
COHOMOLOGY ISOMORPHISMS OF GROUPS VIA THE T -FUNCTOR

PETER SYMONDS

Abstract. DRAFT 1st March 2006. We show how Mislin’s theorem on group homomor-
phisms that induce an isomorphism in cohomology can be proved based on ideas of Alperin
and the use of Lannes’s T -functor. This enables us to extend the class of groups to include
groups of finite virtual cohomological dimension and profinite groups.

1. Introduction

We will prove the following theorem for a wide class of groups including finite groups,
compact Lie groups, groups of finite virtual cohomological dimension over Fp and profinite
groups (see section 3 for a precise list).

Theorem 1.1. Let f : H → G be a homomorphism such that the induced map f ∗ :
H∗(G; Fp) → H∗(H; Fp) is an isomorphism in high degrees. Then f induces an equiva-
lence of categories Sp(H) → Sp(G), where Sp denotes the category of p-subgroups with the
morphisms induced by inclusion and conjugation.

This was proved by Mislin for compact Lie groups [14] and by C.-N. Lee for groups of finite
virtual cohomological dimension [10]. Mislin had an if and only if statement, but this is no
longer true for other classes of groups. These authors also required f ∗ to be an isomorphism
in all degrees, but the difference was dealt with by Mislin in another paper [15].

The proofs used some deep topological methods, so for the generalization to profinite
groups we are forced to take a more algebraic approach. This might be of interest in its own
right.

Let us recall what an equivalence of categories means in concrete terms. Let C denote a
class of groups closed under subgroups and isomorphisms and write C(G) for the category
with objects the subgroups of G in C and morphisms the group homomorphisms induced by
inclusion and conjugation.

Definition 1.2. The homomorphism f : H → G is a C-equivalence if and only if the
following conditions hold.

(1) If P ∈ C(H) then NG(f(P )) = f(NH(P ))CG(f(P )).
(2) If two P, Q ∈ C(H) are such that f(P ), f(Q) are conjugate in G then P, Q are

conjugate in H.
(3) Every P ∈ C(G) is conjugate to a subgroup f(Q) of G for some Q ∈ C(H).

Notice that this implies that f induces an isomorphism P → f(P ) for all P ∈ C(H).
We will mostly be interested in the classes Sp of all finite p-groups, S≤pn

p of p-groups of
order at most pn and Ap of elementary abelian p-groups.

Of course, the first condition for f to be a C-equivalence is equivalent to f inducing an
isomorphism NH(P )/CH(P ) → NG(f(P ))/CG(f(P )). In the case of a finite group and Sp-
equivalence, the third condition can be replaced by the condition that the index |G : H| is
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not divisible by p. The second condition is then, in fact, a consequence of the other two, by
Alperin’s Fusion Theorem.

Alperin asked about an algebraic proof of Mislin’s Theorem in the case of finite groups.
He showed the following proposition, as a consequence of Mislin’s Theorem [1].

Proposition 1.3. Whenever G is finite and H < G induces an isomorphism in mod-p
cohomology then:

(1) NH(P ) ≤ NG(P ) induces an isomorphism in mod-p cohomology for all p-subgroups
P ≤ H.

(2) H/P ≤ G/P induces an isomorphism in mod-p cohomology for all p-subgroups P ≤ H
that are normal in G.

Furthermore, if we could prove this proposition algebraically then for finite groups we could
prove Mislin’s Theorem algebraically.

We will prove a slight variant on this proposition, where the subgroups P are elementary
abelian, and then verify the conditions using Lannes’s T -functor. The definition of this
functor and the verification of the basic properties that we use are essentially algebraic,
concerning modules over the Steenrod algebra (cf. [3]), although not really representation
theoretic. Proofs for finite groups that only use representation theory have recently been
announced by Hida [6] and Okuyama [16].

2. Descent to Local Subgroups

We will always work in some category of groups and homomorphisms such that if f : H →
G is in the category and P ≤ H is in C then the induced homomorphism fP : NH(P )/P →
NG(f(P ))/f(P ) is also in the category.

We have in mind things like finite groups, compact Lie groups, profinite groups or groups
of finite virtual cohomological dimension.

Definition 2.1. An F -equivalence is an element of some given class of morphisms (F ) that
includes all isomorphisms and is closed under composition. The ones that we will use arise
in the following way. Let F be a contravariant functor from our category of groups to some
category. With a slight abuse of notation, we say that f : H → G is an F -equivalence if
the induced map f ∗ : F (G) → F (H) is an isomorphism. We have in mind some sort of
cohomology theory as F .

