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Abstract. The proof of a module-structure result for group actions on polynomial rings, which
the authors published in a previous paper, is discussed in some detail. Also examined are possible
generalizations of the result and an application to invariant theory.

1. Introduction

This article is a commentary on the authors’ paper [12]. We address three main themes. First,
the difficulties in the proof of the main theorem (9.1) of [12]. Second, possible generalizations of
this module-structure result. Third, applications of the result to invariant theory.

The main theorem of [12] can be stated as follows.
Let k be a finite field of characteristic p and order q and let Un = Un(k) denote the group of

n × n upper triangular matrices over k with 1s on the diagonal. This acts on the polynomial
ring in n variables S = k[x1, . . . , xn]. The ring of invariants under this group, for which we write
SUn , is known to be polynomial in generators {di : i = 1, . . . , n}, where the degree of di is qi−1.
Note that any p-group P acting faithfully on S may be considered to be a subgroup of Un after a
change of variables. Our structure theorem describes the kP -module structure of S for any such
P :

Theorem 1.1. There is an isomorphism of graded kP -modules:

S ∼=
⊕
J⊆I

k[di : i ∈ I ∪ {n} − J ]⊗k X̄J(I),

where X̄J(I) is a finite dimensional graded kP -module, P acts trivially on k[di], and I is the set
{1, 2, . . . , n− 1}.

This should be read as saying that S contains one copy of X̄J(I) for each monomial in the di

with i ∈ I ∪ {n} − J .
One consequence of this theorem is a finiteness result.

Corollary 1.2. For any group G (not necessarily a p-group) acting on S, only a finite number
of isomorphism classes of indecomposable kG-modules appear as a summand of S.

Section 2 presents a worked example, illustrating the proof of 1.1 and Section 3 comments on
the trace lemma ([12], 15.1), which is the most complicated part of the proof.

Next, in Section 4, we comment on several possible generalizations of the structure theorem or
its finiteness corollary; in particular Section 5 calculates some examples of a structure theorem
for GLn(k).
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Some partial results in this direction are proved in Sections 6 and 7. Finally, in Section 8, we
sketch how studying the ring S as a module for kG has been used in calculations in invariant
theory.

2. Extended Example

In this section we present an extended example to help the reader sort through the details of
the proof of the main theorem (9.1) of [12]. We take n = 3, q = 3, and I = 〈1, 2〉; i.e. we consider
the proof of the theorem for the group U3 over the field k with three elements. For simplicity of
notation we write U1,2 instead of U{1,2} = U3, and similarly for U1 = U{1} and U2 = U{2} (even
though this conflicts with the upper triangular matrices definition of these groups).

In this case the polynomial ring S = k[x1, x2, x3] contains the invariant ring SU1,2 = k[d1, d2, d3],
where the degrees of d1, d2, and d3 are 1, 3, and 9 respectively. We study the kU1,2-module
structure of S by first reducing to the study of the kU1,2-module structure of T = S/(d3), using
Lemma 5.4 of [12] which tells us that, as kU1,2-modules, S = k[d3]⊗ T .

Now we examine the statement of the main theorem (9.1) of [12] in this case. Specializing the
claims, the result tells us that there is a decomposition

T = X〈1,2〉(〈1, 2〉)⊕X〈1〉(〈1, 2〉)⊕X〈2〉(〈1, 2〉)⊕X∅(〈1, 2〉)

with certain properties. (In what follows we will eliminate the angle-brackets in the notation.)
Perhaps the simplest property to understand is the statement about Poincaré series. To unwind

this statement ([12], 9.1,(4)) we note that the sets SJ(I) here live in P (I) = NI
0 = N2

0. These four
sets S1,2(1, 2), S1(1, 2), S2(1, 2), and S∅(1, 2) are defined by the inequalities in [12], 4.6. In the
present case, with the natural coordinates a1, a2 on N2

0, we have

S1,2(1, 2) = {(a1, a2) | a2 < 2 and a1 + 2a2 < 6},
S1(1, 2) = {(a1, a2) | a2 ≥ 2 and a1 < 4},
S2(1, 2) = {(a1, a2) | a2 < 2 and a1 + 2a2 ≥ 6}, and

S∅(1, 2) = {(a1, a2) | a2 ≥ 2 and a1 ≥ 4}.

Note that these sets form a partition of N2
0, as shown in Proposition 4.10 of [12].

It follows from the definition of the κs ([12], 7.5) that the sequence κ
(3−1)
i is 1, 3, 6, 8, 9, 9, 9, . . .

and that the sequence κ
(3−2)
j is 1, 2, 3, 3, 3, . . .. We are interested in the matrix of products

κ
(3−1)
a1 κ

(3−2)
a2 , which looks like this:

1 3 6 8 9 9 9 9 9
2 6 12 16 18 18 18 18 18
3 9 18 24 27 27 27 27 27
3 9 18 24 27 27 27 27 27

By noting the regions corresponding to the SJ(I), we can obtain explicitly the Poincaré Series
for the XJ(I) claimed in the result ([12], 9.1). For example, the Poincaré Series of X1,2(1, 2) is
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1 + 3t + 6t2 + (8 + 2)t3 + (9 + 6)t4 + (9 + 12)t5 + 16t6. This is the only Poincaré series which is a
polynomial; the others are

PS(X2(1, 2)) =
9t6 + 18t7

1− t
,

PS(X1(1, 2)) =
3t6 + 9t7 + 18t8 + 24t9

1− t3
, and

PS(X∅(1, 2)) =
27t10

(1− t)(1− t3)
.

It follows from Lemma 7.8 of [12] that these four Poincaré series add up to the Poincaré series of
T ; here this can be checked directly by adding the four rational functions.

