
GROUP ACTIONS ON RINGS AND THE ČECH COMPLEX

PETER SYMONDS

Abstract. We have previously shown that when a finite group acts on a polynomial ring
over a finite field k then only finitely many isomorphism classes of indecomposable kG-
modules occur as summands of S. We have also shown that the regularity of the invariant
subring SG is at most zero, which has various consequences, for example SG is generated
in degrees at most n(|G| − 1) (provided n, |G| ≥ 2). Both of these theorems depend on the
Structure Theorem of Karagueuzian and the author, which is proved by means of a long
and complicated calculation. The aim of this paper is to prove these results using a more
conceptual method.

1. Introduction

We have previously shown with Dikran Karagueuzian that, when a finite group G acts on a
polynomial ring S = k[x1, . . . , xn] over a finite field k by homogeneous linear transformations,
only finitely many isomorphism classes of indecomposable kG-modules occur as summands
of S [16]. We have also shown that the regularity of the invariant subring SG is at most zero,
which has various important consequences: for example, SG is generated in degrees at most
n(|G| − 1) (provided n, |G| ≥ 2); more generally, if S is finitely generated over a polynomial
subring k[d1, . . . , dn] < SG then SG is generated in degrees at most

∑
i(deg(di)−1) (provided

deg(di) > 1 for at least two i) [20].
Both of these results depend on the Structure Theorem of Karagueuzian and the author

[16], which is proved by means of a long and complicated calculation. The aim of this paper
is to prove these results using a simpler, more conceptual method, based on considering
the Čech complex associated to S and showing that it is split exact over kG in degrees
greater than −n. This approach also has the advantage that it applies to a somewhat more
general class of rings. Some other results along these lines have been obtained by Bleher
and Chinburg [5] by considering Koszul resolutions. We wish to thank Burt Totaro for his
helpful comments.

2. Background

Throughout this paper, k is a field. Our results are trivial if k has characteristic zero, so
implicitly k has characteristic p > 0. Unless otherwise indicated, all rings will be Z-graded
noetherian k-algebras, and before any localization it will be assumed that they are 0 in
negative degrees and are finite dimensional over k in each degree. For brevity, we will refer
to such rings that are also commutative as rings of standard type. A ring such as kG is
implicitly in degree 0. Modules will also be graded, and when a group acts on a ring or
module, it must preserve the grading. For a module M and an integer N we will write
M≥N = ⊕∞i=NMi, and similarly for other inequalities.
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Our basic tool is the Čech complex, strictly speaking the “extended Čech complex” or the
“stable Koszul complex”.

Given a ring R, a sequence of homogeneous elements x = x1, . . . , xr from R and an
R-module M , the Čech complex Č(x;M) is a cochain complex

M →
⊕
i

Mxi
→
⊕
i<j

Mxixj
→ · · · →Mx1···xr ,

where Mx denotes the localization obtained by inverting x. It can be obtained as follows.
Č(xi;R) is the complex

R→ Rxi
,

with R in degree 0 and Rxi
in degree 1 and

Č(x;M) =

(
r⊗
i=1

R Č(xi;R)

)
⊗RM.

Observe that if G is a finite group and M is an RG-module then Č(x;M) is a complex of
graded RG-modules; up to isomorphism it is independent of the ordering of the elements of
x.

The jth homology group of this complex is equal to the local cohomology group Hj
(x)(M),

where (x) denotes the ideal in R generated by x. It is known that if y is another sequence
such that rad(y) = rad(x) then H∗(y)(M) = H∗(x)(M). We are particularly interested in the

case when rad(x) = m = mR := rad(R>0), the radical of the ideal of elements in positive
degrees (but this ideal is only maximal if R0/ rad(R0) is a field). For more information, see
[7, 9, 15].

One very useful technique is to change categories in such a way that all the kG-modules
in question become projective. Before we do this we fix some notation. For any ring Λ,
let Λ-Mod denote the category of left Λ-modules and Mod-Λ denote the category of right
Λ-modules. The full subcategory of Mod-Λ on the projective modules is denoted by Proj-Λ.
Let A be a finite dimensional left kG-module. Then Add(A) is the full subcategory of kG-
Mod on the modules that can be expressed as a summand of a direct sum of copies of A.
Set E = EndkG(A).