Definition 2.2. We say that F -equivalence is C-local if whenever f : H → G is an F -
equivalence and P ∈ C(H) then the induced homomorphism fP : NH(P )/P → NG(f(P ))/f(P )
is an F -equivalence.

Lemma 2.3. If F -equivalence is Ap-local then it is Sp-local.

Proof. We prove that F is S≤pn

p -local by induction on n. The case n = 0 is clear. Suppose

that f : H → G is an F -equivalence and we know that F is S≤pn

p -local.

Let P ≤ H be a p-subgroup of order pn+1 and let E = Zp(P ), the maximal elementary
p-subgroup of the centre of P , so E 6= 1.

Now fE : NH(E)/E → NG(f(E))/f(E) is an F -equivalence by hypothesis and |P/E| ≤
pn, so, by induction, fP/E : NNH(E)/E(P/E)→ NNG(f(E))/f(E)(f(P )/f(E)) is an F -equivalence.

But NNH(E)/E(P/E) = NH(P )/E and similarly for G, so fP : NH(P )/P → NG(f(P ))/f(P )
is an F -equivalence. �
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Definition 2.4. We say that F -equivalence detects fusion of elementary abelian p-subgroups
if whenever f : H → G is an F -equivalence then f is an Ap-equivalence.

The next lemma corresponds closely to the argument at the end of [1].

Lemma 2.5. Suppose that F -equivalence is Ap-local and detects fusion of elementary abelian
p-subgroups. Then any F -equivalence must be an Sp-equivalence.

Proof. We give a proof that an F -equivalence is an S≤pn

p -equivalence by induction on n. This
is clearly true for n = 0. Suppose that f : H → G is an F -equivalence and we know that an
F -equivalence must be an S≤pn

p -equivalence for some given n.
By 2.3, F -equivalence is Sp-local, so each fP : NH(P )/P → NG(f(P ))/f(P ) is an F -

equivalence and, by induction, each fP is an S≤pn

p -equivalence.

For the first condition, given P ≤ H of order pn+1 let E = Zp(P ), the maximal central
elementary abelian p-subgroup of P . We know that fE : NH(E)/E → NG(f(E))/f(E) is an
S≤pn

p -equivalence so, in particular,
NNG(f(E))/f(E)(fE(P/E)) = fE(NNH(E)/E(P/E))CNG(f(E))/f(E)(fE(P/E)). Thus NG(f(P )) =

f(NH(P ))C̃NG(f(P ))(fE(P/E)), where C̃NG(f(P ))(fE(P/E)) is the inverse image of
CNG(f(E))/f(E)(fE(P/E)) in NG(f(P )).

But the kernel of C̃NG(f(P ))(fE(P/E))→ CNG(f(E))/f(E)(fE(P/E)) is isomorphic to
Hom(NG(f(P )), f(E)), so is an elementary abelian p-subgroup that is normal in NG(f(P )).
Since f detects fusion of elementary abelian p-subgroups we can deduce that this kernel is
contained in f(H) and so NG(f(P )) ∼= f(NH(P ))CG(f(P )), as required.

For the second condition, suppose that P, Q ≤ H are finite p-subgroups of order pn+1 such
that f(P ) and f(Q) are conjugate in G. Then f(Zp(P )) is conjugate to f(Zp(Q)) in G,
so Zp(P ) is conjugate to Zp(Q) in H by hypothesis, say Zp(P ) = Zp(Q)h for h ∈ H. Let
R = Qh, so Zp(R) = Zp(P ) = E, and f(P ), f(R) ≤ NG(E) are conjugate in G and hence in
NG(E), since Zp is characteristic.

But fE : NH(E)/E → NG(f(E))/f(E) is an S≤pn

p -equivalence and fE(P/E) is conjugate
to fE(R/E) in NG(f(E))/f(E), so P/E is conjugate to R/E in NH(E), thus P is conjugate
to R and hence to Q in H.

For the third condition let P < G be a finite p-subgroup of order pn+1. Then E = Zp(P )
is conjugate to a subgroup of f(H), so we may assume that E ≤ f(H). There must be
an elementary abelian p-subgroup E ′ ≤ H that maps isomorphically to E. Since fE′ :
NH(E ′)/E ′ → NG(E)/E is an S≤pn

p -equivalence, there is a P ′ ≤ H containing E ′ such that
fE′(P ′/E ′) = P/E and thus f(P ′) = P . �

3. Cohomology

We will write H∗(−) for H∗(−; Fp) and an H∗-equivalence will be a map that induces
an isomorphism in cohomology. A map that induces an isomorphism in cohomology in high
degrees, that is there is some number N depending on the map such that the induced map in
cohomology is an isomorphism in degrees greater than N , will be termed an H�-equivalence.