Properties (1), (2), (3), and (4) of the decomposition of [12], 9.1 will be treated as we examine
the proof of this result in the case at hand. (Observe that thus far we have only written down the
desired Poincaré series, rather than constructing modules which actually have the corresponding
series, so further discussion of (4) is required.) We note that the proof of this decomposition
depends through the induction on other decompositions (for smaller groups), and so we describe
these now.

We consider S as a module for the group U1 (of order 9); to understand its structure we study
T (1) = k[x1, x2, x3]/(d2, e3), where SU1 = k[x1, d2, e3]. (In fact e3 may be written explicitly as
x3

3 − x2
1x3.) As a kU1-module, T (1) splits into a projective part and a non-projective part B1(1)

with Poincaré series 1 + 3t + 6t2 + 8t3. The module B1(1) is easy to describe: it is just the part
of T (1) with degree less than 4.

The kU1,2 module X̄1(1, 2) is obtained by induction from B1(1): as noted in the proof of
Proposition 8.4 of [12], there is a map IndU1,2

U1
B1(1) → T defined by g ⊗ b 7→ g · (G(1, 2 | 1) · b).

The proof that this map is injective requires the Trace Lemma ([12], 15.1); in this special case
that lemma states that

TrU2

d3

d2
· xi

1 = −d2
2 · di

1,

for i = 0, 1, 2, 3. We omit any discussion of filtration and terms lying in the “error ideal” since in
this case, and in the other cases of the trace lemma being treated here, there are no such terms,
and we may arrange the modules coming from lower stages of the induction to have monomial
socles also. The proof of the injectivity gives an identification (generally in the sense of leading
terms, but here exactly) of the socle of X̄1(1, 2); since the module X1(1, 2) is obtained from
X̄1(1, 2) by propagating by d2, it follows that we have identified the socle of X1(1, 2).

This means that X1(1, 2) has the properties (1), (2), (3), and (4) required by the statement of
[12], 9.1: (1) is automatic from the propagation construction, (2) follows from the construction
of X̄1(1, 2) by mapping in an induced module, while (3) comes from the proof of injectivity in
Proposition 8.4 of [12], which gives an identification of the socle of X̄1(1, 2). Finally, property (4)
follows from our knowledge of the Poincaré series of B1(1).

The constructions of X2(1, 2) and X∅(1, 2) are similar; we abbreviate the treatments because
we have already discussed X1(1, 2) in detail.
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To construct X̄2(1, 2) we start with the preliminary module B2(2), which is the part of T (2) with
degree less than 2; this module has Poincaré series 1+2t. Note that T (2) = k[x1, x2, x3]/(x2, f3),
where f3 = x3

3 − x2
2x3. B2(2) is a U2-module, which we induce to U1,2, and map to T by

g ⊗ b 7→ g · (G(1, 2 | 2) · b). We prove that this map is injective and indentify (in the sense of
leading terms) the socle using the following special case of the Trace Lemma:

TrU1

d3

x3
3 − x2

2x3
· xi

2 = −d6−2i
1 · di

2,

where i = 0, 1. We then propagate by d1; the resulting module X2(1, 2) has the desired properties.
To construct X̄∅(1, 2) we need only note that the following special case of the Trace Lemma

implies the existence of a projective module in the degree 10 part of T :

TrU1,2 G(1, 2 | ∅) = TrU1,2

d3

x3

d2

x2
= d4

1 · d2
2.

We then propagate by d1 and d2; the resulting module X∅(1, 2) has the desired properties.
We turn to the construction of X1,2(1, 2), the complement to the direct sum of the other

three. The existence and properties of this module follow from Proposition 8.1 of [12]. We review
the proof of this proposition to call attention to a subtle point. To show the existence of the
complement X1,2(1, 2), we note that the other modules we have constructed do not intersect
(because it is clear from our bookkeeping that their socles do not), and in large degrees, their
Poincaré series add up to the Poincaré series of T . It follows that the modules X1(1, 2), X2(1, 2),
and X∅(1, 2) are summands of T in large degrees, and from this it easily follows that they are
individually summands in small degrees ([12], 6.18). The subtle point is that our control of the
socles is sufficient to show that these modules are simultaneously summands in small degrees, i.e.
that the complement X1,2(1, 2) exists. This is handled in Lemma 6.19 of [12].

From the decomposition of T we have studied, a similar decomposition for S follows, using
[12], 5.4. This completes our study of the extended example.

3. Remarks on the Trace Lemma

The proof of the main result of [12] is a very detailed exercise in bookkeeping, and it is natural
to wonder if the effort required could somehow be reduced by a slightly different approach. Many
of the complications of the trace lemma ([12]) are connected with the “higher terms” which must
be handled in the accounting.

The reader of Section 2 may wonder if such higher terms are ever nonzero. Below we give an
explicit example in which these higher terms are not zero.