There are functors

U = HomkG(A,−) : Add(A)→ Proj-E

and

V = −⊗E A : Proj-E→ Add(A),

which furnish an equivalence of categories. For more details, see [23, Ch. 10] or [19].
These functors take graded modules to graded modules. In addition, they preserve any

structure as an R-module for commutative k-algebras R, meaning that if M is an RG-module
then U(M) is naturally a right R ⊗k E-module that is projective on restriction to E and
similarly for V . The functors also preserve the property of being finitely generated over R.

Lemma 2.1. The functors U and V commute with localization. In other words, if M is
an RG-module and x ∈ R then U(Mx) ∼= U(M)x, and if N is a right R ⊗k E-module then
V (Nx) ∼= V (N)x.
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Proof. Because A is finite dimensional, HomkG(A,−) commutes with direct limits, and the
localization can be constructed as a direct limit; this proves the lemma for U . Tensor
products always commute with direct limits, which proves it for V . �

Definition 2.2. A kG-module is of finite decomposition type if it can be expressed as a
sum of finite dimensional indecomposable kG-modules with only finitely many isomorphism
classes of indecomposable modules appearing.

A kG-module is of finite decomposition type if and only if it is in Add(A) for some finite
dimensional A. Such a module satisfies the Krull-Schmidt-Azumaya property that any direct
sum decomposition can be refined into a sum of indecomposables and any two decompositions
into indecomposables will involve the same isomorphism classes with the same multiplicities
[22]. It follows that any summand of a module of finite decomposition type is also of finite
decomposition type. Finite decomposition type is also preserved by induction, restriction
and tensor product over k.

Lemma 2.3. If M is an RG-module that is of finite decomposition type when considered as
a kG-module, then so is Mx for any x ∈ R.

Proof. As a kG-module, M is in Add(A) for some finite dimensional kG-module A. The right
R ⊗k E-module U(M) is projective over E, hence flat over E. Its localization, U(M)x, is a
direct limit of flat modules and thus is also flat. But, over a finite dimensional k-algebra, a flat
module is projective ([2, Theorem P] or [11, 22.29, 22.31A] or devise a proof by considering
the projective cover of the module). Thus U(M)x ∈ Proj-E, and so V (U(M)x) ∈ Add(A).
But V (U(M)x) ∼= V (U(M))x ∼= Mx, by Lemma 2.1. �

Proposition 2.4. Let R be a ring of standard type, x1, . . . , xr a sequence of elements such
that rad(x) = m and let M be a finitely generated RG-module. Then M is of finite decom-
position type if and only if

(1) Č(x;M) is split exact over kG in sufficiently high degrees and
(2) each Mxi

is of finite decomposition type.

Note that when we say that a complex is exact we mean exact at every module, so the
homology is 0 everywhere.

Proof. If the two listed conditions are satisfied, then there is a number D such that M>D

is a summand of (⊕ri=1Mxi
)>D, thus of finite decomposition type. But M≤D is of finite

decomposition type, because it is finite dimensional, and thus M is of finite decomposition
type.

Conversely, if M is of finite decomposition type then M is in Add(A) for some finite
dimensional kG-module A. The second condition holds, by Lemma 2.3. In order to see
that the first condition is also satisfied, apply U to Č(x;M) and note that U(Č(x;M)) ∼=
Č(x;U(M)), by Lemma 2.1. Since M is finitely generated, so is U(M); thus we know
that H∗m(U(M)) is zero in sufficiently large degrees [7, 15.1.5], [9, 3.6.19]. It follows that
Č(x;U(M)) is exact in high degrees. But this is a complex of projective E-modules, so it is
split exact as a complex of E-modules in high degrees. Thus V (Č(x;U(M))) ∼= Č(x;M) is
split exact as a complex of kG-modules in high degrees. �

Proposition 2.5. Let M be an RG-module of finite decomposition type. If x = x1, . . . , xr
and y = y1, . . . , ys are two sequences of elements of R such that rad(x) = rad(y), then there
is a homotopy equivalence of complexes of graded kG-modules Č(x;M) ' Č(y;M).
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Proof. Write xy = x1, . . . , xr, y1, . . . , ys. We will show that Č(x;M) ' Č(xy;M); together
with the variation with x and y interchanged, this will prove the result. We can add
the yi to x one at a time, so the key case is to show that Č(x;M) ' Č(xy;M) for any
y ∈ rad(x). Just as in the previous proof, it is easier to apply the functor U and show that
Č(x;U(M)) ' Č(xy;U(M)) as a complex of right E-modules, then apply V to obtain the
original statement.

By construction, Č(xy;U(M)) ∼= Č(y;R) ⊗R Č(x;U(M)). This leads to a short exact
sequence of complexes

0→ Č(x;U(My))(−1)→ Č(xy;U(M))→ Č(x;U(M))→ 0,

where the (−1) indicates a shift in complex degree of 1.
The homology of Č(x;U(My)) is H∗x(U(My)), which is (x)-torsion, yet the action of y is

invertible and y ∈ rad(x), so this homology is 0. It follows that Č(x;U(My)) is an exact
complex of projective right E-modules; hence it is split exact, which means that it is 0 in the
homotopy category. The other two complexes in the short exact sequence are thus homotopy
equivalent. �

3. Preliminary Results

Given a graded R-module M , let ai(M) denote the highest degree in which H i
m(M) is

non-zero (possibly ∞ or −∞). The Castelnuovo-Mumford regularity of M is reg(M) :=
max{ai(M) + i}. In [20] we also considered hreg := max{ai(M)}. Because H i

m(M) vanishes
for i > dim(M), we have reg(M) ≤ hreg(M)+dim(M). If M is a ring and R is not specified
then we take R = M , although any subring of M over which it is still finite will yield the
same answer.

Let R be a ring of standard type, x1, . . . , xr a sequence of homogeneous elements such
that rad(x) = m and M a finitely generated RG-module. If we know that hreg(M) ≤
N for some integer N then Č(x;M)>N is exact. Notice that (Mx)

G = (MG)x, because
MG ∼= HomkG(k,M), which commutes with direct limits; hence Č(x;M)G ∼= Č(x;MG).
Thus if we happen to know that Č(x;M)>N is split exact as a complex of kG-modules, then
Č(x;MG)>N is exact, and so hreg(MG) ≤ N .

We are interested in the case when M is actually a ring of standard type, which we call
S, G acts on S by grading-preserving ring automorphisms, and R is SG or some subring of
SG over which it is still finite. The aim is to find a bound on hreg(SG). It is this that leads
to bounds on the degrees of the generators and relations: see [20] for details.

The fixed point subscheme of Spec(S) under the action of G is the closed subscheme,
denoted by Spec(S)G, defined by the ideal IG,S < S generated by all the elements of the
form (g − 1)s for g ∈ G and s ∈ S.

We will need the following geometric result due to Fleischmann [12, 5.9] (see also [17]).
Recall that for a kG-module M and a subgroup H ≤ G the relative trace is the map
trGH : MH →MG defined by trGH(m) =

∑
g∈G/H gm.

Proposition 3.1. Let S be a commutative ring ( not assumed graded or noetherian here)
on which a finite group G acts as ring automorphisms. If (Spec(S))G = ∅, then SG =∑

H�G trGH(SH).
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The formulation in [12] is more general in that it also describes the case when the fixed
point set is not empty, but it is stated only for polynomial rings. For the convenience of the
reader we sketch a proof.

