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Abstract. Let M be a finite dimensional modular representation of a finite group G. We

consider the dimensions of the non-projective part of the tensor powers M⊗n of M , and we

write γG(M) for the lim sup of their nth roots. We investigate the properties of the invariant

γG(M), using tools from representation theory, and from the theory of commutative Banach

algebras.

1. Introduction

This paper is exploratory in nature. We introduce a new invariant γG(M) of a kG-module
M (where, throughout the paper, G is a finite group, k is a field of characteristic p, and
we only consider finitely generated kG-modules). This invariant is difficult to compute, but
captures interesting asymptotic properties of tensor products. We have carried out a large
number of computations, and we present a selection of them near the end of the paper.

The invariant γG(M) is similar in nature to the complexity cG(M) [2, 9, 25], which describes
the polynomial rate of growth of a minimal resolution of M , or equivalently the rate of growth
of the non-projective part of M ⊗Ωn(k) (here and for the remainder of the paper, ⊗ means
⊗k with diagonal group action). Instead, we examine the rate of growth of the dimension
of the non-projective part of M⊗n. It turns out that in this case the growth is usually
exponential, so the appropriate way to measure it is to consider lim sup of the nth root.

Definition 1.1. For a kG-module M , we write M = M ′⊕ (proj) where M ′ has no projective
direct summands and (proj) denotes a projective module. Then M ′ is called the core of M
and denoted coreG(M). We write cGn (M) for the dimension of coreG(M⊗n); it is well defined
by the Krull–Schmidt Theorem. We define

γG(M) = lim sup
n→∞

n
√
cGn (M).

This is also equal to 1/r, where r is the radius of convergence of the generating function

fM(t) =
∞∑
n=0

cGn (M)tn,

see Corollary 8.2.

In the case where M is algebraic (i.e., there are only finitely many isomorphism classes
of indecomposable summands of tensor powers of M , see Alperin [1] or §II.5 of Feit [19])
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the invariant is a root of the minimal polynomial of M in the Green ring a(G). Thus
γG(M) is closely related to the discussion in Chapter 3 of the book of Etingof, Gelaki,
Nikshych and Ostrik [18]. Recall that a(G) is the ring whose generators [M ] correspond to
isomorphism classes of kG-modules, and whose relations are given by [M ⊕N ] = [M ] + [N ]
and [M ⊗ N ] = [M ][N ]. Additively, the ring a(G) is a free abelian group on the basis
elements [M ] with M indecomposable. In general, the indecomposables are unclassifiable
(wild representation type) and a(G) is very large and hard to describe. It usually has
nilpotent elements of the form [M ] − [N ], but has a large semisimple quotient [5, 30, 31].
See Section 9 for more notations concerning Green rings.

All modules are algebraic if and only if the Sylow p-subgroups of G are cyclic. For an
example, if G is a cyclic group of order five, k is a field of characteristic five, and M is the two
dimensional indecomposable kG-module, then the non-projective summands of M⊗n follow
a Fibonacci pattern. We have cG2n(M) ≈ τ 2n+1 and cG2n+1(M) ≈ 2τ 2n+1, where

τ = (1 +
√

5)/2 = 2 cos(π/5) ≈ 1.618034

is the golden ratio, and so γG(M) = τ in this case. We calculate the value of γG(M) for all
modules for a cyclic group of order p in Theorem 10.1.

Most modules are not algebraic. In the case where M is not algebraic, we interpret γG(M)
as the spectral radius of [M ] as an element of a suitable completion of the Green ring. This
brings in the theory of commutative Banach algebras, playing the role of a sort of infinite
dimensional Perron–Frobenius theory.

In common with the complexity, the value of γG(M) is determined by the restrictions of M
to elementary abelian p-subgroups of G. For this reason, most of our examples are modules
for elementary abelian p-groups. The examples were worked out using the computer algebra
system Magma [7]. Note that this paper is written using left modules, while Magma uses
right modules, so the matrices have been transposed.

The following theorem summarises the results of this paper.

Theorem 1.2. The invariant γG(M) has the following properties:

(i) We have γG(M) = lim
n→∞

n
√
cGn (M) = inf

n>1

n
√
cGn (M).

(ii) We have 0 6 γG(M) 6 dimM .
(iii) A kG-module M is p-faithful (Definition 6.1) if and only if γG(M) < dimM .
(iv) A kG-module M is projective if and only if γG(M) = 0. Otherwise γG(M) > 1.
(v) If p divides |G| then a kG-module M is endotrivial if and only if γG(M) = 1.

(vi) If a kG-module M is neither projective nor endotrivial then γG(M) >
√

2.
(vii) If γG(M) =

√
2 then M ⊗M∗ ⊗M ∼= M ⊕M ⊕ (proj).

(viii) We have γG(M∗) = γG(M).
(ix) If 0 → M1 → M2 → M3 → 0 is a short exact sequence of kG-modules then each

γG(Mi) is at most the sum of the other two.
(x) We have max{γG(M), γG(N)} 6 γG(M ⊕N) 6 γG(M) + γG(N).

(xi) If N is isomorphic to a direct sum of m copies of M then γG(N) = m.γG(M).
(xii) We have γG(k ⊕M) = 1 + γG(M).

(xiii) We have γG(M ⊗N) 6 γG(M)γG(N).
2



(xiv) We have γG(M⊗m) = γG(M)m.
(xv) We have γG(ΩM) = γG(M).

(xvi) If H 6 G then we have γH(M) 6 γG(M).
(xvii) We have γG(M) = max

E6G
γE(M), where the maximum is taken over the elementary

abelian p-subgroups E 6 G.
(xviii) If M is a one dimensional module and p divides |G| then for every n ∈ Z we have

γG(Ωn(M)) = 1.

The proofs of these can be found as follows: (i) in Theorem 4.4, (ii) and (iv) in Lemma 2.6,
(iii) in Theorem 6.3, (v) in Theorem 7.5, (vi) in Theorem 5.8, (vii) in Theorem 12.6, (viii)
in Lemma 2.7, (ix) in Corollary 5.6, (x) in Theorem 3.2, (xi) in Theorem 3.4, (xii) in
Theorem 4.6, (xiii) in Theorem 5.1, (xiv) in Theorem 5.2, (xv) in Theorem 5.4, (xvi) in
Lemma 2.10, and (xvii) in Theorem 7.2. Part (xviii) follows by combining part (xv) with
Lemma 2.6 (iv).

We use the spectral theory of commutative Banach algebras to connect the invariant
γG(M) to the structure of the Green ring a(G). Recall from Benson and Parker [6] that a
species of a(G) is a ring homomorphism s : a(G) → C (we avoid the Banach algebra term
“character” for obvious reasons). We say that a species s is core-bounded if for all kG-
modules M we have |s([M ])| 6 dim coreG(M). The proof of the following theorem can be
found in Section 9.

Theorem 1.3. If M is a kG-module then γG(M) is the supremum of |s([M ])|, where s runs
over the core-bounded species s : a(G)→ C. Furthermore, there exists a core-bounded species
s of a(G) such that s([M ]) = γG(M).

We formulate some conjectures about the behaviour of the invariant γG(M), two of which
we restate here:

Conjecture 1.4 (Conjecture 5.3). We have γG(M ⊗M∗) = γG(M)2.

Conjecture 1.5 (Conjecture 13.3). For all large enough values of n, the function cGn (M)
satisfies a homogeneous linear recurrence relation with constant coefficients.

The latter conjecture implies that the value of γG(M) is always an algebraic integer. We
do not know whether this is the case, but we at least show in Proposition 13.5 that γG(M),
for all primes, fields, finite groups and finitely generated modules, can only take countably
many values.

Acknowledgment. This material is partly based on work of the first author supported by
the National Science Foundation under Grant No. DMS-1440140 while he was in residence
at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring
2018 semester, and of the second author supported by an International Academic Fellowship
from the Leverhulme Trust. We wish to thank Burt Totaro for his helpful comments and for
pointing out Proposition 13.5.

2. The Invariant γG(M)

We begin with some properties of tensor products.
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Proposition 2.1. Let M be a kG-module.

(i) If the dimension of M is not divisible by p then M ⊗ M∗ has a direct summand
isomorphic to k.

(ii) M is isomorphic to a direct summand of M ⊗M∗ ⊗M .
(iii) If the dimension of M is divisible by p then M ⊗M∗ ⊗M has a direct summand

isomorphic to M ⊕M .

Proof. Let mi be a basis for M and fi the dual basis of M∗. Thus
∑

i fi(mi) = dim(M), and
for m ∈M we have m =

∑
i fi(m)mi.

For (i) we have maps k →M ⊗M∗ given by 1 7→
∑

imi⊗ fi and M ⊗M∗ →M given by
m⊗ f 7→ f(m), with composite multiplication by dim(M).

For (ii) we have maps M →M⊗M∗⊗M given by m 7→
∑

im⊗fi⊗mi and M⊗M∗⊗M →
M given by m⊗ f ⊗m′ 7→ f(m)m′, with composite the identity on M .

For (iii) (cf. Proposition 4.9 in Auslander and Carlson [3], where this is proved with the
further hypothesis that M is indecomposable, but this hypothesis is not used in the proof),
we have maps M ⊕M →M ⊗M∗ ⊗M given by

(m,m′) 7→
∑
i

(m⊗ fi ⊗mi +mi ⊗ fi ⊗m′)

and M⊗M∗⊗M →M⊕M given by m⊗f⊗m′ 7→ (f(m)m′, f(m′)m). If M has dimension
divisible by p then the composite is the identity on M ⊕M . �

Lemma 2.2. If M is a kG-module, then M⊗M∗ is projective if and only if M is projective.