Example 3.1. Let n = 4, q = 3. We write U for the upper-triangular group over k, which we
take to act on k[w, x, y, z] in such a way as to preserve the flag of subspaces 〈w〉 ⊂ 〈w, x〉 ⊂
〈w, x, y〉 ⊂ 〈w, x, y, z〉. We write dw, dx, dy, and dz for the orbit polynomials of w, x, y, and z. In
the notation of [12], we will study TrU1 : k[w, x, y, z]U23 → k[w, x, y, z]U . We recall for the reader’s
convenience that U1 is the “add w” group, isomorphic to (k+)3, and U23 is the “add x,y” group,
isomorphic to the group of upper-triangular 3× 3 matrices over k. This group acts on k[x, y, z];
its invariants are generated by the orbit polynomials (under U23!) of x, y, and z, which we write
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ex, ey, and ez. In this notation we have G(1, 2, 3 | 2, 3) = dz/ez. We now give a short table of
traces:

i = 0 1 2 3 4 5
j = 0 −d18

w d16
w dx + d10

w d3
x −d14

w d2
x + d8

wd4
x d12

w d3
x −d10

w d4
x d8

wd5
x

j = 1 d12
w dy − d6

wd2
xdy −d10

w dxdy d8
wd2

xdy −d6
wd3

xdy 0 0
Table 3.2. TrU1 G(1, 2, 3 | 2, 3) · ei

xej
y

In this table of values there are three examples where the trace is not a monomial in the chosen
generators of the invariant ring; i.e. where the “higher terms” are nonzero. The energetic reader
may wish to verify that the leading terms are as specified in the trace lemma ([12], 15.1).

The proof of the trace lemma would be vastly simplified if one could produce a basis with the
convenient property that the required traces took basis elements to basis elements (as opposed
to linear combinations of these). Such a basis would eliminate all of the complications of “higher
terms”. Needless to say, the authors have not managed to produce such basis.

The authors noted in [11] that a very appealing proof of the main theorem of [12], based on a
“factorization” of the module structure, was possible for n = 3, q = 2, but that this proof did not
generalize to other values of n and q. (The proof was given in detail in [2].) One possible avenue to
creating a generalization of the proof in [2] would be to take the components of the factorization,
which are n submodules, each with Krull dimension 1, then invent a construction which takes
these components as input and yields the full polynomial ring. However, it is not clear what sort
of construction this might be. For example, when n = 3 and q = 3, one would expect to construct
k[x, y, z] out of three components, one having Poincaré series (1+3t+6t2 +8t3 +9t4 +9t5 + · · · ),
and corresponding to the successive radicals of the module k[U1,2/U2] in the notation of Section 2.
Thus, one would expect the Jacobson radical J8 of k[U1,2/U2] to figure in the construction of S3.
However, it can be verified with Magma that J8 is neither a submodule nor a quotient of S3.

4. Examples of Possible Generalizations

The reader of [12] will note that the proof of the main theorem in that paper seems to depend
on a remarkable collection of coincidences; it is not easy to see how to generalize the module-
structure finiteness result.

In this section we give some examples which suggest that the phenomenon of module-structure
finiteness may hold in a more general setting than that of our theorem. There are limits to this
generality, as seen in Examples 4.4 and 4.5.

Example 4.1 (Hopf Algebras). Let B = Λ(a, b), an exterior algebra on two generators over the
field of two elements, which we write k in this example. We regard B as an algebra of cohomology
operations by taking a to act as Sq1 and b to act as Sq3 +Sq2 Sq1. We let this algebra act on
the cohomology of Z2 × Z2, which we write k[x, y]. We have the following module-structure
decomposition:

k[x, y] ∼= k ⊕
(
k[x2, y2]⊗ F

)
⊕ (L1 ⊕ L2 ⊕ L3) ,
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where k = 〈1〉 is the trivial B-module, F = 〈xy, x2y + xy2, x4y + xy4, x4y2 + x2y4〉 is a free
B-module of rank 1, L1 = 〈x, x2, x3, . . .〉, L2 = 〈y, y2, y3, . . .〉, and L3 = 〈x2y, x2y2, x2y3, . . .〉.
(We have given vector-space bases for each module appearing.)

We note that, as B-modules, L1
∼= L2

∼= L3, thus only the three isomorphism classes k, F , and
L1 appear.

We sketch a proof of the above assertions. Note that the Poincaré series of all these modules
add up to the Poincaré series of the polynomial ring. So, to get the decomposition result, we
need only prove the surjectivity of the map from the decomposition to the polynomial ring.

Using the given basis of the module L3, plus an induction, we can show that the free module
x2iy2jF lets us obtain the monomials x2i+1y2j+1, x2i+1y2j+2, x2i+4y2j+1, and x2i+4y2j+2. This
gives us every monomial of xαyβ, where α > 0 and β > 0. The rest of the monomials are covered
by L1, L2, and k.

To see that all of the given modules are indecomposable is standard; The only tricky part is
to show that the Li are indecomposable. Perhaps the simplest method of doing this is to use the
isomorphism Λ(a, b) ∼= F2[Z2 × Z2] and quote the results on infinitely generated modules for this
group ring in [5].

Remark 4.2. The reader should be aware that there is some question of whether a module-
structure decomposition is well-defined in a context involving modules which are not finite-
dimensional. Since we have not chosen hypotheses or made specific conjectures, we will not
address this issue.

The finiteness corollary still holds over the algebraic closure of a finite field, because any
representation over such a field can be written inside a finite field. It is not clear that this
remains the case for other infinite fields.

The next example, which was considered indepedently by Derksen and Kemper, shows that
the finiteness result can continue to hold even when the field contains transcendentals.

Example 4.3 (Infinite Fields). Let K = k(s, t) ⊃ k be the extension of k generated by two
algebraically independent elements s, t. Then G = {y 7→ y + (λs + µt)x, x 7→ x | λ, µ ∈ k} is a
group of automorphisms of S = K[x, y]. We note that SG = K[x, dy], where dy =

∏
(λ,µ)∈k2(y +

(λs + µt)x).
We will show, by the method of [12], that

S ∼=
{

K[x, dy]⊗ Sq2−1
}
⊕

{
K[dy]⊗ (⊕q2−2

0 Si)
}

,

i.e. we will prove that the main theorem of [12] holds in this context.
To see this, note that by [7], Proposition 9.5, we have that TrG yq2−1 = αxq2−1, where α is a

nonzero element of K. Thus, the submodule of Sq2−1 generated by yq2−1 is free. By dimension-
counting, this module is Sq2−1 itself. In this setting, projective and injective are the same, so
we may propagate Sq2−1 by any monomial in x and dy to obtain new summands, which do not
intersect as their socles are different.