We will consider the following classes of groups:

(1) finite,
(2) compact Lie,
(3) discrete of finite virtual cohomological dimension over Fp,
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(4) discrete and acting on a finite dimensional complex with finite stabilizers and compact
quotient,

(5) profinite.

In each case we use the appropriate cohomology theory, so, in particular, we use the Galois
or continuous cohomology for profinite groups.

Lemma 3.1. For all these classes of groups H�-equivalence detects fusion of elementary
abelian subgroups.

Proof. This is a consequence of Quillen’s Stratification Theorem [17], provided that if we are
in case (3) we know that the groups concerned have only finitely many conjugacy classes
of elementary abelian p-subgroups or that the cohomology is finitely generated. See [1]
Theorem 2 for the finite case. It also follows in all cases from considering the degree 0 part
of 3.5 or 4.1. �

Corollary 3.2. If f : H → G induces a surjection in mod-p cohomology in high degrees then
Ker f contains no p-torsion and if H is compact Lie then the induced map H → f(H) is an
H∗-equivalence. For compact Lie groups, if f is an H∗-equivalence (or an H�-equivalence)
then both H → f(H) and f(H)→ G are H∗-equivalences (or H�-equivalences).

Proof. Since f must induce an injection of varieties, Ker f can contain no elementary abelian
p-subgroup and so it can contain no p-torsion.

If H is compact Lie this implies that Ker f must be a finite p′-group, so has no cohomology
and thus the Lyndon-Hochschild-Serre spectral sequence shows that H → f(H) must be an
H∗-equivalence.

If f itself is an H∗- (or H�-) equivalence then this forces F (H) → G to be an H∗- (or
H�-) equivalence. �

Lemma 3.3. If f : H → G is a surjection and Ker f is a finite p′-group (or even a profinite
p′-group) then f is an Sp-equivalence.

Proof. Condition (3) of the definition is clear. For condition (2) suppose that f(P ) = f(Q)g

for some g ∈ G. Then g = f(h) for some H ∈ H, thus both P and Qh are Sylow p-subgroups
of f−1(f(P )), so are conjugate. Notice that, if we want, we can take this conjugating element
to be in Ker f .

For condition (1), let g ∈ NG(f(P )). Then g = f(h) for some h ∈ H and, as before P and
P h are conjugate by some k ∈ Ker f . We can now replace h by hk to obtain an element of
NH(P ) that maps to g. �

Lemma 3.4. If f : H → G is an H∗-equivalence and P ≤ H is a finite p-subgroup that is
central in G then fP : H/P → G/f(P ) is an H∗-equivalence.

Proof. In the cases where we have classifying spaces (so not profinite groups) we have the
following argument. There is a fibration BG → B(G/P ) → K(P, 2), where K(P, 2) is an
Eilenberg-Mac Lane space (cf. [2] II 3.7). There is a similar fibration for H and f induces
a map between them. The Comparison Theorem for spectral sequences applied to the Serre
spectral sequences for these fibrations yields the result.

For profinite groups, for each open normal subgroup N ≤ G that intersects P only in 1,
consider the spectral sequence for the fibration B(G/N)→ B(G/NP )→ K(P, 2) and denote
the terms by E∗,∗

∗ (G/N). Let E∗,∗
r (G) (r ≥ 2) denote the direct limit of the E∗,∗

r (G/N). It
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comes with differentials and its homology is E∗,∗
r+1(G). Also E∗,∗

∗ (G) converges to E∗,∗
∞ (G),

which is the direct limit of the E∗,∗
∞ (G/N) and thus consists of the composition factors in

some filtration of the direct limit of the H∗(G/N), which is H∗(G). The same discussion
applies to H and the map fN : H/f−1(N) → G/N induces a map between E∗,∗

∗ (G/N)
and E∗,∗

∗ (H/f−1(N)) and hence between E∗,∗
∗ (H) and E∗,∗

∗ (G). We can now use the same
argument as before.

In the cases where we have cohomology with coefficients in a module for the group (so not
infinite compact Lie groups) there is another more algebraic argument, but we must suppose
that f is injective. In view of 3.2 and 3.3 this is sufficient for finite groups.

We may assume that H ≤ G. Let M be the cokernel of the natural map of FpG-modules
Fp → CoindG

H Fp. Our conditions imply that H∗(G; M) = 0 and we need to show that
H∗(G/P ; M) = 0.