Proof. The tensor product of any module with a projective module is projective. So by
Proposition 2.1, M projective implies M ⊗M∗ projective implies M ⊗M∗ ⊗M projective
implies M projective. �

Lemma 2.3. For any kG-module M , if M⊗n is projective for some n > 1, then so is M .

Proof. It follows from Proposition 2.1 that M⊗(n−1) is isomorphic to a direct summand of
M⊗n⊗M∗. So M⊗n is projective if and only if M⊗(n−1) is projective. The result now follows
by induction on n. �

For a kG-module M , recall that we write cGn (M) for the dimension of coreG(M⊗n).

Definition 2.4. We define
γG(M) = lim sup

n→∞

n
√

cGn (M).

Remarks 2.5. (i) The invariant γG(M) is robust, in that the dimension of coreG(M)
may be replaced by the number of composition factors of coreG(M) or the number
of composition factors of the socle of coreG(M), and so on.

(ii) An interesting invariant is γG(M)/ dimM , which we think of as the “non-projective
proportion of M in the limit.” In the example of the introduction, we have γG(M) =
τ . Thus γG(M)/ dimM ≈ 0.809, and so we think of M as “about 19.1% projective
in the limit.”

(iii) We shall see in Section 4, using the theory of submultiplicative functions, that in

fact lim
n→∞

n
√

cGn (M) exists and is equal to inf
n>1

n
√

cGn (M).

4



We begin with some obvious properties of the invariant γG(M).

Lemma 2.6. For any kG-module we have:

(i) 0 6 γG(M) 6 dimM ,
(ii) γG(M) = 0 if and only if M is projective,

(iii) If M is not projective then γG(M) > 1.
(iv) If M is a one dimensional module and |G| is divisible by p then γG(M) = 1.

Proof. Part (i) is because

cGn (M) = dim coreG(M⊗n) 6 dimM⊗n = (dimM)n.

If M is projective then clearly γG(M) = 0. Conversely, if M is not projective then, by
Lemma 2.3, no cGn (M) is 0. Since cGn (M) is a non-negative integer we have cGn (M) > 1,
proving parts (ii) and (iii). Part (iv) now follows, since M is not projective in this case. �

Lemma 2.7. We have γG(M∗) = γG(M).

Proof. We have coreG(M∗) ∼= coreG(M)∗ and so cGn (M∗) = cGn (M). �

Recall that we have the syzygy operator Ω, where ΩM is defined to be the kernel of a
projective cover P → M . Similarly, Ω−1M is defined to be the cokernel of an injective
hull M → I. Since projective kG-modules are the same as injective modules, we have
Ω(Ω−1M) ∼= coreG(M) ∼= Ω−1(ΩM).

For n > 0, ΩnM denotes Ω(Ωn−1M), Ω−nM denotes Ω−1(Ω−n+1M), and Ω0M denotes
coreG(M). For n ∈ Z we have coreG(Ωnk ⊗M) ∼= ΩnM .

Lemma 2.8. We have γG(Ωk) = γG(Ω−1k) = 1, provided that p divides |G|.

Proof. We have coreG((Ωk)⊗n) ∼= Ωnk, and dim Ωnk grows polynomially in n (see for example
[4] §5.3). Therefore γG(Ωk) = 1. Since (Ωk)∗ ∼= Ω−1k, Lemma 2.7 shows that γG(Ω−1k) =
1. �

Lemma 2.9. If coreG(M) ∼= coreG(N) then γG(M) = γG(N).

Proof. If coreG(M) ∼= coreG(N) then, since the tensor product of a projective module with
any module is projective, we have

coreG(M⊗n) ∼= coreG(coreG(M)⊗n) ∼= coreG(coreG(N)⊗n) ∼= coreG(N⊗n).

Thus cGn (M) = cGn (N), and so γG(M) = γG(N). �

Lemma 2.10. If H is a subgroup of G and M is a kG-module then γH(M) 6 γG(M).

Proof. We have cHn (M) 6 cGn (M) for all n. �

Lemma 2.11. If K is an extension field of k then γG(K ⊗k M) = γG(M).

Proof. This will follow immediately if we can show that for any kG-module N , we have
K ⊗k coreG(N) ∼= coreG(K ⊗kN). For this, we need to show that if K ⊗kN has a projective
summand P then N also has a projective summand. Consider the restrictions of K⊗kN and
P from KG to kG. The restriction P↓kG must be a sum of finite dimensional indecomposable
projective kG-modules; let P ′ be one of them. It is a summand of K ⊗k N↓kG, which is a
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sum of copies of N . Because it is finite dimensional, P ′ is a summand of a finite sum of
copies of N , hence is a summand of N , by the Krull–Schmidt Theorem. �

Example 2.12. Let M be the 3 dimensional faithful uniserial module for G = Z/3×Z/3 =
〈g, h〉 over F3 given by

g 7→

1 1 0
0 1 1
0 0 1

 h 7→

1 0 1
0 1 0
0 0 1

 .

Then Ω2M ∼= M , M is algebraic (Craven [13], Section 3.3.2), and ΩM has dimension 6.
The modules M ′ = M ⊗M∗ and ΩM ′ ∼= ΩM ⊗M∗ ∼= M ⊗ Ω(M∗) are indecomposable, of
dimensions 9 and 18 respectively. The indecomposable summands of tensor powers of M are
determined by the equations

M ⊗M ∼= M∗ ⊕ Ω(M∗), M ⊗M ′ ∼= 2M ⊕ 2ΩM ⊕ P,
M ⊗ ΩM ∼= M∗ ⊕ Ω(M∗)⊕ P, M ⊗ ΩM ′ ∼= 2M ⊕ 2ΩM ⊕ 4P,

where P is the 9 dimensional projective module. These equations imply that

M⊗5 ∼= 8M⊗2 ⊕ 19P.

It follows that for n > 5 we have cn(M) = 8cn−3(M), and so γG(M) = 2. Similarly we have
γG(M ′) = 4.

3. Short Exact Sequences and Direct Sums

Lemma 3.1. Let an, bn and cn be sequences of non-negative real numbers, satisfying

cn 6
n∑
i=0

(
n

i

)
aibn−i.

Then

lim sup
n→∞

n
√
cn 6 lim sup

n→∞
n
√
an + lim sup

n→∞

n
√
bn.

Proof. The statement that lim sup
n→∞

n
√
an = α implies that for all ε > 0, there exists m such

that for all n > m we have an 6 (α+ ε)n. Introducing a positive constant A, we can assume

that an 6 A(α + ε)n for all n > 0. Similarly, if lim sup
n→∞

n
√
bn = β then for all ε > 0 there

exists a positive constant B such that for all n > 0 we have bn 6 B(β + ε)n. Thus for all
ε > 0 there is a positive constant C = AB such that for all n > 0 we have

cn 6
n∑
i=0

(
n

i

)
A(α + ε)iB(β + ε)n−i = C(α + β + 2ε)n,

and so lim sup
n→∞

n
√
cn 6 α + β. �

Theorem 3.2. If 0→M1 →M2 →M3 → 0 is a short exact sequence of kG-modules then

γG(M2) 6 γG(M1) + γG(M3).
6



If the sequence splits then we also have

max{γG(M1), γG(M3)} 6 γG(M2).

Proof. The module M⊗n
2 has a filtration of length 2n where the filtered quotients are

(
n
i

)
copies of M⊗i

1 ⊗M
⊗(n−i)
3 (0 6 i 6 n). Projective summands of a filtered quotient split off

the entire module, since they are also injective. So

cGn (M2) = dim coreG(M⊗n
2 ) 6

n∑
i=0

(
n

i

)
dim coreG(M⊗i

1 ⊗M
⊗(n−i)
3 )

6
n∑
i=0

(
n

i

)
cGi (M1)cGn−i(M3)

Applying Lemma 3.1, we deduce that

γG(M2) 6 γG(M1) + γG(M3).

If the sequence splits, then each cGn (M2) is at least as big as cGn (M1) and also at least as big
as cGn (M3). �

Example 3.3. Let M be the two dimensional natural module for SL(2,F4) and let N be
its Frobenius twist. Then M ⊗ N is the four dimensional Steinberg module St, which is
projective. Furthermore, M⊗3 ∼= M ⊕M ⊕ St and N⊗3 ∼= N ⊕ N ⊕ St. Since M ⊗ N is
projective, for all n > 1 we have

core((M ⊕N)⊗n) ∼= core(M⊗n)⊕ core(N⊗n),

and so
γG(M) = γG(N) = γG(M ⊕N) =

√
2.

This shows that the first inequality in the theorem is not always an equality, even for direct
sums.

We shall make further use of this example in Remark 5.9.

On the other hand, for sums of isomorphic modules, we have the following.

Theorem 3.4. If N is isomorphic to a direct sum of m copies of a kG-module M then
γG(N) = mγG(M).

Proof. The module N⊗n is isomorphic to a direct sum of mn copies of M⊗n, so we have
cGn (N) = mncGn (M) and n

√
cGn (M) = m( n

√
cGn (M)). Now take lim sup

n→∞
. �

Here is another useful bound.

Theorem 3.5. If M1 ⊗ · · · ⊗Mm is not projective then γG(M1 ⊕ · · · ⊕Mm) > m.

Proof. By Lemma 2.3, no power of M1⊗ · · · ⊗Mm is projective, so neither is any module of
the form M i1

1 ⊗· · ·⊗M im
m . The module (M1⊕· · ·⊕Mm)⊗n thus has at least mn non-projective

summands, so we have
cGn (M1 ⊕ · · · ⊕Mm) > mn

and
n
√
cGn (M1 ⊕ · · · ⊕Mm) > m.
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Now take lim sup
n→∞

. �

Corollary 3.6. If M is not projective then γG(k ⊕M) > 2.