The other summand in the decomposition, K[dy]⊗(⊕q2−2
0 Si), can be mapped to the polynomial

ring by multiplication, and does not intersect the first summand. (Again, consider the socles.)
Thus, the map we have constructed from the decomposition to the polynomial ring is injective. By
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counting graded dimensions using Poincaré series, we see that the map is surjective and therefore
an isomorphism.

The point of this example is not so much that the finiteness result continues to hold, but that
the method of proof of [12] still works. This is because (as noted in [11]) cases where there
are three or fewer variables in the polynomial ring have special characteristics which may make
alternate proofs of the finiteness result possible. In fact, in Section 6 we will prove that the
finiteness result holds for the action of a finite group on a polynomial ring in three variables over
any field.

The next example shows that the finiteness result fails for free modules over a polynomial ring.

Example 4.4 (Free Modules over a Polynomial Ring). Let k be the field of two elements and
let V = 〈α, β〉 ∼= Z2 × Z2 act on k[x, y]〈1, z〉 by α : z 7→ z + x and β : z 7→ z + y. We can regard
k[x, y]〈1, z〉 as a subset of k[x, y, z] or as a free k[x, y]-module of rank two.

If n ∈ N0, we write Ωnk for the n-th Heller translate of the trivial kV -module k. These modules
are pairwise nonisomorphic, since their ranks over k are all different. Ωnk can be pictured using
the diagrams popularized by Benson and Carlson [4]. Writing a = 1+α ∈ kV , b = 1+β we have:

Ω1k = •[dl]a[dr]b • • Ω2k = •[dl]a[dr]b • [dl]a[dr]b • • •

Ω3k = •[dl]a[dr]b • [dl]a[dr]b • [dl]a[dr]b • • • • etc.
The dots represent basis vectors and the arrows the action of the group ring; see [4].

Now we note that if we attach a grading to our module by assigning x, y, and z grading 1, then
M = k[x, y]〈1, z〉 is the direct sum ⊕∞

i=0Mi. Further, the basis of Mi consisting of the monomials
of total degree i has exactly the same diagram as Ωik:

M1 = z[dl]a[dr]bxy M2 = zx[dl]a[dr]bzy[dl]a[dr]bx2xyy2 etc.

This gives an explicit isomorphism Mi
∼= Ωik, and therefore

M ∼= ⊕∞
i=0Mi

∼= ⊕∞
i=0Ω

ik.

Thus, the module-structure finiteness property does not hold for M .

Example 4.5 (Tensor Algebras). In this example once again k is the field of two elements and
V the elementary abelian group of order 4. We write T for the tensor algebra of Ω1k, so that
Tn = (Ω1k)⊗n. Then Tn

∼= Ωnk⊕ F , where F is a free kV -module. As noted above, the modules
Ωnk are pairwise nonisomorphic, so that the finiteness result does not hold in this context either.

Various results about the modules for which a finiteness result does hold for the tensor algebra
are given by Feit in [10], II.5. The obvious generalization of the example above to any prime and
the results of Feit show that the only groups for which there is a finiteness result for all modules
are those of finite representation type.

5. The General Linear Group

In this section we indicate the form a module-structure theorem for the general linear group
should take by giving two examples. We will study the cases of two and three variables over the
field of two elements. Thus, throughout this section, we take k = F2. The reader should note
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that in our examples, we will be proving “best possible” module-structure theorems in the sense
that all the summands exhibited are indecomposable.

Our first goal is to handle the case of two variables. We want to describe the module structure
that results when G = GL2(k) acts on k[y, z] by homogeneous linear substitutions. We begin by
recalling the following standard result:

Lemma 5.1. There are exactly three indecomposable kG-modules: the Steinberg module St, the
trivial module k and the free module for the quotient C2, M .

Now we identify instances of these modules in k[y, z]. Recall that k[y, z]G = k[c2, c3], where
c2 = y2 + yz + z2, c3 = y2z + yz2.

Lemma 5.2. 〈y, z〉 ∼= 〈y2, z2〉 ∼= St, 〈y2 + yz + z2〉 ∼= k, and 〈y3 + y2z + z3〉 ∼= M .

Writing St(1), St(2) and M (3) for the copies of these modules we have identified in k[y, z], we
have

Proposition 5.3. k[y, z] ∼= k[c2]⊕ k[c2, c3]⊗ (St(1) ⊕ St(2))⊕ k[c2, c3]⊗M (3).

Proof. We construct a map from the decomposition on the right-hand-side to the polynomial
ring using the inclusion of the submodules exhibited in Lemma 5.2 and multiplication by the
invariants. We note that the Poincaré Series of the right-hand-side is

2t + 2t2

(1− t2)(1− t3)
+

2t3

(1− t2)(1− t3)
+

1
1− t2

=
1

(1− t)2
,

i.e. the same as the Poincaré Series of the left-hand side. So, to prove that the map is an
isomorphism, it suffices to show that it is injective.

To show this, we show that there is no linear relation between the socles of the three parts of
our decomposition. Such a relation would have the form

f(c2) + c3 · g(c2, c3) + (ax + by + cx2 + dy2) · h(c2, c3) = 0,

where f , g, and h are polynomials and a, b, c, and d are elements of k. If we rearrange the equation
so that all the invariants are on one side, we see that (ax + by + cx2 + dy2) must be invariant,
and it follows that a, b, c, and d are all zero. Then we have reduced to f(c2) + c3 · g(c2, c3) = 0,
and since the Dickson invariants are algebraically independent, it follows that f and g are zero.