Proof. Notice that T :=
∑

H�G trGH(SH) is an ideal in SG; we need to show that it is not

contained in any maximal ideal.
Let I be a maximal ideal in SG. Clearly S is integral over SG, so there is a maximal ideal

J < S such that J ∩SG = I [1, 5.8, 5.10]. Let H be its stabilizer, and consider the surjection
π : S �

∏
g∈G/H S/

gJ . If J is not fixed under the action of G, let e be the element of the

product that is 1 at S/J and 0 at the other coordinates, so e2 = e and he = e for h ∈ H;
then trGH(e) = π(1). Let e′ ∈ S be such that π(e′) = e and let ẽ =

∏
h∈H he

′. Then ẽ ∈ SH
and π(ẽ) =

∏
h∈H π(he′) =

∏
h∈H hπ(e′) =

∏
h∈H he = e. Thus π(trGH(ẽ)) = trGH(π(ẽ)) = 1.

It follows that T � I in this case.
If G fixes J , consider the action of G on S/J . The condition on the fixed point subscheme

shows that S/J is generated by elements of the form (g−1)s for g ∈ G and s ∈ S, so the action
is not trivial; let H be its kernel. By the surjectivity of the trace in Galois theory, there is an
element f ∈ S/J such that trGH(f) = 1. Let p be the characteristic of S/J and let P be the
Sylow p-subgroup of H (P = 1 if p = 0). Notice that for any x ∈ S/J , trGH(xp) = (trGH(x))p

(provided p 6= 0). Let f ′ ∈ S be such that π(f ′) = f and let f̃ = trHP (
∏

g∈P gf
′). Then

f ′ ∈ SH and π(trGH(f̃)) = trGH trHP (f |P |) = trGH(|H :P |f |P |) = |H :P |(trGH f)|P | = |H :P | 6= 0.
Again, it follows that T � I. �

Remark. If S is a k-algebra, G acts by k-algebra automorphisms and k̄ denotes the algebraic
closure of k then the fixed point subscheme is empty if and only the action of G on the set
of closed points of Spec(k̄ ⊗k S) has no fixed point.

Remark. If G is a p-group and p ∈ rad(S) then the converse statement to that in the
proposition is also true. When S is the ring of k-valued functions on a G-set this is a
well-known consequence of the properties of the Brauer construction [8].

Definition 3.2. If a group G acts on a commutative k-algebra S, then by an SG-module
M we mean an S-module that is also a kG-module in such a way that g(sm) = (gs)(gm)
for g ∈ G, s ∈ S and m ∈M . In other words, M is a module for the twisted group algebra.

When M is a kG-module we can regard Endk(M) as a kG-module by setting (gf)(m) =
g(f(g−1m)) for g ∈ G, f ∈ Endk(M),m ∈M .

Let C be a set of subgroups of G. Recall that a kG-module M is said to be projective
relative to C if the following equivalent conditions hold.

(1) The module M is a summand of a sum of induced modules of the form N ↑GH , where
H ∈ C and N is a kH-module.

(2) The module M is a summand of ⊕H∈CM ↓GH↑GH .
(3) Any surjection of kG-modules L � M that splits on restriction to any H ∈ C is also

split over kG.
(4) IdM ∈

∑
H∈C trGH(EndkH(M)).

The equivalence of these conditions is known as Higman’s criterion and there are proofs in
many places for the case when C consists of just one group [14] [3, 3.6.13]. The general case
is not much harder and can be found in [18, 3.5.8] or [6, 2.2.3]. In characteristic p, a module
is projective relative to its Sylow p-subgroups.
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Lemma 3.3. Let S be a commutative k-algebra on which a p-group P acts by algebra auto-
morphisms in such a way that 1 =

∑
Q�P trPQ(sQ) for some sQ ∈ SQ. Then any SP -module

M is projective relative to proper subgroups of P as a kP -module.

Proof. By characterization (4) of relative projectivity, it suffices to show that IdM =
∑

Q�P trPQ(mQ)

for some mQ ∈ EndkQ(M). Let mQ ∈ EndkQ(M) be multiplication by sQ. �

Lemma 3.4. Let M be an R-module, x a sequence of homogeneous elements of R>0 and N
an integer. Then (M>N)xi1

···xi`

∼= Mxi1
···xi`

if x is non-empty, and Čx(M>N)>N = Čx(M)>N .