Proof. This follows by taking m = 2, M1 = k and M2 = M in Theorem 3.5. �

Remark 3.7. We shall prove in the next section, using the theory of submultiplicative
sequences, that γG(k ⊕M) is always equal to 1 + γG(M).

4. Submultiplicative Sequences

In this section, we investigate the submultiplicative properties of γG, and deduce Theorem
4.6. We shall revisit this from the point of view of Banach algebras and Gelfand’s spectral
radius theorem later on, but for the moment we shall try to stay elementary.

Definition 4.1. We say that a sequence c0, c1, c2, . . . of non-negative real numbers is sub-
multiplicative if c0 = 1, and for all m,n > 0 we have cm+n 6 cm.cn.

Lemma 4.2. If M is a kG-module then cn(M) is a submultiplicative sequence, provided that
p divides |G|.

Proof. This follows from the fact that

coreG(M⊗m ⊗M⊗n) ∼= coreG(coreG(M⊗m)⊗ coreG(M⊗n)). �

Lemma 4.3 (Fekete [20]). If cn is a submultiplicative sequence then

lim sup
n→∞

n
√
cn = lim

n→∞
n
√
cn = inf

n>1

n
√
cn.

Proof. It suffices to show that lim supn→∞ n
√
cn ≤ infn>1

n
√
cn. If some cn is equal to zero,

then so are all subsequent ones. So we assume that all cn > 0. Suppose that L is a number
such that

inf
n→∞

n
√
cn < L.

Then there is an m > 1 with m
√
cm < L. For n > m we use division with remainder to write

n = mqm + rm with 0 6 rm < m. By the definition of submultiplicativity, we have

cn = cmqm+rm 6 cmqmcrm 6 (cm)qmcrm .

Now qm 6 n/m, so qm/n 6 1/m. So we have

n
√
cn 6 m

√
cm n
√
crm < L. n

√
crm .

As n tends to infinity, the numbers n
√
c0, . . . , n

√
cm−1 all tend to one, and so

lim sup
n→∞

n
√
cn 6 L. �

Theorem 4.4. If M is a kG-module then γG(M) = lim
n→∞

n
√
cGn (M) = inf

n>1

n
√
cGn (M).

Proof. This follows from Lemmas 4.2 and 4.3. �
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Proposition 4.5. Suppose that an and bn are submultiplicative sequences. Define a sequence
cn by

cn =
n∑
i=0

(
n

i

)
aibn−i.

Then cn is also a submultiplicative sequence, and we have

lim
n→∞

n
√
cn = lim

n→∞
n
√
an + lim

n→∞
n
√
bn.

Proof. Using the fact that (
m+ n

`

)
=
∑
i+j=`

(
m

i

)(
n

j

)
and the submultiplicativity of the sequences an and bn, we have

m+n∑
`=0

(
m+ n

`

)
a`bm+n−` 6

(
m∑
i=0

(
m

i

)
aibm−i

)
.

(
n∑
j=0

(
n

j

)
ajbn−j

)
and so the sequence cn is submultiplicative.

By Lemma 3.1 we have

lim
n→∞

n
√
cn 6 lim

n→∞
n
√
an + lim

n→∞
n
√
bn.

The reverse inequality is proved similarly. If lim
n→∞

n
√
an = α and lim

n→∞
n
√
bn = β then given

ε > 0 there exist positive constants A and B such that for all n > 0 we have an > A(α− ε)n
and bn > B(β − ε)n. So for all ε > 0 there is a positive constant C = AB such that for all
n > 0 we have

cn >
n∑
i=0

(
n

i

)
A(α− ε)iB(β − ε)n−i = C(α + β − 2ε)n,

and so

lim
n→∞

n
√
cn > α + β − 2ε = lim

n→∞
n
√
an + lim

n→∞
n
√
bn − 2ε. �

Theorem 4.6. If p divides |G| and M is a kG-module then we have γG(k⊕M) = 1+γG(M).

Proof. We have

cGn (k ⊕M) =
n∑
i=0

(
n

i

)
cGi (M).

So we can apply Proposition 4.5 with an = cGn (M), bn = 1, and cn = cGn (k ⊕M). �

Corollary 4.7. If If p divides |G|, M is a kG-module, and N is isomorphic to a direct sum
of a copies of k and b copies of M then we have γG(N) = a+ bγG(M).

Proof. This follows inductively from Theorems 3.4 and 4.6. �
9



5. Tensor Products

Theorem 5.1. We have γG(M ⊗N) 6 γG(M)γG(N).

Proof. We have

coreG(M ⊗N) = coreG(coreG(M)⊗ coreG(N)).

Therefore

cGn (M ⊗N) 6 cGn (M)cGn (N)

and
n
√

cGn (M ⊗N) 6 n
√

cGn (M) n
√

cGn (N).

Now apply lim sup
n→∞

to both sides. �

This inequality may be strict. For example, it is possible for M ⊗N to be projective with
neither M nor N projective. However for tensor powers of a single module, we have the
following.

Theorem 5.2. We have γG(M⊗m) = γG(M)m.

Proof. By Theorem 5.1 we have γG(M⊗m) 6 γG(M)m. Conversely, if n = ms + i with
0 6 i < m then

M⊗n = M⊗i ⊗ (M⊗m)⊗s

and so

cGn (M) 6 (dimM)mcGs (M⊗m).

Thus

n
√
cGn (M) 6 ms

√
cGn (M) 6

s
√

dimM
m

√
s
√
cGs (M⊗m).

Applying lim sup
n→∞

, the factor s
√

dimM tends to 1. It follows that

γG(M) 6 m
√
γG(M⊗m). �

The following conjecture is based on extensive computations, but we have failed to find a
proof. See Remark 9.19 for an interpretation in terms of Banach algebas.

Conjecture 5.3. We have γG(M ⊗M∗) = γG(M)2.

Theorem 5.4. We have γG(ΩM) = γG(M).

Proof. We have coreG(Ωk ⊗M) ∼= core(ΩM) = ΩM . So by Lemma 2.9, Theorem 5.1 and
Lemma 2.8 we have

γG(ΩM) = γG(Ωk ⊗M) 6 γG(Ωk)γG(M) = γG(M).

The reverse inequality follows in the same way from the fact that

coreG(Ω−1k ⊗ ΩM) ∼= coreG(M). �
10



Example 5.5. Let M be the three dimensional module Soc2(kG) for G = Z/3×Z/3 = 〈g, h〉
over F3, given by the following matrices, which has the diagram shown:

g 7→

1 1 0
0 1 0
0 0 1

 h 7→

1 0 1
0 1 0
0 0 1

 • •

•

In this diagram and those in Section 15, the vertices represent basis vectors. The actions
of g − 1 and h − 1 are represented by the lines going down to the left, respectively down
to the right from the vertex, or zero if there is no such line. Then M is non-periodic and
non-algebraic, and (Craven [13], Section 3.3.2) we have

M ⊗M ∼= M∗ ⊕ Ω(M∗).

Here, M∗ ∼= kG/Rad2(kG) has dimension three, and Ω(M∗) ∼= Soc3(kG) has dimension six.
Using this, and the fact that M ′ = M ⊗M∗ is a non-projective indecomposable module,
it is easy to compute that coreG(M⊗n) has 2n−2 non-projective summands if n is divisible
by three, and 2n−1 non-projective summands otherwise. So using Theorem 3.5 we have
cGn (M) > 2n−2 and γG(M) > 2. On the other hand, using Theorem 5.2, Theorem 3.2,
Lemma 2.7 and Theorem 5.4 we have

γG(M)2 = γG(M ⊗M) = γG(M∗ ⊕ Ω(M∗)) 6 γG(M∗) + γG(Ω(M∗)) = 2γG(M)

and so γG(M) 6 2. Combining these, we have γG(M) = 2. Similarly, we have γG(M ′) = 4.

Corollary 5.6. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of kG-modules.
Then γG(Mi) 6 γG(Mj) + γG(M`), for any {i, j, `} = {1, 2, 3}.

Proof. This follows from Theorems 3.2 and 5.4, together with the observation that there are
short exact sequences

0→M2 →M3 ⊕ (proj)→ Ω−1(M1)⊕ (proj)→ 0

0→ Ω(M3)⊕ (proj)→M1 ⊕ (proj)→M2 → 0. �

Definition 5.7. Recall that a kG-module M is endotrivial if M ⊗M∗ ∼= k ⊕ (proj).

Theorem 5.8. If M is neither projective nor endotrivial then γG(M) >
√

2.

Proof. Suppose that M is neither projective nor endotrivial. We divide into two cases ac-
cording to whether the dimension of M is divisible by p.

If the dimension of M is divisible by p, then by Proposition 2.1, (M ⊗M∗)⊗2 has a direct
summand isomorphic to a direct sum of two copies of M ⊗M∗. Thus, γG(M ⊗M∗)2 =
γG((M⊗M∗)⊗2) > 2γG(M⊗M∗). As M is not projective, neither is M⊗M∗ by Lemma 2.2
and we have γG(M ⊗M∗) 6= 0, so γG(M ⊗M∗) > 2.

On the other hand, if the dimension of M is not divisible by p and M is not endotrivial
then, by Proposition 2.1, M ⊗M∗ ∼= k ⊕ X with X non-projective. Then γG(X) > 1, so
γG(M ⊗M∗) > 2, by Corollary 3.6.