This proves that the map is injective and therefore an isomorphism. �

Now we turn to the result for three variables, that is, we study the module structure resulting
from the action of G = GL3(k) on k[x, y, z] by homogeneous linear transformations. Recall that
the Dickson invariants k[x, y, z]G are a polynomial algebra k[c4, c6, c7] on homogeneous generators
of degree 4, 6, and 7.

The result is quite complex, and to state it, we introduce a notational convention: M
(d)
r denotes

a module of rank r (over k) which is homogeneous of degree d. We write St for the Steinberg
module, which has dimension 8 over k. The proof, which we omit, is handled using Magma.

Our decomposition is:
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Proposition 5.4. There is an isomorphism of GL3(k)-modules:

k[x, y, z] ∼= k[c4]⊗ (k ⊕M3)⊕ k[c4, c6]⊗ (N (2)
6 ⊕N

(4)
6 ⊕X

(3)
10 ⊕X

(5)
10 ⊕ Z

(6)
14 ⊕ Y

(7)
10 )

⊕ k[c4, c6, c7]⊗ (St(4) ⊕ St(5) ⊕ St(6) ⊕ St(7)⊕2 ⊕ St(8) ⊕ St(9) ⊕ St(10)

⊕ P
(8)
16 ⊕ P

(9)
16 ⊕ P

(11)
16 ⊕ P

∗(10)
16 ⊕ P

∗(12)
16 ⊕ P

∗(13)
16 ⊕W

(14)
8 ).

The modules P16, P ∗
16, St, and W8 are projective.

These two examples suggest that the result for GLn(k), where k = Fq, should have n parts,
propagated by the subsets of the Dickson invariants

{cqn−qn−1}, {cqn−qn−1 , cqn−qn−2}, . . . , {cqn−qn−1 , cqn−qn−2 , . . . , cqn−1}.

One can make more specific conjectures, but since we do not have a completely precise conjecture
on the “best possible” decomposition of k[x1, . . . , xn] as a GLn(k)-module, we will stop here.

6. A General Proof for Three Variables

Here we present a version of the structure theorem for three variables that applies to any finite
group and any field. In particular, this result (6.1) gives a decomposition for the action of GL3(k)
on k[x1, . . . , xn], where k is a finite field (see Proposition 5.4 and the remarks following). Further,
Theorem 6.1 applies to a field that contains transcendentals (see also Example 4.3).

Theorem 6.1. If a finite group G acts on S = k[x1, x2, x3] by homogeneous transformations then
there are homogeneous invariant elements u, v ∈ SG and graded kG-submodules P,U,B of S such
that P is projective (but infinite dimensional) and U,B are finite dimensional and there is an
isomorphism of kG-modules

S ∼= P ⊕ (U ⊗ k[u, v])⊕ (B ⊗ k[u]).

The proof depends on several lemmas, which hold for any number of variables. There is no
content when k has characteristic 0, so we assume that the characteristic is p.

Lemma 6.2. Let R be a commutative graded ring, finitely-generated as an algebra over R0 = k
by homogeneous elements of positive degree. Let M be a finitely generated graded RG-module
for which there is a number N such that dimk Mr ≤ N for all r ∈ Z. Then there are finite-
dimensional graded kG-submodules B,U of M and a homogeneous element v ∈ R such that
M = B ⊕ (U ⊗ k[v]).

Proof. By Noether normalization there is a homogeneous element v ∈ R of degree s, say, such
that M is finitely-generated over k[v]. It follows that there is some N such that if r ≥ N then
Mr+s = vMr. Let B =

⊕
r<n Mr and U =

⊕N+s−1
r=N Mr. �

Lemma 6.3. If G acts on S = k[x1, . . . , xn] then there is an invariant homogeneous element
u ∈ SG such that, as kG-modules, S ∼= (S/uS)⊗ k[u].

Proof. Let Q be the Sylow p-subgroup of G. We may assume that the matrices have triangular
form with respect to the basis x1, . . . , xn (such that x1 is fixed). Let R = SG. Since S is finitely
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generated over R and S contains xr
n for all r ∈ N there must be a homogeneous element u ∈ R

that contains the monomial xr
n for some r ∈ N.

Let T denote the k-subspace of S spanned by all monomials not divisible by xr
n. Then S =

T ⊕ uS as kQ-modules. Thus the inclusion of uS in S is split over Q, so it is split over G: let T ′

be a complement as a kG-module. Then S = T ′ ⊕ uS = T ′ ⊗ k[u]. �

Remark 6.4. If G is a p-group in triangular form then we may take u to be the orbit product of
xn. If k is finite we may take u to be the bottom Dickson invariant for GLn(k).

Lemma 6.5. Returning to G acting on S = k[x1, x2, x3], with u as in lemma 6.3, the non-
projective part of S/uS, which we denote by (S/uS)/(proj), has dimension bounded by some N
in each degree.

Proof. Since S/(proj) ∼= ((S/uS)/(proj))⊗k[u] and dimk S/(proj)r is bounded by a linear function
in r by [16], the result follows. �

Proof. of 6.1. By lemma 6.3 we can write S = (S/uS) ⊗ k[u] and, by lemma 6.5, we can apply
lemma 6.2 to obtain (S/uS)/(proj) = B ⊕ (U ⊗ k[v]). �

7. Conlon’s Induction Theorem

One approach to obtaining a structure theorem for general G is to use Conlon’s Induction
Theorem to reduce it to the case of subgroups that are cyclic modulo p.