Proof. The first part follows from the short exact sequence M>N → M → M̄≤N , where
M̄≤N denotes M/M>N , and the fact that (M̄≤N)xi

= 0. For the second part, consider the
short exact sequence Čx(M>N) → Čx(M) → Čx(M̄≤N). From the first part we see that
Čx(M̄≤N) = M̄≤N . �

Lemma 3.5. Let C and D be complexes of graded kG-modules and let M and N be integers
such that C>M and D>N are split exact. Then (C ⊗k D)>M+N is split exact.

Proof. We have (C ⊗k D)i =
∑

u+v=iCu⊗k Cv. If i > M +N , then either u > M and so Cu
is split exact, or v > N and so Dv is split exact. A split exact complex tensored with any
other complex is split exact. �

Lemma 3.6. Let G be a finite group and let M be a kG-module. Let C be a set of subgroups
of G.

(1) If M is projective relative to C and M is of finite decomposition type after restriction
to any subgroup in C, then M is of finite decomposition type.

(2) If 0→ C0 → C1 → · · · → Cn → 0 is a complex of kG-modules that is split exact after
restriction to any subgroup in C and C1, . . . , Cn are projective relative to C, then the
complex is split exact over kG.

Proof. For (1), use characterization (2) of relative projectivity. For (2), use induction on n
and characterization (3) to split the map Cn−1 � Cn. �

Definition 3.7. A kG-module X is semi-invertible if there exist kG-modules A and B such
that A⊗kX ∼= k⊕B. Similarly, a complex of kG-modules X is semi-invertible if there exist
complexes A and B such that A⊗k X ' k ⊕B.

The module A in this definition can be assumed to be finite dimensional. For if c is
a generator of the copy of k on the right hand side then we have c =

∑n
i=1 xi ⊗ ai with

xi ∈ X, ai ∈ A, and the ai generate a finite dimensional kG-submodule of A that we can use
instead of A.

4. Main Theorem

Theorem 4.1. Let S be a graded k-algebra of standard type on which a finite group G acts
and let M be an SG-module. Let N be an integer such that hreg(M) ≤ N . Suppose that
for each p-subgroup P of G there exist homogeneous elements y1, . . . , yr and z1, . . . , zs of SP>0

such that:

(a) yi vanishes on (Spec(S))P ,
(b) radS(yz) = mS,



GROUP ACTIONS ON RINGS AND THE ČECH COMPLEX 7

(c) there is a k[y]P -module T and a k[z]P -module U such that M>N
∼= (T ⊗k U)>N as

k[yz]P -modules,
(d) (i) either the action of P on U is trivial or

(ii) U is semi-invertible and of finite decomposition type and for some integer d the
complex Čz(U)>d is split exact over kP and Čz(U)d is semi-invertible, and

(e) (i) either M is finitely generated over S or
(ii) M≤N is of finite decomposition type and the T≤N−d for each p-subgroup P < G are

also of finite decomposition type.

Then:

(1) for any sequence of homogeneous elements x in SG>0 such that radS(x) = mS, the

complex of kG-modules Čx(M)>N is split exact;
(2) hreg(MG) ≤ N ;
(3) M is of finite decomposition type.

Proof. Part (2) follows from part (1) by the discussion at the beginning of Section 3. Parts
(1) and (3) hold over kG if they hold on restriction to a Sylow p-subgroup, by Lemma 3.6
with C the class of Sylow p-subgroups. We may therefore assume that G is a p-group.

We will prove (1) and (3) together, but with G replaced by one of its p-subgroups, P ,
using induction on the order of P . The conclusions are clearly valid when |P | = 1, because
hreg(M) ≤ N , so assume that P 6= 1 and the conclusions hold over all proper subgroups of
P . Notice that (d.i) implies (d.ii), so we will only consider (d.ii). In fact, (e.i) also implies
(e.ii) as follows. If M is finitely generated over S, then M>N is finitely generated over k[yz];
under the isomorphism in (b), there is a finite set of generators mi =

∑
j tij⊗uij with tij ∈ T

and uij ∈ U , all homogeneous. We can replace T by its k[yz]P -submodule generated by the
tij; then T≤N−d is finitely dimensional, so certainly of finite decomposition type.