In both cases, using Theorem 5.1 and Lemma 2.7, we have

2 6 γG(M ⊗M∗) 6 γG(M)γG(M∗) = γG(M)2

and so γG(M) >
√

2. �
11



Remark 5.9. Example 3.3 shows that equality can occur in Theorem 5.8. See Section 12
for more about what happens when γG(M) >

√
2.

We can deduce a theorem of Carlson on finite dimensional idempotent kG-modules (see
Theorem 3.5 of [11]) as a corollary.

Corollary 5.10. If M ⊗M ∼= M ⊕ (proj) and M is not projective then M ∼= k ⊕ (proj).

Proof. The hypothesis implies that γG(M) = 1, so by Theorem 5.8, M is endotrivial. The
endotrivial modules (modulo projective summands) form a group under tensor product, so
the only idempotent element is the identity. �

6. Faithful Modules

Definition 6.1. We say that a kG-module M is p-faithful if it is not 0 and no element of
order p in G acts trivially on M . So faithful implies p-faithful, and p-faithful is equivalent
to being faithful on restriction to a Sylow p-subgroup of G.

Lemma 6.2. Let M be a kG-module. Then some tensor power M⊗n with n > 1 has a
non-zero projective summand if and only if M is p-faithful.

Proof. The lemma is clearly true if M = 0, so assume that M 6= 0. If M is not p-faithful,
then there is an element g ∈ G of order p acting trivially on M . It therefore acts trivially
on M⊗n, so this module has no projective summands.

On the other hand, if M is p-faithful then the kernel of the action on M is a normal p′-
subgroup H 6 G. Projective kG/H-modules are projective kG-modules, so we may assume
that H = 1. This case follows from the Corollary to Theorem 1 of Bryant and Kovács [8]. �

Theorem 6.3. We have γG(M) < dimM if and only if M is p-faithful.

Proof. Again, we may assume that M 6= 0. We use Lemma 6.2. If M is not p-faithful then
for all n we have coreG(M⊗n) = M⊗n and so γG(M) = dimM . Conversely, if M is p-faithful,
then some tensor power has a projective summand, say M⊗m = P ⊕ N with P a non-zero
projective module. Thus using Theorem 5.2 we have

γG(M)m = γG(M⊗m) 6 dimN < (dimM)m

and so γG(M) < dimM . �

7. Restriction to Elementary Abelian Subgroups

Theorem 7.1. There exists a constant B, which depends only on p and G, such that if M
is a kG-module then

dim coreG(M) 6 Bmax
E6G

dim coreE(M)

where the maximum is taken over the set of elementary abelian p-subgroups E of G.

Proof. See Theorem 3.7 of Carlson [10]. �

Theorem 7.2. Let M be a kG-module. Then γG(M) = max
E6G

γE(M).

12



Proof. By Theorem 7.1 and Lemma 2.10 we have

max
E6G

n
√

cEn (M) 6 n
√
cGn (M) 6 n

√
B max

E6G

n
√

cEn (M).

Taking lim sup
n→∞

, the factor of n
√
B tends to 1. �

Example 7.3. Let G be a generalised quaternion group and let k be a field of characteristic
two. Then G has only one elementary abelian 2-subgroup E = 〈z〉, where z is the central
element of order two. Let X = 1 + z, an element of kG satisfying X2 = 0. If M is a
kG-module then the restriction to kE is a direct sum of dim(Ker(X,M)/Im(X,M)) copies
of the trivial module plus a free module. It follows that

γG(M) = dim(Ker(X,M)/Im(X,M)).

In particular, this is an integer.

Proposition 7.4 (Dade [16, 17]). If E is an elementary abelian p-group, then the only
indecomposable endotrivial kE-modules are the syzygies Ωn(k) (n ∈ Z) of the trivial module.

�

Theorem 7.5. If p divides |G| then a kG-module M is endotrivial if and only if γG(M) = 1.

Proof. If M is projective then γG(M) = 0. If M is neither projective nor endotrivial then
by Theorem 5.8 we have γG(M) >

√
2.

Conversely ifM is endotrivial then its restriction to every elementary abelian p-subgroup of
G is endotrivial. So by Theorem 7.2, we may assume that G = E is an elementary abelian p-
group. Since an endotrivial module is a direct sum of an indecomposable endotrivial module
and a projective module, we may assume that M is indecomposable. By Proposition 7.4, M
is a syzygy of the trivial module, so by Theorem 5.4 we have γE(M) = 1. �

Warning 7.6. If E is an elementary abelian p-group and M is a kE-module then γE(M)
does depend on the Hopf algebra structure of kE. If we regard kE as the universal enveloping
algebra of a restricted Lie algebra with trivial bracket and trivial pth power map, and we
use the corresponding comultiplication, then γE(M) may change. For example, restrict the
module of Example 3.3 to a Sylow 2-subgroup, which is elementary abelian of order four.
Then by Theorem 7.2, we have γE(M) =

√
2. But if we use the Lie comultiplication then

M ⊗M ∼= M ⊕M , and so γE(M) = 2.

8. Radius of Convergence

Another way of studying the invariant γG(M) is to consider power series; we begin with a
well known lemma from analysis.

Lemma 8.1 (Cauchy, Hadamard). Let φ : Z>0 → C. Then the radius of convergence r of
the power series

f(t) =
∞∑
n=0

φ(n)tn

is given by

1/r = lim sup
n→∞

n
√
|φ(n)|.

13



For |t| < r, the convergence is uniform and absolute.

Proof. See for example Conway [12], Theorem III.1.3. �

Corollary 8.2. Let M be a kG-module. Consider the power series

fM(t) =
∞∑
n=0

cGn (M)tn,

and let r be the radius of convergence of fM(t). Then

1/r = γG(M).

The following theorem will be used in Section 13.

Theorem 8.3 (Pringsheim). Suppose that φ : Z>0 → R>0, and that the power series

f(t) =
∞∑
n=0

φ(n)tn

has radius of convergence r. Then t = r is a singular point of f(t).

Proof. See Statement (7.21) in Chapter VII of Titchmarsh [29]. �

9. Banach Algebras

We recall the basics of the theory of norms and spectral radius, referring to Chapters 17–18
of Lax [26] for proofs. We always work over the field of complex numbers.

Definition 9.1. A normed space is a vector space B over C, together with a norm B → R,
x 7→ ‖x‖, satisfying

‖x+ y‖ 6 ‖x‖+ ‖y‖, ‖cx‖ = |c|‖x‖,
for x, y ∈ B, c ∈ C, such that ‖x‖ > 0 and ‖x‖ = 0 if and only if x = 0. A Banach space is
a normed space that is complete with respect to the norm.

A (unital) normed algebra is an associative algebra A over C with identity 1 that is also
a normed space, with the norm satisfying the additional conditions

‖1‖ = 1, ‖xy‖ 6 ‖x‖‖y‖
for x, y ∈ A. A Banach algebra is a normed algebra that is also a Banach space. Note that
we are assuming that all our Banach algebras are unital.

If a is an element of a Banach algebra A, we write σ(a) for the spectrum of a, namely the
set of λ ∈ C such that λ1−a is not invertible in A. It is a non-empty closed bounded subset
of C. The spectral radius of a ∈ A, denoted ρ(a), is defined to be sup

λ∈σ(a)

|λ|.

Notice that if A is finite dimensional and a ∈ A, then the spectral radius ρ(a) is just the
largest absolute value of an eigenvalue of the linear map induced by multiplying by a.

Let A(G) = C ⊗Z a(G), where a(G) is the Green ring or representation ring of finitely
generated kG-modules. Following [6], we write elements of A(G) in the form

∑
i ai[Mi] where

ai ∈ C and Mi are indecomposable kG-modules. If M =
⊕

iM
ni
i is a kG-module, we write

[M ] for
∑

i ni[Mi] ∈ A(G). Multiplication is extended bilinearly from [M ][N ] = [M ⊗N ].
14



We write a(G, 1) for the ideal of a(G) spanned by the elements [P ] with P projective,
and a0(G, 1) for the linear span of the elements of the form [M2] − [M1] − [M3] where
0→M1 →M2 →M3 → 0 is a short exact sequence. Then defining A(G, 1) = C⊗Z a(G, 1)
and A0(G, 1) = C⊗Z a0(G, 1), we have

A(G) = A(G, 1)⊕ A0(G, 1).

We put a norm on A(G)/A(G, 1) ∼= A0(G, 1) by setting∥∥∥∥∥∑
i

ai[Mi]

∥∥∥∥∥ =
∑
i

|ai| dim coreG(Mi) =
∑

Mi non-projective

|ai| dimMi.

The reason for choosing this particular norm is that it has two good properties:

(i) If M is a kG-module then ‖[M ]‖ = dim coreG(M); thus ‖ · ‖ is additive on direct
sums of genuine (as opposed to virtual) modules.

(ii) If H is a subgroup of G then restriction can only reduce the norm: ‖M↓GH‖ 6 ‖M‖.
This makes A(G)/A(G, 1) into a normed algebra, which we may complete with respect to

the norm to obtain a commutative Banach algebra which we shall denote Â1(G). Thus

A(G)/A(G, 1) is a dense subalgebra of Â1(G).

Warning 9.2. If p does not divide |G| then Â1(G) = 0, which is not a Banach algebra
because it does not satisfy the condition ‖1‖ = 1. In this paper we always implicitly assume
that the characteristic of the field k divides the order of the group.

The role of the invariant γG(M) in this context is that by Theorem 4.4 we have

(9.3) γG(M) = lim
n→∞

n
√
‖[M ]n‖.