Let Tn = Tn(k) be the subgroup of GLn(k) consisting of upper triangular matrices where any
non-zero entries are allowed on the diagonal. The generators di of the invariants under Un are
eigenvectors for Tn.

Proposition 7.1. The main structure formula 1.1 remains valid over Tn, with Tn acting on the
di as above.

Proof. Examine the proof in [12] to verify that the pieces X̄I(J) can be defined over Tn. �

Rather than a structure theorem we will produce one of a result that would be one of its main
consequences: a formula for the multiplicity as a summand of any indecomposable kG-module.

For any indecomposable kG-module M let PSM (S, t) be the power series in which the coefficient
of tr is the multiplicity of M as a summand of Sr.

By Conlon’s Induction Theorem ([8]; [9], 80.61), there are cyclic modulo p subgroups Ci of G
and rational numbers ai such that

S =
∑

i

ai IndG
Ci

ResG
Ci

S

in the Green ring.
Let ` be an extension of k such that all the p′ elements of G become diagonalizable in `. We

write `S = ` ⊗k S. The image of each Ci in GLn(`) can be conjugated in to Tn(`), so we can
apply 7.1 to ResG

Ci
`S to obtain

`S =
∑

j

PSNij (`S, t)Nij ,
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where Nij runs through the finite set of indecomposable summands of `S. Putting this together
we obtain

`S =
∑
ij

ai PSNij (`S, t) IndG
Ci

Nij .

Now we restrict scalars and, to simplify the notation, we let bij(M) denote the multiplicity of the
indecomposable kG-module M as a summand of IndG

Ci
ResG

Ci
Res`

k Nij . We obtain:

Theorem 7.2.

PSM (S, t) =
1

[` : k]

∑
ij

aibij(M) PSNij (`S, t),

where PSNij (`S, t) encodes the multiplicity of Nij as a summand of `S as an `Ci-module.

To use this formula involves calculating the Ci and the ai, which is routine, and also the
PSNij (`S, t). The latter can all be calculated by restricting the formula for the decomposition of
`S as an `Tn(`)-module. According to [12] this involved calculating `S up to degree rn−1 − n,
where r is the order of `.

Such a procedure is probably uneconomical, but it does yield an explicit algorithm.

8. Applications to Vector Invariants

In this section we present an application of module-structure theory to invariant theory. We
show how to obtain the Poincaré Series of the vector invariants k[V ⊕ V ⊕ · · · ⊕ V ]G using the
G-module structure of k[V ]. We also show how to take this technique further and in some cases
obtain a Poincaré series for what we call tensor invariants, that is, k[V ⊗ W ]G×H , where W
carries a H-module structure. Most of these techniques were shown to the authors by Milgram
[14], who states that their use was standard in certain types of homotopy-theoretic calculations
about thirty years ago, but offers no specific attribution.

The basic idea for vector invariants is simple: the G-module structure of k[V ] determines
the Poincaré Series of k[V ]G. Since the G-module structure of k[V ] determines the G-module
structure of k[V ⊕n] ∼= k[V ]⊗n, it also determines the Poincaré series of k[V ⊕n]G. Similarly, if W
is a monomial representation of H, we will be able to determine the G×H-module structure of
k[V ⊗W ] in terms of the G-module structure of k[V ] and the H-module structure of k[W ]; the
vector invariants are simply the special case where W is the trivial H-module of dimension n.

Because the idea is not deep, and because the appropriate implementation will vary with the
particular application, we will confine ourselves to illustrating the method by the study of certain
special cases. We begin with the case of vector invariants of the regular representation F of the
cyclic group of order 2, C2, over the field of two elements k.

Example 8.1 (Vector invariants: the regular representation of G = C2, n = 2.). The C2-module
structure of the polynomial ring k[F ] is (k[d2]⊗ k)⊕ (k[d1, d2]⊗ F ). From this fact we have

k[F ⊕ F ] ∼= k[F ]⊗ k[F ] ∼= {(k[d2]⊗ k)⊕ (k[d1, d2]⊗ F )} ⊗ {(k[e2]⊗ k)⊕ (k[e1, e2]⊗ F )} .

Noting that F ⊗ F ∼= F ⊕ F , we may expand this decomposition to yield

(8.2) k[F ⊕F ] ∼= (k[d2, e2]⊗k)⊕ (k[d1, d2, e2]⊗F )⊕ (k[d2, e1, e2]⊗F )⊕ (k[d1, d2, e1, e2]⊗F ⊕F )
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Now we note that dimk FC2 = dimk kC2 = 1, so that 8.2 gives us an expression for the Poincaré
Series of k[F ⊕ F ]C2 :

(8.3)
1

(1− t2)2
+

t

(1− t)(1− t2)2
+

t

(1− t)(1− t2)2
+

2t2

(1− t)2(1− t2)2
=

1 + t2

(1− t)2(1− t2)2
.

The skeptical reader will be pleased to note that our series in Equation 8.3 can be, and in fact
has been, checked using Kemper’s software [13], which has been incorporated into Magma [6].

Now that we have illustrated the basic idea, we proceed to some refinements. Our next example
studies tensor invariants; in the notation of the opening paragraph of this section we take G ∼=
H ∼= C2 and V and W to be the regular representations of G and H.

