
and since the Dickson invariants are algebraically independent, it follows that f and g are zero.

This proves that the map is injective and therefore an isomorphism. O

Now we turn to the result for three variables, that is, we study the module structure resulting
from the action of G = GL3(k) on k[z,y, z] by homogeneous linear transformations. Recall that
the Dickson invariants k[x,y, 2| are a polynomial algebra k|cy, cg, c7] on homogeneous generators
of degree 4, 6, and 7.

The result is quite complex, and to state it, we introduce a notational convention: Mﬁd) denotes
a module of rank r (over k) which is homogeneous of degree d. We write St for the Steinberg
module, which has dimension 8 over k. The proof, which we omit, is handled using MAGMA.

Our decomposition is:
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Proposition 5.4. There is an isomorphism of G L3 (k)-modules:
Kl y, 2] = klea] © (k ® My) @ klea, o] © (N @ N @ X35 @ X () @ 217 @ Y7
@ klca, cs, c7] @ (StD @ 51O @ St0) @ 5192 ¢ 51B®) g §¢9) g 5¢10)
o Py o P o P @ P\ o P} o P o W),
The modules P, Py, St, and Wy are projective.

These two examples suggest that the result for GL, (k), where k = F,, should have n parts,
propagated by the subsets of the Dickson invariants

{an,qn—l}, {aniq'n—l 5 aniqn—Q}, ey {aniqn—l, aniqn—2, e ,anfl}.
One can make more specific conjectures, but since we do not have a completely precise conjecture
on the “best possible” decomposition of k[z1,...,x,]| as a GL,(k)-module, we will stop here.

6. A GENERAL PROOF FOR THREE VARIABLES

Here we present a version of the structure theorem for three variables that applies to any finite
group and any field. In particular, this result (6.1) gives a decomposition for the action of G L3(k)
on k[xy,...,zy], where k is a finite field (see Proposition 5.4 and the remarks following). Further,
Theorem 6.1 applies to a field that contains transcendentals (see also Example 4.3).

Theorem 6.1. If a finite group G acts on S = k[x1, 2, x3] by homogeneous transformations then
there are homogeneous invariant elements u,v € S and graded kG-submodules P,U, B of S such
that P is projective (but infinite dimensional) and U, B are finite dimensional and there is an
isomorphism of kG-modules

S=P& (U k[u,v]) ® (B ® k[u]).

The proof depends on several lemmas, which hold for any number of variables. There is no
content when k has characteristic 0, so we assume that the characteristic is p.

Lemma 6.2. Let R be a commutative graded ring, finitely-generated as an algebra over Ry = k
by homogeneous elements of positive degree. Let M be a finitely generated graded RG-module
for which there is a number N such that dimy M, < N for all r € Z. Then there are finite-
dimensional graded kG-submodules B,U of M and a homogeneous element v € R such that

M =B @ (U ®Ek[v)]).

Proof. By Noether normalization there is a homogeneous element v € R of degree s, say, such
that M is finitely-generated over k[v]. It follows that there is some N such that if » > N then
Myys =vM,. Let B=@,_, M, and U = @5 M,. O

r<n
Lemma 6.3. If G acts on S = k[x1,...,x,] then there is an invariant homogeneous element
u € SY such that, as kG-modules, S = (S/uS) @ k[u].

Proof. Let @ be the Sylow p-subgroup of G. We may assume that the matrices have triangular
form with respect to the basis x1,...,z, (such that z; is fixed). Let R = S Since S is finitely
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generated over R and S contains ], for all » € N there must be a homogeneous element © € R
that contains the monomial x;, for some r € N.

Let T' denote the k-subspace of S spanned by all monomials not divisible by zj,. Then S =
T & uS as kQ-modules. Thus the inclusion of w.S in S is split over @, so it is split over G: let T”
be a complement as a kG-module. Then S =T ® uS =T ® klu]. O

Remark 6.4. If G is a p-group in triangular form then we may take w to be the orbit product of
xp. If k is finite we may take u to be the bottom Dickson invariant for GL,, (k).