Proposition 9.4 (Spectral radius formula, Gelfand [21]). If A is a Banach algebra and
a ∈ A then the spectral radius of a is related to the norm by the formula

(9.5) ρ(a) = lim
n→∞

n
√
‖an‖.

Proof. See for example §17.1 of Lax [26]. �

Theorem 9.6. If M is a kG-module then γG(M) = ρ([M ]), where [M ] is the corresponding

element of Â1(G).

Proof. This follows from (9.3) and Proposition 9.4. �

Lemma 9.7. Let a be an element in a Banach algebra A, with ρ(a) = r. Then r (as a real
number) is an element of σ(a) ⊆ C if and only if ρ(1 + a) = 1 + r.

Proof. It is clear that σ(1+a) is the set of 1+λ with λ ∈ σ(a). So σ(1+a) is contained in a
disc of radius r centred at 1 ∈ C. The only point in this disc at distance 1+r from the origin
is the real number 1 + r. Now using the fact that σ(a) is closed, we see that the spectral
radius of 1 + a is 1 + r if and only if 1 + r ∈ σ(1 + a), namely if and only if r ∈ σ(a). �

Theorem 9.8. Let M be a kG-module. Then the real number γG(M) is an element of
σ([M ]) ⊆ C.
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Proof. By Theorem 4.6, we have γG(k⊕M) = 1+γG(M). By Theorem 9.6, it follows that on

Â1(G) we have ρ(1+[M ]) = 1+ρ([M ]). By Lemma 9.7 this implies that γG(M) ∈ σ([M ]). �

The way to connect spectral radius with the species of the Green ring in the sense of
Benson and Parker [6] is the following.

Theorem 9.9. An element a of a commutative Banach algebra A is invertible if and only
if φ(a) 6= 0 for all algebra homomorphisms φ : A→ C.

Proof. See Theorem 3 in Chapter 18 of Lax [26]. �

Remark 9.10. Note that if A is a commutative Banach algebra and φ : A→ C is an algebra
homomorphism then for all a ∈ A we have |φ(a)| 6 ‖a‖. It follows that φ is automatically
continuous with respect to the norm. See Theorem 1 in Chapter 18 of Lax [26].

Corollary 9.11. If a is an element of a commutative Banach algebra then σ(a) is the set of
values of φ(a) as φ runs over the algebra homomorphisms A→ C. The spectral radius ρ(a)
is equal to sup

φ : A→C
|φ(a)|.

Proof. It follows from Theorem 9.9 that λ1− a is not invertible if and only if there exists an
algebra homomorphism φ : A→ C such that φ(a) = λ. �

Definition 9.12. Recall from [6] that a species of a(G) is a ring homomorphism s : a(G)→
C. A species of a(G) extends to give an algebra homomorphism s : A(G) → C, and all
algebra homomorphisms have this form.

We say that a species s of a(G) is core-bounded if for all kG-modules M we have

|s([M ])| 6 dim coreG(M).

In particular, the extension of a core-bounded species to A(G) vanishes on A(G, 1), and so
defines an algebra homomorphism A(G)/A(G, 1) → C. So for example the Brauer species,
namely the ones that vanish on A0(G, 1), are not core-bounded because they do not vanish
on projective modules.

Lemma 9.13. If s is any core-bounded species then |s([Ωi(k)])| = 1 for any i ∈ Z.

Proof. We have |s([Ωk])|i = |s([Ωk]i)| = |s([Ωik])| 6 dim coreG(Ωik). But dim coreG(Ωik)
grows polynomially in i (see for example [4] §5.3), so |s([Ωk])| 6 1. The same holds for
|s([Ω−1k])|; but |s([Ωk])| |s([Ω−1k])| = |s([k])| = 1, so we must have |s([Ωk])| = |s([Ω−1k])| =
1. The general case follows from the first formula in this proof. �

Example 9.14. Examining the species for Z/2×Z/2 described in Appendix 1 of [6], we see
that not every species that vanishes on A(G, 1) is core-bounded. In this example, the quotient
of A(G) by the ideal spanned by the indecomposables of even dimension is isomorphic to
the group algebra C[t, t−1], via an isomorphism sending Ω(k) to t and Ω−1(k) to t−1. So
there are species sz parametrised by the non-zero z ∈ C, which factor through this quotient,
and satisfy sz(Ω(k)) = z, sz(Ω

−1(k)) = z−1. Only the ones with z on the unit circle are
core-bounded. This is because the dimension of Ωn(k) is 2|n|+ 1, whereas if z is not on the
unit circle then either the powers zn or the powers z−n grow exponentially with n in absolute
value.
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The following proposition shows that there is a natural correspondence between core-
bounded species of a(G) and algebra homomorphisms Â1(G)→ C.

Proposition 9.15. For a species s : A(G)→ C, the following are equivalent:

(i) s is core-bounded.
(ii) For all x ∈ A(G) we have |s(x)| 6 ‖x‖.

(iii) s is continuous with respect to the norm.

(iv) s extends to an algebra homomorphism Â1(G)→ C.

Proof. The implications (ii) ⇒ (iii) ⇒ (iv) are clear, and the implication (iv) ⇒ (i) follows
from Remark 9.10. So it remains to prove that (i) ⇒ (ii). Suppose that s is core-bounded,
and write x =

∑
i ai[Mi] where the Mi are indecomposable. Then s(x) =

∑
i ais([Mi]) and

so
|s(x)| 6

∑
i

|ai| |s([Mi])| 6
∑
i

|ai| dim core(Mi) = ‖x‖. �

Theorem 9.16. If M is a kG-module then

γG(M) = sup
s : a(G)→C

|s([M ])|

where the supremum runs over the core-bounded species of a(G). Furthermore, there exists
a core-bounded species s of a(G) such that s([M ]) = γG(M).

Proof. This equality follows from Theorem 9.6, Corollary 9.11 and Proposition 9.15. The
final statement follows from Theorem 9.8. �

Corollary 9.17. For any kG-module M , the restriction of γG to the sub-semiring of A(G)
consisting of elements of the form f([M ]) =

∑n
i=0 ai[M ]i with the ai real and non-negative

is additive and multiplicative.

Proof. By Theorem 9.16, we may choose a species s that maximises |s([M ])|, and such that
s([M ]) = γG(M). Such an s also maximises |s(f([M ]))|. �

Question 9.18. What can be said about the quasi-nilpotent elements of Â1(G), namely the

elements a satisfying lim
n→∞

n
√
‖an‖ = 0? These are the elements on which all core-bounded

species vanish, and they form the Jacobson radical of Â1(G). Is this the closure of the nil
radical, or are there more subtle ways of producing quasi-nilpotent elements?

Examples in analysis of quasi-nilpotent operators which are not nilpotent can be found in
Examples 2.1.6 and 2.1.7 of Kaniuth [24]. Quasi-nilpotent elements also go by other names
in the literature. For example in §I.4 of Gelfand, Raikov and Shilov [22] they are called
generalised nilpotent, while in Rickart [27] they are called topologically nilpotent.

Remark 9.19. Many of the properties of γG that we have described correspond to well-
known properties of the spectral radius in a Banach algebra, although we have chosen an
exposition that is self-contained except for Theorem 9.4. This applies to Theorem 1.2 (i),
(ii), (iv), (viii), the second inequality of (x), (xi), (xiii) and (xiv). Others require a Banach
lattice: these can record the special role played by the linear combinations of modules with
real non-negative coefficients, which roughly approximate the image of genuine modules as
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opposed to virtual ones; see, for example, the book by Schaefer [28]. The first inequality of
Theorem 1.2 (x) and also (xii) correspond to facts about Banach lattices, as does Theorem 9.8
([28, Prop. V 4.1]).

If we knew that Â1(G) was a symmetric Banach algebra, then Conjecture 5.3 would follow.
Symmetric Banach algebras are extensively discussed in §4.7 of Rickart [27] and in §I.8 of
Gelfand, Raikov and Shilov [22].

10. Cyclic groups

The computations in this section are based on Green [23]. For the purpose of this section
only, let G = Z/p be the cyclic group of order p, where p > 2 is the characteristic of the
field k, and let Mj be the indecomposable kG-module of dimension j for 1 6 j 6 p. Then
we have

M2 ⊗Mj
∼=


M2 j = 1

Mj+1 ⊕Mj−1 2 6 j 6 p− 1

Mp ⊕Mp j = p.

Let Uj(x) be the Chebyshev polynomial of the second kind, defined by the recurrence
relation U0(x) = 1, U1(x) = 2x, Uj(x) = 2xUj−1(x) − Uj−2(x) (j > 2). These polynomials
satisfy

Uj(cos θ) =
sin(j + 1)θ

sin θ
for all j > 0. For j > 1, the roots of Uj(x) are real and distinct, symmetric about x = 0,
and given by

x = cos(mπ/(j + 1)), 1 6 m 6 j.

We define fj(x) = Uj−1(x/2). So f1(x) = 1, f2(x) = x, and xfj(x) = fj+1(x) + fj−1(x)
(j > 2). Then we have

fj

(
sin 2θ

sin θ

)
=

sin jθ

sin θ
.

Note that fp(x) is an irreducible polynomial in x2. For example, we have f3(x) = x2− 1 and
f5(x) = x4 − 3x2 + 1. The roots of fp(x) are given by x = 2 cos(mπ/p) (1 6 m 6 p− 1).

In the ring a(G)/a(G, 1), we have [M2][Mj] = [Mj+1] + [Mj−1] and [Mp] = 0. It follows
that fj([M2]) = [Mj] and fp([M2]) = 0. We therefore have

a(G)/a(G, 1) ∼= Z[X]/(fp(X))

where X corresponds to [M2]. The core-bounded species of a(G) are just the non-Brauer
species, and are given by

sm : [M2] 7→ 2 cos(mπ/p) (1 6 m 6 p− 1).