Example 8.4 (Tensor invariants: G = C2, H = C ′
2, V = F , and W = F ′.). We regard

F ⊗ F ′ ∼= F ⊕̃F as a C2 × C ′
2 module, where the C ′

2 exchanges the F s. This is the same as the
C2 × C ′

2-module obtained by taking the tensor product of the regular representations F , F ′ of
C2, C ′

2. We study k[F ⊗ F ′] as a C2 × C ′
2-module by writing k[F ⊗ F ′] ∼= k[F ⊕̃F ] ∼= k[F ]⊗̃k[F ],

where the tilde indicates that the action of C ′
2 switches the factors in the direct sum or tensor

product. Of course underneath all the notation we are just studying the regular representation
of C2 × C ′

2; the point is to illustrate the method.
If we write down the structure of k[F ]⊗̃k[F ] as a C2-module in the first few degrees, we obtain

Degree 0 1 2 2
Degree Module k F F k

0 k k⊗̃k k ⊗ F k ⊗ F k ⊗ k

1 F F ⊗ k F ⊗̃F F ⊗ F F ⊗ k
2 F F ⊗ k F ⊗ F F ⊗̃F F ⊗ k
2 k k ⊗ k k ⊗ F k ⊗ F k⊗̃k

Table 8.5. C2-module structure of k[F ]⊗̃k[F ]

We note that the action of C ′
2 swaps the entries in the table across the main diagonal. Thus,

as representations of C2 × C ′
2, the boxed modules combine to form IndC2×C′

2
C2

(F ⊗ k), while the

underlined modules combine to form IndC2×C′
2

C2
(k ⊗ k). Similar remarks apply to the other off-

diagonal entries in the table. The diagonal entries are marked with tildes to indicate that the
action of C ′

2 switches the factors in the tensor product.
These regularities allow us to determine the C2 × C ′

2-module structure of k[F ]⊗̃k[F ] in the
following way. We first write down for each C2-isomorphism type [M ] of summands of k[F ] a
Poincaré series PM (t) for its multiplicity. This collection of isomorphism types [Mi] gives rise to
three classes of C2 × C ′

2-isomorphism types of summands of k[F ]⊗̃k[F ], whose forms are listed
below:

(1) (boxed type): IndC2×C′
2

C2
(Mi ⊗Mj)

(2) (underlined type): IndC2×C′
2

C2
(Mi ⊗Mi)
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(3) (diagonal type): Mi⊗̃Mi

The Poincaré series for the multiplicities of each of these types of modules as summands k[F ]⊗̃k[F ]
of can be obtained easily in terms of the PMi(t) as follows:

(1) (boxed type): PMi(t) · PMj (t)
(2) (underlined type): (1/2)[PMi(t)

2 − PMi(t
2)]

(3) (diagonal type): PMi(t
2)

In the case at hand we see from our decomposition of k[F ] that Pk[t] = (1 − t2)−1 and that
PF (t) = t · (1 − t)−1 · (1 − t2)−1. We then obtain Poincaré series for the multiplicities of the
summands of k[F ]⊗̃k[F ]:

Module Poincaré series

IndC2×C′
2

C2
(k ⊗ F ) t

(1−t)(1−t2)2

IndC2×C′
2

C2
(F ⊗ F ) t3

(1−t)2(1−t2)(1−t4)

F ⊗̃F t2

(1−t2)(1−t4)

IndC2×C′
2

C2
(k ⊗ k) t2

(1−t2)(1−t4)

k⊗̃k 1
(1−t4)

Table 8.6. Poincaré series for the multiplicities of summands in k[F ]⊗̃k[F ]

Finally, as in Example 8.2 we need to know the dimension of the invariant subspaces.

Module IndC2×C′
2

C2
(k ⊗ F ) IndC2×C′

2
C2

(F ⊗ F ) F ⊗̃F IndC2×C′
2

C2
(k ⊗ k) k⊗̃k

dimk(MC2×C′
2) 1 2 2 1 1

Table 8.7. Dimensions of invariant subspaces

This allows us to add rational functions to obtain the Poincaré series of k[F ⊗ F ′]C2×C′
2 .

(8.8)
t

(1− t)(1− t2)2
+

2t3

(1− t)2(1− t2)(1− t4)
+

2t2

(1− t2)(1− t4)
+

t2

(1− t2)(1− t4)
+

1
(1− t4)

=
t2 − t + 1

(1− t)2(1− t2)2

This example, like the previous one, has been checked against the result obtained by Kemper’s
software.

Although the techniques of Example 8.4 may seem specialized to the case of tensor products
with the regular representation of C2, they can be adapted to arbitrary permutation representa-
tions by a more sophisticated version of the analysis following Table 8.5. Next we will see that
how to handle monomial representations. In the next example we will consider the case of a
tensor product with the natural representation St of GL2(k), i.e. in the setting of the opening
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paragraph of this section we take W = St and H = GL2(k). Note that GL2(k) ∼= S3 = 〈a, b |
a3 = 1, b2 = 1, bab = a2〉. We write C2 for the subgroup 〈b〉 ⊂ S3.

Let K = {0, 1, ω, ω2} be the field of four elements. If V is a representation of G, we can describe
the G×S3-module structure of K[V ⊗St] by regarding V ⊗St as V ⊕̃V , where b switches the two
copies of V and a acts on the first as multiplication by ω and on the second by multiplication by
ω2. Notice that St can be defined over k (it is the natural representation of GL2(k)) and that if
we are only interested in the Poincaré series of the invariant ring, it does not matter whether we
work over k or K.

We can adapt the results of Example 8.4 to the C2-module structure of S∗(V ⊕̃V ). This gives
us three types of submodules of S∗(V ⊕̃V ). The first type is V ⊗ W ⊕̃W ⊗ V , the second is
V ⊗ V ⊕̃V ⊗ V , and the third is V ⊗̃V . Here we have used the tilde to indicate the action of C2,
as in Example 8.4.