Lemma 6.5. Returning to G acting on S = klxy,x2,x3], with u as in lemma 6.3, the non-
projective part of S/uS, which we denote by (S/uS)/(proj), has dimension bounded by some N
in each degree.

Proof. Since S/(proj) = ((S/uS)/(proj))®k[u] and dimy S/(proj), is bounded by a linear function
in 7 by [16], the result follows. O

Proof. of 6.1. By lemma 6.3 we can write S = (S/uS) ® k[u] and, by lemma 6.5, we can apply
lemma 6.2 to obtain (S/uS)/(proj) = B & (U ® k[v]). O

7. CONLON’S INDUCTION THEOREM

One approach to obtaining a structure theorem for general G is to use Conlon’s Induction
Theorem to reduce it to the case of subgroups that are cyclic modulo p.

Let T,, = T,,(k) be the subgroup of GL, (k) consisting of upper triangular matrices where any
non-zero entries are allowed on the diagonal. The generators d; of the invariants under U, are
eigenvectors for T,,.

Proposition 7.1. The main structure formula 1.1 remains valid over Ty, with T, acting on the
d; as above.

Proof. Examine the proof in [12] to verify that the pieces X(J) can be defined over T,,. O

Rather than a structure theorem we will produce one of a result that would be one of its main
consequences: a formula for the multiplicity as a summand of any indecomposable kG-module.

For any indecomposable kG-module M let PSy/ (.S, t) be the power series in which the coefficient
of " is the multiplicity of M as a summand of .S,.

By Conlon’s Induction Theorem ([8]; [9], 80.61), there are cyclic modulo p subgroups C; of G
and rational numbers a; such that

S = Z a; Indgi Resgi S
in the Green ring.
Let ¢ be an extension of k such that all the p’ elements of G become diagonalizable in £. We
write £S = ¢ ®;, S. The image of each C; in GL,(¢) can be conjugated in to T),(¢), so we can
apply 7.1 to Resgi £S to obtain

(S = PSy,, (£S,t)Nyj,
J



THE MODULE STRUCTURE OF A GROUP ACTION ON A POLYNOMIAL RING 11

where N;; runs through the finite set of indecomposable summands of £S. Putting this together
we obtain
05 = " a; PSy,, (£S,t) IndG, Nyj.
]
Now we restrict scalars and, to simplify the notation, we let b;; (M) denote the multiplicity of the
indecomposable kG-module M as a summand of Indgi Resgi Res{, N;;. We obtain:

Theorem 7.2. )
PSu (S, t) = T > aibi; (M) PSy,, (£S,1),
(]

where PSy;, . (£S,t) encodes the multiplicity of Nij as a summand of £S as an £C;-module.

To use this formula involves calculating the C; and the a;, which is routine, and also the
PSy,; (£S,t). The latter can all be calculated by restricting the formula for the decomposition of
¢S as an (T, (¢)-module. According to [12] this involved calculating £S up to degree v~ —n,
where 7 is the order of /.

Such a procedure is probably uneconomical, but it does yield an explicit algorithm.

8. APPLICATIONS TO VECTOR INVARIANTS

In this section we present an application of module-structure theory to invariant theory. We
show how to obtain the Poincaré Series of the vector invariants k[V @& V @ --- @ V]9 using the
G-module structure of k[V]. We also show how to take this technique further and in some cases
obtain a Poincaré series for what we call tensor invariants, that is, K[V ® W]“*H#  where W
carries a H-module structure. Most of these techniques were shown to the authors by Milgram
[14], who states that their use was standard in certain types of homotopy-theoretic calculations
about thirty years ago, but offers no specific attribution.

The basic idea for vector invariants is simple: the G-module structure of k[V] determines
the Poincaré Series of k[V]9. Since the G-module structure of k[V] determines the G-module
structure of k[V®"] 2 k[V]®" it also determines the Poincaré series of k[V®"|%. Similarly, if W
is a monomial representation of H, we will be able to determine the G x H-module structure of
E[V @ W] in terms of the G-module structure of k[V] and the H-module structure of k[W]; the
vector invariants are simply the special case where W is the trivial H-module of dimension n.