Theorem 10.1. In the case of the indecomposable kG-module Mj (1 6 j 6 p − 1) for the
cyclic group G of order p, the characteristic of k, we have

γG(Mj) =
sin(jπ/p)

sin(π/p)
= fj(γG(M2))
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where

γG(M2) =
sin(2π/p)

sin(π/p)
= 2 cos(π/p).

In fact, γG is additive and multiplicative on modules, so this determines γG on any module.

Proof. It follows from Theorem 9.16 that for fixed j we need to maximise |sm([Mj])| over
the core-bounded species sm. By the discussion above,

sm([Mj]) = sm(fj([M2]) = fj(sm([M2])) = fj(2 cos(mπ/p)) = Uj−1(cosmπ/p) =
sin(jmπ/p)

sin(mπ/p)
.

Express the sines in terms of eimπ/p, expand as a geometric series and pair conjugate terms.
If j is odd, say j = 2r + 1, the result is 1 +

∑r
s=1 cos(smπ/p); the case when j is even is

similar and is left to the reader.
Thus we want to maximise the sum of the elements of a certain class of r-element subsets

of {cos(tπ/p) : 1 6 t 6 p− 1}. Clearly, the maximum over all r-element subsets is obtained
by choosing the r largest elements, i.e., t = 1, . . . , r, which in our case is attained with
m = 1.

Note that m = 1 yields the maximum for all the Mj. Since each s1([Mj]) is a positive
number, s1 also yields the maximum on all sums of the Mj, i.e., on all modules. We have
γG(M) = s1([M ]) for all modules and the last part of the theorem follows. �

11. Methods of Calculation

We recall some basic facts from Banach theory that we will use.
A linear operator (i.e., linear map) T from a Banach space B to itself is said to be bounded

if ‖T‖op := sup{‖Tx‖ : ‖x‖ = 1} is finite. The space of all such bounded operators forms a
Banach space B(B) with norm ‖ · ‖op. If B is finite dimensional then σ(T ) is just the finite
set of eigenvalues, so the set of roots of the characteristic polynomial of T , and ρ(T ) is the
largest of the absolute values of these.

If we start with a Banach algebra A, then any a ∈ A yields a bounded linear operator
Ta ∈ B(A) by Tax = ax for x ∈ A. It is easy to check that ‖Ta‖op = ‖a‖; we will usually
omit the subscript op and often identify Ta with a. The spectra might differ, but it follows
from Proposition 9.4 that the spectral radii agree: ρ(Ta) = ρ(a).

We saw in Lemma 9.13 that for a core-bounded species s we have s([Ωk]) = λ for some

complex number λ with |λ| = 1. It follows that s vanishes on the ideal of Â1(G) generated
by [Ωk] − λ[k] and so factors through the quotient Banach algebra by the closure of this

ideal, which we denote by Â1(G)/(Ω− λ). Thus we can find γG(M) = ρ(TM) by calculating
it on each of these quotients and taking the maximum value.

Because of the form of the definition of γG(M), we can calculate it on any subalgebra of

Â1(G) that contains all the tensor powers ofM and similarly for Â1(G)/(Ω−λ). If we consider
the operator TM , we can even restrict to any Banach subspace that contains some tensor
power M⊗n of M and that is closed under tensor product with M⊗n, by Theorem 1.2 (xiv).

Our strategy will be to use these observations to reduce to the finite dimensional case.
Of course, an operator A on a finite dimensional vector space with given basis can be

represented by a square matrix (Ai,j). There are various possible norms that we can use
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on matrices. One is the operator norm induced from a norm on the vector space. Another,
which we will use later, is ‖A‖max = maxi,j{|Ai,j|}; this is a Banach space norm, but it is not
submultiplicative. However, any two vector space norms on a finite dimensional vector space,
in this case the vector space of n × n matrices, are commensurate, i.e., there is a positive
real number c such that c−1‖x‖1 6 ‖x‖2 6 c‖x‖1 for all x. It follows that limn→∞

n
√
‖x‖ is

independent of the norm, so yields ρ(x), regardless of whether the norm is submultiplicative
or not.

Note that if the entries Ai,j in the matrix for A are integers then ρ(A) must be an algebraic
integer.

The following standard lemma will be useful later, when we look more closely at the
quotient Â1(G)/(Ω − λ). For a matrix B, we write |B| for the matrix of absolute values
of the entries of B. If A1 and A2 are matrices of the same size with real entries, we write
A1 6 A2 to indicate that each entry of A1 is less than or equal to the corresponding entry
of A2.

Lemma 11.1. Let A be a square matrix with non-negative real entries, and let B be a
complex matrix of the same size satisfying |B| 6 A. Then ρ(B) 6 ρ(A).

Proof. We have in general |XY | 6 |X| |Y | whenever the product is defined, and hence
|Bn| 6 An. Thus ‖Bn‖max 6 ‖An‖max. Taking nth roots and then the limit as n tends to
infinity yields the result. �

Finally, we formulate a result that depends heavily on the fact that our norm is additive
on modules; it could be generalised to a Banach lattice with a norm that is additive on the
positive cone.

Proposition 11.2. Suppose that we have a bounded operator T on Â1(G) that takes kG-
modules to kG-modules and for some m ∈ N we have kG-modules S1, . . . , Sm and Y1, . . . , Ym
with none of the Si projective. Suppose that there are non-negative integers Ai,j such that

T [Si] =
∑
j

Ai,j[Sj] + [Yi], i = 1, . . . ,m

and consider the matrix A = (Ai,j). Then ρ(T ) > ρ(A).

Proof. By induction, for any n > 1 there are kG-modules Zi,n such that

T n[Si] =
∑
j

(An)i,j[Sj] + [Zi,n], i = 1, . . . ,m.

Note that this does not require the [Si] to be linearly independent. Because the norm is
additive on sums of modules with non-negative coefficients, we obtain

‖T n‖op‖[Si]‖ > ‖T n[Si]‖ = ‖
∑
j

(An)i,j[Sj] + [Zi,n]‖ > max
j
{(An)i,j}‖[Sj]‖ > max

j
{(An)i,j},

since Sj is not projective, so ‖[Sj]‖ > 1. It follows that for some i we have

‖T n‖op‖[Si]‖ > max
i,j
{(An)i,j} = ‖An‖max.

Taking nth roots and then the limit as n tends to infinity yields ρ(T ) > ρ(A). �
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12. Modules M with γG(M) =
√

2

In Theorem 5.8, we showed that if M is neither projective nor endotrivial then we have
γG(M) >

√
2. In this section, we investigate the case of equality.

Lemma 12.1. For any kG-module we have:

(i) If M = E ⊕N with E endotrivial and γG(M ⊗M∗) < 4 then N is projective.
(ii) If M ⊗M∗ is endotrivial then so is M .

Proof. For part (i), we have M ⊗M∗ ∼= k⊕ (E ⊗N∗)⊕ (E∗⊗N)⊕ (N ⊗N∗). Theorem 3.5
shows that γG(M ⊗M∗) > 4 unless at least one of the terms in the sum is projective. If
this is the case then the tensor product of the modules in the sum is projective. This tensor
product is N⊗2 ⊗N∗⊗2 plus projectives. Lemmas 2.2 and 2.3 show that if this is projective
then N is projective.

For the second part, notice that if M⊗M∗ is endotrivial then p cannot divide the dimension
of M . Thus k is a summand of M⊗M∗, and since M⊗M∗ is endotrivial, the complementary
summand is projective. �

Proposition 12.2. If 1 < γG(M ⊗M∗) < 1 +
√

2, then p divides the dimension of M .

Proof. Suppose that the dimension of M is not divisible by p. By Theorem 7.2, without loss
of generality we may assume that G is elementary abelian. By Lemma 2.11, we may also
assume that k is algebraically closed.

We first show that we may suppose that M is indecomposable. Otherwise, choose an
indecomposable summand M1 of M with dimension not divisible by p. Then γG(M1⊗M∗

1 ) <
1 +
√

2, and we claim that 1 < γG(M1⊗M∗
1 ) so that we may replace M by M1. If not, then

M1⊗M∗
1 is endotrivial by Theorem 7.5, so M1 is endotrivial by Lemma 12.1 (ii). Now apply

Lemma 12.1 (i) to M to see that M = M1 ⊕ (proj), so γG(M1 ⊗M∗
1 ) = γG(M ⊗M∗) > 1, a

contradiction. Thus we may assume that M is indecomposable.
We have M ⊗M∗ ∼= k ⊕X with X non-projective. So using Theorem 4.6 we have

1 +
√

2 > γG(M ⊗M∗) = γG(k ⊕X) = 1 + γG(X).

By Theorem 5.8, the only possibility is γG(X) = 1, and by Theorem 7.5, X is endotrivial.
By Proposition 7.4 we have X ∼= Ωrk⊕ (proj). We know that X is self dual, hence if G is not
cyclic we have r = 0 and so M⊗M∗ ∼= k⊕k⊕(proj). This contradicts Theorem 2.1 of Benson
and Carlson [5] (this is where we need to use the statements that M is indecomposable of
dimension not divisible by p, and k is algebraically closed). If G is cyclic then Ω has period
two and the only other possibility is r = 1. Thus M⊗M∗ ∼= k⊕Ωk⊕(proj). This contradicts
our assumption that p does not divide the dimension of M , so the lemma is proved. �

The next proposition involves a number α ≈ 2.839286755 . . . , which is the unique real
root of the polynomial x3 − 4x2 + 4x− 2.