If H∗(G/P ; M) 6= 0 let m be the smallest degree in which it is not 0. Consider the
Lyndon-Hochschild-Serre spectral sequence

Ep,q
2 = Hp(G/P ; Hq(P ; M))⇒ Hp+q(G; M) = 0.

But Ep,q
2
∼= Hp(G/P ; Hq(P ) ⊗M) ∼= Hp(G/P ; M) ⊗ Hq(P ), so Ep,q

2 = 0 for p < m. Thus
Ep,q

r = 0 for p < m and r ≥ 2 and Em,0
2 6= 0 survives to Em,0

∞ , a contradiction. �

Let U denote the category of unstable modules over the mod-p Steenrod algebra. For any
elementary abelian p-group V , the T -functor TV : U → U is characterized by the adjunction

HomU(TV M, N) ∼= HomU(M, H∗(V )⊗N).

In fact, if K denotes the category of unstable algebras over the Steenrod algebra then TV

restricts to a functor K → K, and the adjunction remains valid with U replaced by K.
This functor is exact, commutes with direct limits and takes finitely generated algebras

to finitely generated algebras.
We say that a module M ∈ U is locally finite if each element is contained in a finite di-

mensional submodule in U . It turns out that the natural map M → TV M is an isomorphism
if and only if M is locally finite. More information can be found in [8].

Let Rep(V, G) denote the G-conjugacy classes of homomorphisms ρ : V → G. The natural
map cρ : V ×CG(Im ρ)→ G, (v, g) 7→ ρ(v)g induces c∗ρ : H∗(G)→ H∗(V )⊗H∗(CG(Im ρ)),
and this is adjoint to ad(c∗ρ) : TV H∗(G)→ H∗(CG(Im ρ)).

The basic result on the T -functor applied to the cohomology of groups is the following
theorem of Lannes.

Theorem 3.5. For all the classes of groups mentioned above, except that if the group is
profinite we must assume that its cohomology ring is finitely generated over Fp, the map

TV H∗(G)→
∏

ρ∈Rep(V,G)

H∗(CG(Im ρ)),

with components ad(c∗ρ) is an isomorphism of algebras over the Steenrod algebra.

The proof is given in [7] for cases (1),(2) and (3); this is unpublished, but see [3]. Case
(4) appears in [4] and profinite groups with finitely generated cohomology in [5]. There is
also a version for general profinite groups given in the next section.

Corollary 3.6. H�-equivalence is p-local and we have proved Theorem 1.1.
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Proof. By 2.5 and 3.1, we only need to show that H�-equivalence is elementary p-local. Let
f : H → G be an H�-equivalence and let E ≤ H be p-elementary. We claim, following [15],
that fE : CG(E) → CH(f(E)) is an H∗ equivalence, not just an H�-equivalence. Choose
V ∼= E.

The map f ∗ : H∗(G)→ H∗(H) has kernel and cokernel bounded in degree, hence locally
finite. We write this as an exact sequence 0→ K → H∗(G)→ H∗(H)→ C → 0.

For the moment we assume that we are not working with profinite groups with infinitely
many conjugacy classes of elementary abelian p-subgroups, postponing this case to the next
section.

The natural map H∗(G)→ TV H∗(G) followed by projection onto the factor corresponding
to ρ = 1 in 3.5 is the identity, so there is a natural isomorphism from

∏
ρ∈Rep(V,G),ρ 6=1 H∗(CG(Im ρ))

to the cokernel. We have the following diagram:

0 −−−→ K −−−→ H∗(G) −−−→ H∗(H) −−−→ C −−−→ 0y y y y
0 −−−→ K −−−→ TV H∗(G) −−−→ TV H∗(H) −−−→ C −−−→ 0y y∏

1 6=ρ∈Rep(V,G)

H∗(CG(Im ρ)) −−−→
∏

1 6=ρ∈Rep(V,H)

H∗(CH(Im ρ)).

Since the first two rows are exact and so are the columns it follows that the bottom arrow
is an isomorphism.

By 3.1, Rep(V, H)→ Rep(V, G) is a bijection. Picking a ρ with image E we see from 3.5
or 4.1 that the induced map CH(E)→ CG(f(E)) an H∗-equivalence.

By 3.4, CH(E)/E → CG(f(E))/f(E) is also an H∗-equivalence. We also know from
3.1 that the induced map NH(E)/CH(E) → NG(f(E))/CG(f(E)) is an H∗-equivalence.
Combining these using the Lyndon-Hochschild-Serre spectral sequence and the Comparison
Theorem for spectral sequences we finally obtain that fE : NH(E)/E → NG(f(E))/f(E) is
an H∗-equivalence. �

4. Profinite Groups

When a profinite group has infinitely many conjugacy classes of elementary abelian sub-
groups we need to take more care with the T -functor.