Because the idea is not deep, and because the appropriate implementation will vary with the
particular application, we will confine ourselves to illustrating the method by the study of certain
special cases. We begin with the case of vector invariants of the regular representation F' of the
cyclic group of order 2, Cs, over the field of two elements k.

Example 8.1 (Vector invariants: the regular representation of G = Cy, n = 2.). The Co-module
structure of the polynomial ring k[F] is (k[d2] ® k) @ (k[d1,d2] ® F'). From this fact we have

E[F @® F] = E[F] @ k[F] = {(k[d2] ® k) ® (k[d1,d2] ® F)} @ {(k[e2] @ k) ® (k[e1, e2) @ F)}.
Noting that F @ F = F & F, we may expand this decomposition to yield
(8:2) k[F @ F] = (k[d2, e2] @ k) ® (kdy, da, 2] @ F) @ (k[d2, €1, €2] @ F) @ (K[d1, d2, €1, €2] @ F O F)
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Now we note that dimy F©? = dimy, k2 = 1, so that 8.2 gives us an expression for the Poincaré
Series of k[F @ F]¢2:

1, t N ¢ N 2t _ 1+
R T ) ey [ ) R Wy T ) Gy T B2 R
The skeptical reader will be pleased to note that our series in Equation 8.3 can be, and in fact
has been, checked using Kemper’s software [13], which has been incorporated into MAGMA [6].

(8.3)

Now that we have illustrated the basic idea, we proceed to some refinements. Our next example
studies tensor invariants; in the notation of the opening paragraph of this section we take G =
H = (5 and V and W to be the regular representations of G and H.

Example 8.4 (Tensor invariants: G = Cy, H = C4, V. = F, and W = F'.). We regard
F® F' = F&F as a Cy x C) module, where the C) exchanges the Fs. This is the same as the
Cy x Ch-module obtained by taking the tensor product of the regular representations F, F” of
Cy, Ch. We study k[F @ F'] as a Cy x Ch-module by writing k[F @ F'] & k[FOF] & k[F|®k[F],
where the tilde indicates that the action of C% switches the factors in the direct sum or tensor
product. Of course underneath all the notation we are just studying the regular representation
of Cy x C%; the point is to illustrate the method.

If we write down the structure of k[F|@k[F] as a Cy-module in the first few degrees, we obtain

Degree 0 1 2 2

Degree Module k F F k
0 k Kok |k F| k@F kak
1 F Fek| FRF FoF F®k
2 F Fek F®F FQF FQEk
2 k kok kF kF kek

TABLE 8.5. Cy-module structure of k[F|®k|[F]

We note that the action of CY, swaps the entries in the table across the main diagonal. Thus,

as representations of Cy x C4, the boxed modules combine to form InngXCQ(F ® k), while the

underlined modules combine to form Indggxcé(k‘ ® k). Similar remarks apply to the other off-

diagonal entries in the table. The diagonal entries are marked with tildes to indicate that the
action of C switches the factors in the tensor product.

These regularities allow us to determine the Cy x C)-module structure of k[F]|®k[F] in the
following way. We first write down for each Ch-isomorphism type [M] of summands of k[F] a
Poincaré series Pys(t) for its multiplicity. This collection of isomorphism types [M;] gives rise to
three classes of Cy x Cl-isomorphism types of summands of k[F]®k[F], whose forms are listed

below:
(1) (boxed type): Indgjxcz(Mi ® Mj)
CQXCé

(2) (underlined type): Ind = 2 (M; @ M;)



THE MODULE STRUCTURE OF A GROUP ACTION ON A POLYNOMIAL RING 13

(3) (diagonal type): M;®M;
The Poincaré series for the multiplicities of each of these types of modules as summands k[F|@k[F]
of can be obtained easily in terms of the Py, () as follows:

(1) (boed type): Par,(t) - Par, (1)

(2) (underlined type): (1/2)[Puy, (t)? — Pay, (%))

(3) (diagonal type): Py, (%)
In the case at hand we see from our decomposition of k[F] that Py[t] = (1 — ¢2)~! and that
Pr(t) =t-(1—t)71- (1 —t>)~"1. We then obtain Poincaré series for the multiplicities of the
summands of k[F|®k[F]:

Module Poincaré series
Cox O}
Inde, *(k® F) ey
C XC’ t3
Indg,” *(F ® F) (=02 (=1)
S t
. F SF =)=
X
Indc:" *(k®k) | aajam
k®k =

TABLE 8.6. Poincaré series for the multiplicities of summands in k[F|@k[F]

Finally, as in Example 8.2 we need to know the dimension of the invariant subspaces.

Module | IndZ*“(k® F) | nde2**(F @ F) | FOF | nd*“(k @ k) | kik

dimy (M2*C2) | 1 | 2 |2 1 1
TABLE 8.7. Dimensions of invariant subspaces

This allows us to add rational functions to obtain the Poincaré series of k[F ® F'|2%C3,
(5.8) A— 2 PR —
‘ 1-0)1—-¢)2 (1-t)21-)1-tH) (QA-t)1-1tY
¢ Lo 2 —t+1
G- T (-0 -0)p

This example, like the previous one, has been checked against the result obtained by Kemper’s
software.

Although the techniques of Example 8.4 may seem specialized to the case of tensor products
with the regular representation of C, they can be adapted to arbitrary permutation representa-
tions by a more sophisticated version of the analysis following Table 8.5. Next we will see that
how to handle monomial representations. In the next example we will consider the case of a
tensor product with the natural representation St of GLa(k), i.e. in the setting of the opening
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paragraph of this section we take W = St and H = GLo(k). Note that GLy(k) = S3 = {(a,b |
a® = 1,b% = 1,bab = a?®). We write Cy for the subgroup (b) C Ss.

Let K = {0,1,w,w?} be the field of four elements. If V is a representation of G, we can describe
the G x Ss-module structure of K[V ® St] by regarding V ® St as V&V, where b switches the two
copies of V and a acts on the first as multiplication by w and on the second by multiplication by
w?. Notice that St can be defined over k (it is the natural representation of GLo(k)) and that if
we are only interested in the Poincaré series of the invariant ring, it does not matter whether we
work over k or K.

We can adapt the results of Example 8.4 to the Cy-module structure of S*(V&V). This gives
us three types of submodules of S*(V®V). The first type is V @ WEW ® V, the second is
V ® VOV @V, and the third is V®V. Here we have used the tilde to indicate the action of Cs,
as in Example 8.4.

We observe that all of these module types are actually Ss-invariant; i.e. working over K, the
decomposition of the C5-module structure is also a decomposition of the S3-module structure. In
the application of this result we used a compact description of the multiplicities of these three
types of modules in S*(V&V) in terms of their multiplicities in S*(V). We can give a similar
description of the multiplicities of the different S3-module types. To do this, we first refine our
description of the decomposition. Modules of the first type are either StQV QW or M @ VR W,
regarded as a S3 x G-module. (Here M is the free module for the quotient Cy of S3.) We have
the second case if degW +2degV =0 mod 3, and the first case if degW +2degV # 0 mod 3.
The same holds for modules of the second type. Modules of the third type always have trivial
Cs-action. Note that, for modules of the first and second type, if we are in the first case (i.e. a
tensor product with St) there are no invariants, since St = 0.)

Observe that if f(t) = . a;t’, g(t) = > b;t/, then > i42j=0 mod 5 a;b;t"™ can be expressed
in terms of f and ¢ as

(89) & [F(09(0) + FCD9(c0) + F(CD9(ch)],

where ( € C is a primitive cube root of 1. This discussion can be generalized to other roots
of 1, and by combining this with arbitrary permutation representations, we can get results for
monomial representations. However, the calculations required for such examples quickly become
tedious.