Proposition 12.3. If M has dimension divisible by p and M ⊗M∗ ⊗M ∼= M ⊕M ⊕ X
with X not projective, then γG(M ⊗M∗) > α.
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Proof. The dimension of X is divisible by p, so by Proposition 2.1 (ii), X ⊗ X∗ ⊗ X ∼=
X ⊕X ⊕ Y , but we have no information on whether Y is projective. We have

(M ⊗M∗)⊗ (X ⊗M∗) ∼= 2(X ⊗M∗)⊕ (X ⊗X∗)
(M ⊗M∗)⊗ (X ⊗X∗) ∼= (M ⊗M∗ ⊗X ⊗X∗)

(M ⊗M∗)⊗ (M ⊗M∗ ⊗X ⊗X∗) ∼= 2(X ⊗M∗)⊕ 2(M ⊗M∗ ⊗X ⊗X∗)⊕ (Y ⊗M∗).

Set T = M ⊗M∗, S1 = X ⊗M∗, S2 = X ⊗X∗ and S3 = M ⊗M∗ ⊗X ⊗X∗. None of the
Si are projective. Indeed, for S2 this is proved in Lemma 2.2. Since S2 is isomorphic to a
summand of S1 ⊗M ⊗M∗, it follows that S1 is not projective. Finally, S3

∼= S1 ⊗ S∗1 , so S3

is not projective by Lemma 2.2 again.
We regard tensoring with T as an operator and, ignoring Y ⊗M∗ for the moment, the

above isomorphism says that the action of T on the ordered set {S1, S2, S3} is recorded in
the matrix

A =

2 1 0
0 0 1
2 0 2

 .

The characteristic polynomial of the matrix A is x3 − 4x2 + 4x− 2, so ρ(A) = α. Applying
Proposition 11.2, we obtain

γG(M ⊗M∗) = ρ(T ) > ρ(A) = α. �

Remark 12.4. The appeal to Proposition 11.2 at the end of the proof of Proposition 12.3
can be expressed more näıvely as follows. We have T ⊗ T ∼= 2T ⊕ S1, T ⊗ S1

∼= 2S1 ⊕ S2,
T ⊗ S2

∼= S3, T ⊗ S3
∼= 2S1 ⊕ 2S2 ⊕ (Y ⊗M∗). So ignoring some summands, we see that

T⊗(n+2) has (
1 0 0

)
An

 S1

S2

S3


as a direct summand. It follows that the number of non-projective direct summands of
T⊗(n+2) is at least the sum of the entries in

(
1 0 0

)
An. By Frobenius–Perron theory,

this number is bounded below by a constant multiple of αn, since α is the largest real root
of this matrix. So we have γG(T ) > α.

Theorem 12.5. For any non-projective kG-module M , the following conditions are equiva-
lent.

(i) 1 < γG(M ⊗M∗) < 1 +
√

2.
(ii) γG(M ⊗M∗) = 2.

(iii) M ⊗M∗ ⊗M ∼= M ⊕M ⊕ (proj).
(iv) [M ⊗M∗]2 = 2[M ⊗M∗] in a(G)/a(G, 1).

Proof. We begin by showing that (i) implies (iii).
If the dimension of M is divisible by p then by Proposition 2.1 we have

M ⊗M∗ ⊗M ∼= M ⊕M ⊕X.
If X is not projective then by Proposition 12.3 we have γG(M ⊗ M∗) > α > 1 +

√
2,

contradicting (i).
22



On the other hand, if the dimension of M is not divisible by p then Proposition 12.2 shows
that γG(M ⊗M∗) cannot lie between 1 and 1 +

√
2, also contradicting (i).

To see that (iii) implies (iv), tensor with M∗. Then it is straightforward to see that (iv)
implies (ii) and (ii) implies (i). �

Corollary 12.6. If a kG-module M satisfies 1 < γG(M) <
√

1 +
√

2 ≈ 1.553773974 . . .
then it satisfies the conditions of Theorem 12.5.

Proof. The inequalities in the corollary imply those in Theorem 12.5 (i), by Theorem 5.1 and
Lemma 12.1 (ii). �

Remarks 12.7. (i) If Conjecture 5.3 holds, then the converse of Corollary 12.6 also
holds, provided M is not projective.

(ii) If M satisfies M ⊗M∗ ⊗M ∼= M ⊕M ⊕ (proj) then the restriction of M to any
cyclic subgroup of G of order p is projective. This can be seen by noting that the
module M is self-dual on restriction to any such cyclic subgroup C of G, and the
relation [M ]3 = 2[M ] in a(G)/a(G, 1) yields that γC(M) is equal to 0 or

√
2; the

latter value can be seen to be impossible from the calculations in Section 10. It is
not clear whether there are any such modules except in the case that p = 2 and a
Sylow 2-subgroup of G is isomorphic to Z/2× Z/2.

We end this section with a related conjecture, based on the known examples of modules
M with γG(M) < 2. Such modules are quite hard to construct.

Conjecture 12.8. If M is a kG-module with γG(M) < 2 then γG(M) = 2 cos(π/m) for
some integer m > 2.

Remark 12.9. The case m = 2 gives γG(M) = 0, m = 3 gives γG(M) = 1, and the
case m > 4 gives γG(M) >

√
2. This fits well with Theorems 5.8, 7.5 and 12.6. The two

dimensional representation of Z/p in characteristic p is an example with γG(M) = 2 cos(π/p),
see Theorem 10.1. It follows from the computations in Alperin [1] and Section 3 of Craven [15]
that if M is the two dimensional natural module for SL(2, q) with q a prime power, then M
is algebraic and γG(M) = 2 cos(π/q). This can also be seen by using the weight theory of
tilting modules.

Question 12.10. What are the general properties of modules M with γG(M) < 2?

13. Eventually Recursive Functions

Definition 13.1. We say that a function φ : Z>0 → Z>0 is eventually recursive of degree d
if there exists a homogeneous linear recurrence relation with constant coefficients, in other
words a recurrence relation of the form

φ(n) + a1φ(n− 1) + · · ·+ adφ(n− d) = 0

with ai ∈ Z, which is satisfied for all large enough integers n. The recurrence relation of
minimal degree eventually satisfied by φ(n) is uniquely determined, and the corresponding
polynomial

zd + a1z
d−1 + · · ·+ ad

has ad 6= 0 and is called the characteristic polynomial of the recurrence relation.
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The following is a standard theorem from the theory of recurrence relations.

Theorem 13.2. If φ is eventually recursive and r is the radius of convergence of the gener-
ating function f(t) =

∑∞
n=0 φ(n)tn then 1/r is an algebraic integer. It is the largest positive

real root of the characteristic polynomial.

Proof. It is easy to check that (1 + a1t + · · · + adt
d)f(t) is a polynomial in t, and therefore

f(t) is a rational function with denominator equal to 1 + a1t + · · · + adt
d. The poles of

this rational function are the 1/λi where the roots of the characteristic polynomial are λi.
The radius of convergence r is therefore the smallest of the 1/|λi|. Now apply Pringsheim’s
Theorem 8.3 to f(t) to see that r is a root of the characteristic polynomial. �

Based on a large number of computations using Magma, some of which are presented in
Section 15, we make the following conjecture.

Conjecture 13.3. If M is a kG-module then the function φ(n) = cGn (M) is eventually
recursive.

Remarks 13.4. (i) If M is an algebraic module then Conjecture 13.3 holds for M .
(ii) If Conjecture 13.3 holds for a module M , then by Theorem 13.2, γG(M) is an

algebraic integer.
(iii) In Example 2.12, the minimal equation for M modulo projectives is x2(x− 2)3 = 0.

The largest solution to this has |x| = 2, and so 1/r = γG(M) = 2. The associated
recurrence relation is cGn (M)− 8cGn−3(M) = 0 for n > 5.

(iv) In Example 5.5, the module M is not algebraic, but nonetheless, the relation

M ⊗M ∼= M∗ ⊕ Ω(M∗)

can be used to produce a recurrence relation for cGn (M) for large enough n.

The consequence of Conjecture 13.3 that γG(M) is an algebraic integer is at least consistent
with the last result of this section.

Proposition 13.5. The invariant γG(M) can take only countably many values (for all
primes, fields, finite groups and finitely generated modules).

Proof. We know that γG does not vary with field extension, by Lemma 2.11, and any repre-
sentation over any field can be realised over a finitely generated field—the subfield generated
over Fp by the entries of the matrices in some matrix form of the representation—so we only
need to consider finitely generated fields. A finitely generated field is countable and there are
only countably many such fields. To see this, add the generators one by one. If a generator
is algebraic over the field produced at the previous stage then there are only countably many
possibilities for its minimal polynomial and hence for the new field. If it is transcendental,
the new field is already determined. Thus, for a given group, field and dimension, there are
only countably many representations (consider matrices again) and so only countably many
possible values of γG. There are also only countably many possibilities for group, field and
dimension. �

This proof also works for any other invariant of kG-modules that is preserved under field
extension.
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14. Omega-Algebraic Modules

Definition 14.1. A kG-module M is called Omega-algebraic if the non-projective indecom-
posable direct summands of the modules M⊗n fall into finitely many orbits of the syzygy
functor Ω.

An example of an Omega-algebraic module may be found in Example 5.5. We’ll see more
examples in the next section, as well as evidence that not all modules are Omega-algebraic.
A weaker form of Conjecture 13.3 is the following.

Conjecture 14.2. If M is an Omega-algebraic kG-module then the function φ(n) = cGn (M)
is eventually recursive.