We observe that all of these module types are actually S3-invariant; i.e. working over K, the
decomposition of the C2-module structure is also a decomposition of the S3-module structure. In
the application of this result we used a compact description of the multiplicities of these three
types of modules in S∗(V ⊕̃V ) in terms of their multiplicities in S∗(V ). We can give a similar
description of the multiplicities of the different S3-module types. To do this, we first refine our
description of the decomposition. Modules of the first type are either St⊗V ⊗W or M ⊗V ⊗W ,
regarded as a S3 × G-module. (Here M is the free module for the quotient C2 of S3.) We have
the second case if deg W + 2 deg V ≡ 0 mod 3, and the first case if deg W + 2 deg V 6≡ 0 mod 3.
The same holds for modules of the second type. Modules of the third type always have trivial
C3-action. Note that, for modules of the first and second type, if we are in the first case (i.e. a
tensor product with St) there are no invariants, since StS3 = 0.)

Observe that if f(t) =
∑

i ait
i, g(t) =

∑
j bjt

j , then
∑

i+2j≡0 mod 3 aibjt
i+j can be expressed

in terms of f and g as

(8.9)
1
3

[
f(t)g(t) + f(ζt)g(ζ2t) + f(ζ2t)g(ζt)

]
,

where ζ ∈ C is a primitive cube root of 1. This discussion can be generalized to other roots
of 1, and by combining this with arbitrary permutation representations, we can get results for
monomial representations. However, the calculations required for such examples quickly become
tedious.

We now proceed to an application of this general discussion.

Example 8.10 (Tensor invariants: G = C2, V = F , H = S3, and W = St). Take G = C2 and
V = F , the regular representation of G. In the decomposition of K[V ⊗ St] we obtain modules
of all five types mentioned above.

We recall from our discussion of the decomposition for S∗(F ) that Pk(t) = 1/(1 − t2) and
PF (t) = t/(1 − t)(1 − t2). Thus in S∗(F ⊕̃F ), regarded as an C2 × S3-module, we have that the
modules of type M ⊗ F ⊗ k have the following multiplicity:

1
3

[
PF (t)Pk(t) + PF (ωt)Pk(ω2t) + PF (ω2t)Pk(ωt)

]
These modules have C2 × S3-fixed set of dimension 1, so the function above gives exactly their
contribution to the Poincare series of S∗(F ⊕̃F )C2×S3
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Next we have to consider modules of type M ⊗ F ⊗ F and M ⊗ k⊗ k. In the first case we get
the multiplicity

1
2
·
{

1
3

[
PF (t)2 + 2PF (ωt)PF (ω2t)

]
− PF (t2)

}
.

These modules have C2 × S3-fixed set of dimension 2, so we need to multiply their contribution
to the Poincare series by 2. In the second case we have

1
2
·
{

1
3

[
Pk(t)2 + 2Pk(ωt)Pk(ω2t)

]
− Pk(t2)

}
,

and the modules have C2 × S3-fixed set of dimension 1.
Finally there are two cases of modules of the third type. The F ⊗̃F -modules have multiplicity

function PF (t2), and C2×S3-fixed set of dimension 2. The k⊗̃k-modules have multiplicity function
Pk(t2), and C2 × S3-fixed set of dimension 1.

Now we add all of this up and get

(t8 − t7 + t6 + t4 + t2 − t + 1)(t + 1)(t2 + 1)
(1− t2)(1− t3)(1− t4)(1− t6)

,

which agrees with the result obtained from Kemper’s program.

Now we apply these ideas to an example which is of interest in its own right and not just as
an application of these techniques.

Example 8.11 (“Double Dickson” invariants). Take G = GL3(k) and let V be the natural G-
module. We compute the Poincaré series of the tensor invariants k[V ⊗ St]GL3(k)×GL2(k). Using
the techniques described above, the decomposition of k[V ] as a GL3(k)-module (5.4), and Magma
we find that our series is

(t46 + t43 + t42 + 2t41 + t40 + 3t38 + 2t36 + 3t35 + 5t34 + t33 + 4t32 + 3t31 + 3t30+

t29 + 5t28 + 4t27 + 4t26 + 4t25 + 5t24 + 3t23 + 2t22 + 3t21 + 3t20 + t19 + 5t18 + 2t17+

3t16 + t15 + 2t14 + t12 + t11 + 2t10 − t9 + 2t8 + t6 − t + 1)·
(t58 − t57 − t54 + t53 − t52 + t51 + t48 − t47 − t46 + t45 − t44 + t43 + t42 − t41 + 2t40−

2t39 + t38 − 2t37 + t35 − t34 + 2t33 − t30 − t28 + 2t25 − t24 + t23 − 2t21 + t20−
2t19 + 2t18 − t17 + t16 + t15 − t14 + t13 − t12 − t11 + t10 + t7 − t6 + t5 − t4 − t + 1)−1

Admittedly this is not very appealing. One recalls the remark of Neusel and Smith ([15], p. 25)
that “[Vector invariants] seem to have fallen out of favor, except as a means of providing nasty
examples.”

Part of the interest of this example is that it is very close to the limit of what can be done with
current invariant-theory software. The authors were unable to verify the result using Kemper’s
software, though it may be possible to do this with better computing resources or algorithms
adapted to specific features of this example. However, the series has been expanded and checked
for correctness through degree 12.
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This example was originally studied in the context of cohomology of groups. One of the
maximal elementary abelian subgroups of M24, E, is of rank 6, and the action of its normalizer
realizes this representation. Further, if S is the Sylow 2-subgroup of M24, then E ⊂ S ⊂ M24

is a weakly closed system [3], and so the restriction map from H∗(M24, k) to H∗(E, k)NM24
(E) is

surjective, i.e. the cohomology of M24 maps onto our invariant ring.
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