On restriction to any proper subgroup Q of P , the complex Čyz(M)>N is split exact, by
induction; the same must be true for Čyz(T ⊗kU)>N = (Čy(T )⊗k Čz(U))>N , by Lemma 3.4.

The complex Čz(U)d is semi-invertible, so there is a complex A in degree −d such that
A⊗k Čz(U)d ' k⊕B, with k in degree 0. Hence Čy(T ) is homotopy equivalent over kP to a
summand of A⊗k (Čy(T )⊗k Čz(U)); the latter, on restriction to Q, is split exact in degrees
greater than N − d, by the previous paragraph, (d.ii) and Lemma 3.5. Thus Čy(T )>N−d is
split exact on restriction to any proper subgroup of P .

By condition (a), yi ∈ IP,S, the ideal defining the fixed point subscheme. But IP,Syi
=

(IP,S)yi
, so IP,Syi

= Syi
; this means that (Spec(Syi

))P = ∅. Proposition 3.1 and Lemma 3.3
now imply that Myi

, or indeed any Myi1
···yi`

with ` ≥ 1, is projective relative to proper

subgroups. But Myi1
···yi`

∼= (M>N)yi1
···yi`

∼= ((T ⊗k U)>N)yi1
···yi`

∼= (T ⊗k U))yi1
···yi`

∼=
Tyi1

···yi`
⊗k U , by Lemma 3.4. Since U is semi-invertible by condition (d.ii), Tyi1

···yi`
must be

projective relative to proper subgroups for ` ≥ 1.
We can now use Lemma 3.6 with C equal to the class of proper subgroups of P to deduce

that Čy(T )>N−d is split exact over kP . From the assumption that Čz(U)>d is split exact
over kP and Lemma 3.5, it follows that Čyz(U⊗k T )>N is split exact; hence so is Čyz(M)>N ,
by Lemma 3.4. This proves (1) in the case (x) = (yz).

Since U is semi-invertible, there exist kP -modules A and B, with A finite dimensional,
such that U ⊗k A ∼= k⊕B. Using Lemma 3.4 again, we obtain Myi

⊗k A ∼= Tyi
⊗k U ⊗k A ∼=

Tyi
⊕(Tyi

⊗kB). By induction, M is of finite decomposition type on restriction to any proper
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subgroup; hence so is Myi
, by Lemma 2.3, and also Myi

⊗k A, since A is finite dimensional.
It follows that Tyi

is of finite decomposition type after restriction to any proper subgroup.
Because we have seen that Tyi

is projective relative to proper subgroups, it follows from
characterization (2) of relative projectivity that each Tyi

is of finite decomposition type over
kG; hence so is T>N−d, by the splitting of Čy(T )>N−d. Since T≤N−d is of finite decomposition
type by (e.ii), it follows that T is of finite decomposition type. Finally, U is assumed to be
of finite decomposition type, hence so is T ⊗ U and thus M>N . But M≤N is assumed to be
of finite decomposition type; hence so is M , proving (3).

By Proposition 2.5, we can now change yz to x, which proves (1). �

Remark. Condition (d.ii) is rather artificial, but it serves to clarify the proof. Other for-
mulations for non-trivial action on U are possible. The key point arises when Q < P and
(writing TQ for the T associated to Q etc.) we need to be able to deduce that ČyP

(TP ) is
split exact over kQ given that ČyQ

(TQ) is.

Corollary 4.2. If a finite group G acts by linear substitutions on a polynomial ring S =
k[x1, . . . , xn] with the xi in degree 1, then S is of finite decomposition type and hreg(SG) ≤ −n
and reg(SG) ≤ 0.

Proof. The condition on reg is weaker than that on hreg, so it suffices to verify the hypotheses
of Theorem 4.1 with N = −n. The method is a variant of that in [16, §6]. Clearly hreg(S) ≤
−n.