We can calculate γG(M) for an Omega-algebraic module M as follows, using the methods

of Section 11. First we restrict to the subspace V of Â1(G) generated by all the indecom-
posable summands of all the tensor powers of M , together with all their syzygies. Choose
representatives of the Ω-orbits of these indecomposable summands, say M1, . . . ,Md; by hy-
pothesis there are only finitely many. Each M ⊗Mi decomposes as a direct sum of modules
of the form Ωm(Mj). The operation of tensoring with M gives us a d×d matrix X(Ω), whose
entries are Laurent polynomials in the operator Ω which have non-negative coefficients.

Now, for λ ∈ C with |λ| = 1, form the quotient V/(Ω − λ) of V by the linear span of
the elements [Ωm+1(Mj)] − λ[Ωm(Mj)] with m ∈ Z, 1 6 j 6 d. This quotient is a finite
dimensional vector space with basis the images of the [Mj]; the matrix corresponding to
tensoring withM isX(λ), meaning that we substitute λ for Ω. Since the Laurent polynomials
in Ω have non-negative coefficients we have |X(λ)| 6 X(1), so we can apply Lemma 11.1 to
see that ρ(X(λ)) 6 ρ(X(1)). It follows, using the discussion at the beginning of Section 11,
that γG(M) is the largest eigenvector of the matrix X(1). In particular, it is an algebraic
integer.

15. Some examples

Example 5.5 is an example of an Omega-algebraic module which is not algebraic. Here
are some more complicated examples. The computations use the methods outlined in the
previous section and in Section 11.

Example 15.1. Let G = 〈g, h〉 ∼= Z/3 × Z/3 and k = F3. Let M6 be the six-dimensional
kG-module given by the following matrices, which has the diagram shown:

g 7→


1 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 h 7→


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


• •

• • •

•

For an explanation of the diagrams in this section, see Example 5.5. Then M6 is Omega-
algebraic. Letting M3 = k〈g〉↑G and P be the projective indecomposable module, we have

M6 ⊗M6
∼= Ω(M6)⊕ Ω−1(M6

∗)⊕M3 ⊕ P
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M6 ⊗M6
∗ ∼= Ω−1(M6)⊕ Ω(M6

∗)⊕M3 ⊕ P
M6 ⊗M3

∼= Ω(M3)⊕ Ω(M3)⊕ Ω(M3).

The rows of the table in Figure 15.1 give the result of tensoring a module in the first column
with M6, and writing it as a direct sum of the syzygies of the modules listed in the first row
of the table.

M6 M6
∗ M3 P

M6 Ω Ω−1 1 1
M6
∗ Ω−1 Ω 1 1

M3 0 0 3Ω 0
P 0 0 0 6

Figure 15.1. Table for Example 15.1

By the argument described at the end of Section 14, we delete the projectives in this table
and replace Ω by 1, to obtain the matrix1 1 1

1 1 1
0 0 3


Then we find the eigenvalues of this matrix, which are 3, 2 and 0. The largest of these is 3,
so γG(M6) = 3.

Example 15.2. Let G = 〈g, h〉 ∼= Z/3×Z/3 and k = F3. This time, let M6 be the self-dual
six dimensional module given by the following matrices, which has the diagram shown:

g 7→


1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 h 7→


1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


• • •

• • •

Then M6 is Omega-algebraic. There are modules M15, M21, M27, M27
∗, M39, M39

∗ and the
projective indecomposable module P , such that the rows of the table in Figure 15.2 give the
result of tensoring with M6.

If we throw out the projectives, and replace Ω by 1, the largest real eigenvalue of the
remaining matrix will give the value of γG(M). In this example, the eigenvalues are 4, 3, 1,
0, 0, 0, −2, −2, so γG(M) = 4.

Example 15.3. Let G = Z/5× Z/5, and k = F5. Let M3 be the three dimensional module
kG/Rad2(kG). Then M3 is Omega-algebraic. More precisely, there are modules M6, M8,
M10, M15, M30, M35, M45 and M65 such that M8, M35 and M65 are self-dual, and the rows
of the table in Figure 15.3 give the effect of tensoring with M3.

Replacing Ω by 1, the characteristic polynomial is

(x2 − 3x+ 1)(x6 − 4x3 − 1)(x8 + 3x7 + 8x6 + 6x5 + 5x4 − x3 + 12x2 + 7x+ 9).
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M6 M15 M21 M27 M27
∗ M39 M39

∗ M66 P

M6 1 1

M15 2 1 1

M21 1 1 1 1

M27 2 2 6

M27
∗ 2 2 6

M39 Ω 1 1 1 2Ω 6

M39
∗ Ω−1 1 1 1 2Ω−1 6

M66 2 2 2 Ω−1 Ω 18

P 6

Figure 15.2. Table for Example 15.2

k M3 M3
∗ M6 M6

∗ M8 M10 M10
∗ M15 M15

∗ M30 M30
∗ M35 M45 M45

∗ M65

k 1

M3 1 1

M3
∗ 1 1

M6 1 1

M6
∗ 1 1

M8 1 1 1

M10 Ω−1 1

M10
∗ 1

M15 1 1

M15
∗ 1 1

M30 2 Ω−1 1

M30
∗ Ω 2 1

M35 2 1 1

M45 Ω−1 1 1

M45
∗ Ω−1 1 1

M65 Ω−1 Ω 1

Figure 15.3. Table for Example 15.3

So writing τ for (1 +
√

5)/2, the eigenvalues are 1 + τ and 2 − τ ; τ and 1 − τ times cube
roots of unity; and the roots of a degree eight irreducible with no real roots. The largest real
eigenvalue is 1 + τ ≈ 2.618, and so γG(M) = 1 + τ . This happens to be the same as γH(M)
for each cyclic subgroup H of G in this case. This is because the restriction is k ⊕M2, so
γH(M) can be computed using Theorems 4.6 and 10.1.

The next example shows how we can make use of examples already computed.
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Example 15.4. Let G = Z/3 × Z/3 = 〈g, h〉 and k = F3. Let M5 be the five dimensional
kG-module given by the following matrices, which has the diagram shown:

g 7→


1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 h 7→


1 0 1 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


• •

• • •

Consider the restriction of M5 to the cyclic subgroup generated by g. This is a sum of
the trivial module and two copies of the indecomposable module of dimension 2. By Theo-
rem 10.1 we have γ〈g〉(M5) = 1 + 4 cos(π/3) = 3 and by Theorem 2.10 γG(M5) > 3.

There is a short exact sequence

0→M5 → Ω−1(M3)→ k → 0,

whereM3 is the three dimensional module of Example 5.5. Since γG(M3) = 2, by Theorem 5.4
we have γG(Ω−1(M3)) = 2. So using Corollary 5.6 we have γG(M5) 6 3. Combining these
bounds, we have γG(M5) = 3. This example is quite difficult to compute directly.

Not all modules are Omega-algebraic. For example, the module of Example 5.5 inflated
to (Z/3)3, with one of the factors acting trivially, is not Omega-algebraic. It is less clear
whether faithful modules can fail to be Omega-algebraic, but some evidence is provided by
the following example.

Example 15.5. Calculations using Magma give the following. Let M be the self-dual four
dimensional module for G = 〈g, h〉 ∼= Z/3 × Z/3 over F3 given by the following matrices,
which has the diagram shown:

g 7→


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 h 7→


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 • •

• •

The beginning of the pattern is as follows:

M ⊗M ∼= k ⊕ V2 ⊕W M ⊗X ∼= 2X ⊕X∗ ⊕ (proj)

M ⊗ V2
∼= M ⊕ V3 M ⊗X∗ ∼= 2X∗ ⊕X ⊕ (proj)

M ⊗W ∼= M ⊕X ⊕X∗

Here, V2, W and V3 are self-dual of dimensions 5, 10 and 16, X has dimension 18, and its
dual satisfies X∗ ∼= Ω(X) ∼= Ω−1X.

Thereafter, at least as far as we have calculated, there are self-dual indecomposable mod-
ules denoted Vi for all i > 1, where V1 = M and V2 and V3 are the same modules as above.
The dimension of Vi is 3i+ a(i), where a(i) depends only on the residue class of i modulo 6.

i (mod 6) 0 1 2 3 4 5

a(i) 11 1 −1 7 2 7
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The tensor product of M with Vi for i > 2 appears to be given by

M ⊗ Vi ∼=

{
Vi−1 ⊕ Vi+1 ⊕ (proj) if 3 - i
Vi−1 ⊕ Vi+1 ⊕X ⊕X∗ ⊕ (proj) if 3 | i.

We have verified this pattern for 2 6 i 6 35. Notice that [X ⊕ X∗] is an eigenvector of
multiplication by [M ] with eigenvalue 3; this does not depend on having correctly spotted
the pattern. Thus γG(M) > 3.

Now consider the diagram that describes M . If we remove the right hand vertex we obtain
the diagram for the three dimensional module of Example 5.5, which we will denote by M3.
We know that γG(M3) = 2 and there is a short exact sequence

0→ k →M →M3 → 0.

By Corollary 5.6 we have γG(M) 6 γG(M3) + γG(k) = 3. Thus γG(M) 6 3. Combining this
with the previous bound gives a proof that γG(M) = 3.

It appears that this example is not Omega-algebraic, but it still seems to satisfy Conjec-
ture 13.3, although we have not been able to write down a proof of this.

We end with a conjecture which is closely related to Conjecture E of Craven [14], and
which is motivated by extensive computations using Magma.

Conjecture 15.6. If M is an absolutely indecomposable module for Z/p × Z/p and the
dimension of M is divisible by p then M is Omega-algebraic.
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