We now proceed to an application of this general discussion.

Example 8.10 (Tensor invariants: G = Cy, V = F, H = S3, and W = St). Take G = C3 and
V = F, the regular representation of G. In the decomposition of K[V ® St| we obtain modules
of all five types mentioned above.

We recall from our discussion of the decomposition for S*(F) that Py (t) = 1/(1 — ¢?) and
Pr(t) =t/(1 —t)(1 —t?). Thus in S*(FOF), regarded as an Cy x S3-module, we have that the
modules of type M ® F' ® k have the following multiplicity:

% [Pr(t)Pult) + Pr(wt)Pu(w?t) + Pr(w’t) Po(wt)]

These modules have Cy x Ss-fixed set of dimension 1, so the function above gives exactly their
contribution to the Poincare series of S*(F&F)C2*5%
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Next we have to consider modules of type M @ FF® F' and M ® k ® k. In the first case we get
the multiplicity
1

2’ {:1; [Pr(t)? + 2Pp(wt) Pr(w’t)] — PF“Q)}‘

These modules have Cy x Ss-fixed set of dimension 2, so we need to multiply their contribution
to the Poincare series by 2. In the second case we have

% ' {ila [Py(t)* + 2Py (wt) Py (w?t)] — Pk(tQ)}

and the modules have Cy x S3-fixed set of dimension 1.

Finally there are two cases of modules of the third type. The F®F-modules have multiplicity
function Pp(t?), and Oy x S3-fixed set of dimension 2. The k®k-modules have multiplicity function
Py(t?), and O3 x S3-fixed set of dimension 1.

Now we add all of this up and get

=t + 5+t + 22—t + D)+ V(2 + 1)
(1—12)(1 = 23)(1 — t4)(1 - t9) ’

which agrees with the result obtained from Kemper’s program.

Now we apply these ideas to an example which is of interest in its own right and not just as
an application of these techniques.

Example 8.11 (“Double Dickson” invariants). Take G = GL3(k) and let V' be the natural G-
module. We compute the Poincaré series of the tensor invariants k[V @ St|¢Ls(k)xGL2(k) - Using
the techniques described above, the decomposition of k[V] as a GL3(k)-module (5.4), and MAGMA
we find that our series is

(146 4 #43 1 442 4 optl 4 440 | 3438 | 0436 4 3435 | 5334 4 433 4 482 | 481 4 94304
129 1 Bg28 4 gg2T 4 gg26 4 4425 L 524 4 9423 | 0422 4 321 4 3420 | 419 4 518 4 017
(58 — 57 54 453 _ 52 4Bl A8 AT A6 | yd5 a4 | gd3 42 gdl o0
9139 4 438 _ 9437 4 435 434 4 9433 430 428 | 0425 424 | 423 9421 4 420
119 4 18 _ 1T 4 16 4 g15 44 18 412 g1l L y10 T 46 5 gy gy
Admittedly this is not very appealing. One recalls the remark of Neusel and Smith ([15], p. 25)
that “[Vector invariants] seem to have fallen out of favor, except as a means of providing nasty
examples.”
Part of the interest of this example is that it is very close to the limit of what can be done with
current invariant-theory software. The authors were unable to verify the result using Kemper’s
software, though it may be possible to do this with better computing resources or algorithms

adapted to specific features of this example. However, the series has been expanded and checked
for correctness through degree 12.
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This example was originally studied in the context of cohomology of groups. One of the
maximal elementary abelian subgroups of Moy, E, is of rank 6, and the action of its normalizer
realizes this representation. Further, if S is the Sylow 2-subgroup of Moy, then E C S C Moy
is a weakly closed system [3], and so the restriction map from H*(May, k) to H*(E, k)N2a(F) ig
surjective, i.e. the cohomology of Mss maps onto our invariant ring.

(12]
(13]

(14]
(15]

(16]
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