Let P be a p-subgroup of G. Let V be the dual space to S1, regarded as a left module in
the usual way, and let {x∗i } be the dual basis; we regard S as k[V ]. Letting s = dimV P and
r = n− s, we may change the basis of V (and of S1) so that the matrices for the action on
V are lower triangular and x∗r+1, . . . , x

∗
n span V P . For g ∈ P we have

gx∗i =

{
x∗i +

∑
i<j λi,j(g)x∗j , if i ≤ r

x∗i if i > r,

and thus

gxi = xi +
∑

j<i, j≤r

λj,i(g
−1)xj.

Let dxi
=
∏

g∈P/Stabxi
gxi denote the orbit product of xi. When expressed as a sum of

monomials in the xi, dxi
involves x

deg dxi
i and does not contain any xj with j > i.

Set yi = dxi
for 1 ≤ i ≤ r and zi = dxi+r

for 1 ≤ i ≤ s. Let αi = deg zi.
Let T be the k-subspace of S spanned by the monomials with xi+r-degree strictly less than

αi for 1 ≤ i ≤ s; it is, in fact a kP -submodule. Let U = k[z1, . . . , zs], with trivial action of
P .

We claim that S ∼= T ⊗k U by the natural map arising from the inclusion of T in S and
multiplication by the zi (cf. [16, 6.4]). The two sides have the same graded dimensions, so
it suffices to check surjectivity; this can be done by a standard argument used in Gröbner
basis theory. We order the basis elements by xn > xn−1 > · · · > x1 and give the monomials
the corresponding graded lexicographic order. Thus, if we write zi = xαi

i+r +Xi for 1 ≤ i ≤ s,
each monomial appearing in Xi is strictly smaller than xαi

i+r.
Suppose that a be the smallest monomial that is not in the image of the map above. If

each xi+r for 1 ≤ i ≤ s appears in a to a power strictly less than αi, then a ∈ T so is in the
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image. Otherwise, let j be the largest value of i with 1 ≤ i ≤ s such that xαi
i+r divides a; then

a = x
αj

j+rb = (zj −Xj)b. Since b < a, b is in the image, so is zjb. Also, each monomial in Xjb
is strictly smaller than a, so must be in the image. Thus a is in the image, a contradiction.

This proves the claim, and the lettered hypotheses of Theorem 4.1 are satisfied for M = S
and any N . �

Remark. The finite decomposition type part of Corollary 4.2 was shown in [16] in the case
when k is finite. The regularity part was the main result of [20].

Remark. Given a kG-module M , let T (M) =
∑

H<G, p||G:H| tr
G
H(MH) and set F (M) =

MG/T (M), obtaining a functor with values in vector spaces. If M is also an RG-module
and x ∈ R then this preserves the R-module structure and it is easy to check that T (Mx) ∼=
T (M)x and hence F (Mx) ∼= F (M)x. It follows that Čx(F (M)) ∼= F (Čx(M)).

In particular, take M to be the polynomial ring S = k[V ] of Corollary 4.2, where dimV =
n. The complex Čx(S) is split exact over kG in degrees greater than −n, hence so is
Čx(F (M)). Thus hreg(F (S)) ≤ −n.

It was shown by Fleischmann that dimF (k[V ]) = dimk(V
P ), where P is a Sylow p-

subgroup of G. Thus reg(F (S)) ≤ s − n, where s = dimV P . Fleischmann’s proof shows
that a set of elements of k[V ]G that restricts to a system of parameters on k[V P ] also forms
a system of parameters on F (k[V ]). This allows us to find a bound on the degrees of the
generators of F (k[V ]) along the lines of [20, 2.1].

Using Dade’s Lemma we can find a system of parameters of degree at most |G|; this
leads to the bound max{(s|G| − n, |G|}. If k is the finite field Fq and G is a p-group, then
we can use invariants for the full group of lower triangular matrices and obtain the bound
max{qn−s(qs−1)/(q−1)−n, qn−1}. If G is not a p-group, we can use the Dickson invariants;
it is those of degrees qn− qn−1, . . . , qn− qn−s that restrict correctly (see e.g. [4, 8.1.2]). This
yields the bound max{sqn − qn−s(qs − 1)/(q − 1)− n, qn − qn−1}.

