
Brauer Theory for Profinite Groups

John MacQuarrie1, Peter Symonds

Abstract

Brauer Theory for a finite group can be viewed as a method for comparing the
representations of the group in characteristic 0 with those in prime characteris-
tic. Here we generalize much of the machinery of Brauer theory to the setting
of profinite groups. By regarding Grothendieck groups as functors we describe
corresponding Grothendieck groups for profinite groups, and generalize the de-
composition map, regarded as a natural transformation. We discuss characters
and Brauer characters for profinite groups. We give a functorial description of
the block theory of a profinite group. We finish with a method for computing
the Cartan matrix of a finite group G given the Cartan matrix for a quotient of
G by a normal p-subgroup.
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1. Introduction

Let G be a finite group and (K,O, k) a p-modular system. The subject
known today as Brauer Theory is concerned with modular representations of G
and how they relate to ordinary representations. Since the principal concern is
with composition factors of a module, the language of Grothendieck groups has
proved valuable. Here, we discuss in a functorial manner what Serre [11] calls
“the cde triangle”

Pk(G)

e
$$IIIIIIIII
c // Rk(G)

RK(G)

d

::uuuuuuuuu

wherein RK(G), Rk(G) are the Grothendieck groups of finitely generated KG-
modules and kG-modules respectively, Pk(G) is the Grothendieck group of
finitely generated projective kG-modules, c is the Cartan homomorphism and d
is the decomposition map.

For appropriate coefficient rings A, we will note that RA(−) and PA(−) are
functors. From this perspective, d is a natural transformation from RK(−) to
Rk(−). While e is a natural map from PO(−) to PK(−), it cannot naturally be
thought to have codomain RK(−), and hence the maps e and d are not naturally
composable. Using the functors and natural transformations discussed above,
we extend d and e to profinite groups.

In Section 5 we discuss characters for profinite groups, and in Section 6 we
note that as with finite groups, the representation theory of A[[G]] splits up
into blocks. Finally, in Section 7 we give a method that computes the Cartan
matrix of a finite group G in terms of the Cartan matrix of G/U for a normal p-
subgroup U of G. This allows one to give a closed formula for the Cartan matrix
of groups in a cofinal system of finite quotients of an analytic pro-p group.
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2. Preliminaries

We collect here some basic results about p-modular systems and the module
categories that will interest us.

2.1. p-modular systems

Fix once and for all a prime p and an algebraic closure ℚp of the field ℚp
of p-adic rationals. With respect to this closure, we define the category of p-
modular systems as follows. The objects are triples (K,O, k), where K is a finite
subextension of ℚp, O is the valuation ring of K (a finite extension of ℤp), and
k is the residue field of O (a finite extension of Fp). Given objects (K,O, k)
and (K ′,O′, k′), an inclusion K ↪→ K ′ induces maps O → O′ and k → k′,
and the collection of these triples of maps form the morphisms of our category.
With respect to the obvious ordering (K,O, k) ⩽ (K ′,O′, k) whenever K ⩽ K ′,
this category forms an upwards directed set. A p-modular system (K,O, k) is
completely determined by K, and we frequently use this observation to suppress
notation.

Given a finite group G, recall that a field A is said to be a splitting field
for G if every irreducible AG-module is absolutely irreducible. We can always
find a finite extension K of ℚp such that K is a splitting field for G and all its
subgroups, in which case K is sometimes said to be “sufficiently large” for G.
If K is sufficiently large for G, then so is k. For proofs of all these facts, see [4,
§17A].

2.2. The rings k[[G]],O[[G]],K[[G]] and their modules

Let G be a profinite group. The coefficient rings k and O (being finite
extensions of Fp,ℤp respectively) are profinite, so that forA ∈ {O, k} the algebra

A[[G]] := lim←−N⊲OGA[G/N ]

is profinite (see [10, §5.3] for more details). We are interested in the category
A[[G]]-mod of finitely generated profinite left A[[G]]-modules. The category
k[[G]]-mod is the object of study in the modular representation theory of profi-
nite groups, considered in [9] and [8]. Both categories have enough projectives.

It is not the case that K⊗OO[[G]] ∼= lim←−N⊲OGK⊗OO[G/N ]. We will work
with the latter, so define

K[[G]] := lim←−N⊲OGK[G/N ].