We give each H∗(CG(Im ρ)) the discrete topology and then give their product∏
ρ∈Rep(V,G) H∗(CG(Im ρ)) the product topology.

Proposition 4.1. For any profinite group G the natural map H∗(G)→
∏

ρ∈Rep(V,G) H∗(CG(Im ρ))
is injective with dense image.

Proof. Let Hom(V, G) denote the set of all homomorphisms from V to G; G acts on it by
conjugation. Thus Hom(V, G) is naturally a profinite G-set and Rep(V, G) = Hom(V, G)/G.
Notice that CG(Im ρ) is the stabilizer of ρ ∈ Hom(V, G).

For any G-set X let Ox(G, X) = Gx denote the orbit of x ∈ X. By abuse of notation we
will often we will allow x ∈ X/G and often write just Ox. Let F (X) denote the group of
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continuous functions X → Fp, with G acting by (gf)(x) = f(g−1x), g ∈ G, f ∈ F (X), x ∈
X. Then F (Ox) ∼= CoindG

StabG(x) Fp, so H∗(G; F (Ox)) ∼= H∗(StabG(x)) (see [19]).
Thus the result of 3.5 for finite groups G can be written in a coordinate-free way as

TV H∗(G) ∼=
∏

ρ∈Rep(V,G)

H∗(G, F (Ox)) ∼= H∗(G, F (Hom(V, G))).

Now consider a profinite group G and let N denote an open normal subgroup. Thus
TV H∗(G/N) ∼= H∗(G/N ; F (Hom(V, G/N))).

Now Hom(V, G) ∼= lim←−Hom(V, G/N) so F (Hom(V, G)) ∼= lim−→F (Hom(V, G/N)) and thus
H∗(G, F (Hom(V, G))) ∼= lim−→H∗(G/N,F (Hom(V, G/N))) (see [18] 6.5.5). Since H∗(G) ∼=
lim−→H∗(G/N) and TV commutes with direct limits, we find that TV H∗(G) ∼= H∗(G; F (Hom(V, G))).

The dual of a theorem of Mel’nikov [12], given explicitly in the form that we will use
in [20], states that for any profinite G-set X the natural map induced by the restrictions
H∗(G; F (X))→

∏
x∈X/G H∗(G; F (Ox)) is injective with dense image, so we are done. �

Corollary 4.2. The result of 3.6 is also true for profinite groups.

Proof. The only problem in the proof of 3.6 is that in the diagram we do not know that
the two bottom vertical arrows are surjections and we still need to deduce that the bottom
horizontal map is an isomorphism, that is that each f ∗E : H∗(CG(E)) → H∗(CH(E)) is an
isomorphism.

The density statement in 4.1 is equivalent to the following: if Y is a finite subset of
Rep(V, G) then the map TV H∗(G) →

∏
ρ∈Y H∗(CG(Im ρ)) is surjective. The surjectivity of

f ∗E follows.
In order to show injectivity, suppose that x ∈ H∗(CG(E)) is such that f ∗E(x) = 0, where

E = Im ρ. This x must be the inflation of some x′ ∈ H∗(CG/N(E)) for some open normal
subgroup N of G. Let y be the image of x′ in H∗(CH/f−1(N)(f(E))). Since y must inflate
to 0 in H∗(CH(f(E))) there is some open normal subgroup M of G, contained in N such
that the inflation of y to H∗(CH/f−1(M)(f(E))) is already 0. Let x′′ be the inflation of x to
H∗(CG/M(E)).

According to 3.5, there is a z ∈ TV H∗(G/M) such that the ρ-coordinate of z is x′′ and the
other coordinates are 0. The inflation of z to TV H∗(G) is non-zero, because its ρ-coordinate
is non-zero, but its image in TV H∗(H) is zero, by construction. This contradicts the fact
that the map in 4.1 is injective. �

5. Remarks

The fact that the T -functor preserves noetherian rings can be used to show that all our
constructions preserve groups with noetherian cohomology rings, provided that the con-
struction of 3.4 preserves noetherian cohomology. This is used in [13] to show that a pro-p
group with noetherian cohomology has only a finite number of conjugacy classes of finite
p-subgroups.

In fact we do not need a group homomorphism f : H → G, we only need a map between
the p-completed classifying spaces, as was shown by Chun-Nip Lee [9], [11]. The methods of
the present paper readily extend to prove this generalization.
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