Fleischmann [13, 14.1, 14.2] showed that F (k[V ])/ rad(F (k[V ])) is Cohen-Macaulay. To-
taro [21] has shown that F (k[V ]) is Cohen-Macaulay and also suggested this remark.

5. Examples

There are several observations that can help in checking the hypotheses of Theorem 4.1.
First of all, we only need to check representatives of the p-subgroups up to conjugacy. Also,
if Q < P and (Spec(S))Q = (Spec(S))P then we do not need to check for Q. If we happen to
know for some subgroup P and some sequence x1, . . . , xn in SP that Čx(S)>N is split over
kP , then this can replace conditions (a)-(e) for P .

The last of these is particularly useful if we only want to show that S is of finite decom-
position type. For then the conditions at each P only have to hold for N large enough, and
this is ensured by Proposition 2.4 if S is known to be of finite decomposition type over P ,
for example if P is cyclic.

Example. There are many interesting examples when S = k[x1, . . . , xn], with the xi in posi-
tive degrees but not all the same, and G acts by k-algebra automorphisms that respect the
grading.

For a simple case, let us assume that each element g ∈ G acts with x1 fixed and gxi =
xi + λix

ri
1 for i ≥ 2, λi ∈ k and ri deg x1 = deg xi if λi 6= 0. Assuming that the action is

faithful, for any non-trivial subgroup the fixed point subscheme of the action on the spectrum
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is given by x1 = 0. By the discussion above, we only have to verify the hypotheses for the
whole group.

Let y1 = x1 and let zi = dxi+1
for 1 ≤ i ≤ n− 1 (this is the orbit product again). Let T be

the part of S spanned by monomials with xi-degree strictly less that deg dxi
for 2 ≤ i ≤ n.

Let U = k[z1, . . . , zn−1]. This satisfies the hypotheses of Theorem 4.1 with N = hreg(S) =
−
∑

deg xi. Thus S has finite decomposition type and hreg(SG) ≤ −
∑

deg xi.

In the next two examples it is possible to calculate the invariants and their regularity
directly, so we concentrate on finite decomposition type.

Example. Suppose that k has characteristic 2 and let S = k[v, w, x, y, z]/(vx+wy), with all
the generators in degree 1. Let G be the Klein four-group with generators a and b and let it
act on S fixing v, w, x, y and with a(z) = z + x and b(z) = z + v.

The fixed point subscheme of the action is where v and x vanish. Using the fact that
k[w, y] is free over k[w + y, wy] on the basis {1, y}, we obtain k[v, w, x, y, z] ∼= (k[v, x] ⊕
yk[v, x])⊗k k[w + y, vx + wy, z]. Set y1 = v, y2 = w, z1 = w + y and z2 = dz. Let T be the
free k[v, x]-submodule of S spanned by {1, z, z2, z3, y, yz, yz2, yz3} and U = k[z1, z2]. Then
S ∼= T ⊗k U , verifying the conditions for G. By the discussion above, this suffices to show
that S is of finite decomposition type.

Example. This example is the same as the previous one except that b(z) = z+y. The ring S
is graded by total degree and also by v-degree+w-degree. Let An be the part of S with total
degree n+1 and v-degree+w-degree=n. Then An is a kG-summand of S of dimension 2n+3.
We will show that An is indecomposable, which proves that S is not of finite decomposition
type.

The module An has a monomial basis, after the obvious identifications. The group action
can be described by a diagram, as in [10]:

wnz
b−1

##HH
HH

HH
HH

H
a−1

}}{{
{{

{{
{{

{
vwn−1z

b−1

$$HHHHHHHHH
a−1

yysssssssss

wnx wny = vwn−1x vwn−1x =

. . . vnz
b−1

!!DD
DD

DD
DD

a−1

{{xx
xx

xx
xx

x

= vnx vny .

This is known to be the diagram of an indecomposable module (in fact Ω−n−1k). Another
approach is to consider matrices, as in [3, 4.3.3].
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