Denote by K[[G]]-mod the category of Artin K[[G]]-modules. That is, the
category of finite dimensional K[[G]]-modules having an open normal subgroup
of G in the kernel of their action. Indecomposable objects in this category are
irreducible Artin modules.
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3. Grothendieck groups

In this section we first give a careful analysis of various Grothendieck groups
associated to a finite group G, describing functorial relationships between them.
We then describe a natural generalization to the profinite setting.

3.1. Grothendieck groups of finite groups

Let (K,O, k) be a p-modular system as above. For a finite group G and
A ∈ {K, k}, let RA(G) denote the Grothendieck group of finitely generated AG-
modules. By the Krull-Schmidt Theorem, this is the free abelian group with
basis the isomorphism classes of irreducible AG-modules. Denote the image of
an AG-module X in RA(G) by [X]. Given a group homomorphism � : G→ H,
we define a group homomorphism RA(�) : RA(H)→ RA(G) on an AH-module
V by [V ] 7→ [�V ], where �V is the vector space V with action from G given by
g ⋅ v := �(g)v (“the module V restricted to G”). In this way, we regard RA(−)
as a contravariant functor from finite groups to abelian groups.

For A ∈ {K,O, k}, let PA(G) denote the Grothendieck group of finitely
generated projective AG-modules. Again, we are entitled to think of PA(G)
as the free abelian group with basis the isomorphism classes of indecomposable
projective AG-modules. We have an isomorphism of groups PK(G) ∼= RK(G),
but the functors will be rather different. Given a group homomorphism � :
G → H, define PA(�) : PA(G) → PA(H) on a projective AG-module P by
[P ] 7→ [AH�⊗AG P ], where AH� is the (AH-AG)-bimodule whose action from
G is given by x ⋅g := x�(g). In this way, we regard PA(−) as a covariant functor
from finite groups to abelian groups.

Just as above, we can define functors Rℚp(−), RFp(−), Pℚp(−) and PFp(−).

For A a field, RA(−) and PA(−) commute with scalar extension (as one can
see by doing simple checks and using results in [11, §14.6]), and hence the
functors defined over algebraic closures are equal to the direct limits of the
corresponding functors as the coefficient rings vary over finite extensions of
the ground field. The ring lim−→O is not a discrete valuation ring, so to avoid

unnecessary technicalities with modules over O, we simply define

PO(−) := lim−→PO(−)

as O ranges through the valuation rings of finite extensions of ℚp in the obvious
way.

Let F be a functor from a category C to topological abelian groups. We
denote by F (−)∗ the composition of F with the functor Homℤ(−,ℤ) from topo-
logical abelian groups to itself that sends an object X to the group of continuous
homomorphisms from X to the discrete group ℤ. The topology on X∗ is the
compact-open topology. For the functors F that will concern us, (F (−)∗)∗ will
be naturally isomorphic to F , so that (−)∗ is a duality.

As in [11, §14.5] for A ∈ {K, k} we define the pairing

⟨−,−⟩G : PA(G)×RA(G)→ ℤ
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on modules by
⟨[P ], [V ]⟩G := dimA HomAG(P, V )

and extending bilinearly.

Proposition 3.1. For A ∈ {K, k} the maps �
A,G

: PA(G)→ RA(G)∗ given by
P 7→ ⟨P,−⟩

G
are the components of a natural transformation �

A
: PA(−) →

RA(−)∗. The component �
A,G

is an isomorphism if and only if A is a splitting
field for G.

Proof. That �A is natural amounts to the assertion that for � : G→ H a group
homomorphism, P a projective AG-module and V an AH-module, we have an
isomorphism of vector spaces

HomAH(AH� ⊗AG P, V ) ∼= HomAG(P, �V ).

We have a natural isomorphism �V ∼= HomAH(AH�, V ), so the required iso-
morphism is a tensor-hom adjunction (for which, see eg. [2, 2.8.2]).

Each �
A,G

is injective, but maps onto the standard basis element [�X ] ∈
RA(G)∗ (�X taking the irreducible X to 1 and other irreducibles to 0) if and
only if X is absolutely irreducible, by [3, 29.13].

Since the functors PA(−), RA(−) commute with field extensions, we have
isomorphisms of functors PFp(−) ∼= RFp(−)∗ and Pℚp(−) ∼= Rℚp(−)∗. Note

that as no finite field extension of the base-field is a splitting field for every
group, we do not get functor isomorphisms for finite extensions of Fp or ℚp.

For any p-modular system (K,O, k) the functors PO(−) and Pk(−) are nat-
urally isomorphic via P 7→ P/pP , where p is the maximal ideal ofO. We define a
pairing PO(−)×Rk(−)→ ℤ by sending the pair (P, S) to dimk HomkG(P/pP, S).
As above, we see that the functors PO(−) and RFp(−)∗ are isomorphic.

3.2. Grothendieck groups of profinite groups

Now let G = lim←− N⊲OG
G/N be a profinite group and let (K,O, k) be a p-

modular system. For A ∈ {K, k}, RA(−) is a contravariant functor, so the
inverse system for G induces a direct system of Grothendieck groups, and we
define

R̂A(G) := lim−→NRA(G/N).

Similarly, for A ∈ {K,O, k}, since PA(−) is a covariant functor we define

P̂A(G) := lim←−NPA(G/N).

In this way we regard R̂A(−) as a contravariant functor from profinite groups

to (discrete) topological abelian groups, and P̂A(−) as a covariant functor from
profinite groups to topological abelian groups.

For A ∈ {ℚp,Fp} the natural isomorphism PA(−) ∼= RA(−)∗ from the pre-

vious section extends to a natural isomorphism P̂A(−) ∼= R̂A(−)∗. This isomor-
phism can be written explicitly in terms of pairings as follows. Given a profinite
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group G and modules [P ] ∈ P̂A(G) and [X] ∈ R̂A(G), there is some N0 ⊲O G
such that [X] is the image of an element of RA(G/N0) by basic properties of
the direct limit. Denoting by [PN ] the image of [P ] in PA(G/N) we have that
⟨[PN ], [X]⟩G/N is independent of N as N ranges through those open normal
subgroups of G contained inside N0. We thus define

⟨[P ], [X]⟩G := ⟨[PN0 ], [X]⟩G/N0
.

This pairing induces the required isomorphism P̂A(−) ∼= R̂A(−)∗. Similarly we

can define a pairing that induces the natural isomorphism P̂O(−) ∼= R̂Fp(−)∗.
We give a more explicit description of the groups involved, as follows.

Lemma 3.2. Let A be K or k. We have isomorphisms

R̂A(G) ∼=
⊕
V

ℤ[V ]

and
R̂A(G)∗ ∼=

∏
V

ℤ[V ]

where V runs through the set of isomorphism classes of irreducible Artin A[[G]]-
modules.

Proof. The first isomorphism is easy and the second follows from the first by
duality.

For A ∈ {ℚp,Fp}, the second isomorphism of Lemma 3.2 and the functor

isomorphisms above give the description of P̂A(G) as
∏
P ℤ[P ], where P runs

through the set of isomorphism classes of indecomposable projective A[[G]]-
modules. Note in particular that we do not have an isomorphism of groups
between P̂K(G) and R̂K(G) when G is an infinite profinite group. We can

express P̂O(G) as a product of copies of ℤ indexed by irreducible Fp-modules,
by duality.

4. The decomposition map and its dual

We turn now to natural transformations between the functors discussed
above. Consider a finite group G and fix a p-modular system (K,O, k). Re-
call that the decomposition map dK,G : RK(G) → Rk(G) is defined on the
basis of RK(G) as follows. Given an irreducible KG-module V , choose an O-
form M for V (that is, an OG-lattice M such that K ⊗O M ∼= V ). Define
dK,G([V ]) := [M/pM ], where p is the maximal ideal of O. Although there may
be non-isomorphic O-forms M of V , [M/pM ] is well-defined [11, §15.2].

We also define a map eK,G : PO(G)→ PK(G) by eK,G([P ]) = [K ⊗O P ].

Proposition 4.1. Let (K,O, k) be a p-modular system. The map dK,G :
RK(G)→ Rk(G) given above is the component at G of a natural transformation
dK : RK(−) → Rk(−). The map eK,G : PO(G) → PK(G) is the component at
G of a natural transformation eK : PO(−)→ PK(−).
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Proof. Let � : G→ H be a group homomorphism. After writing out the square,
the first claim amounts to the assertion that

[M�V /pM�V ] = [�(MV /pMV )],

where MX denotes an O-form for X. This is easily checked, making use of the
exactness of �(−).

The second claim is the assertion that for a projective OG-module P ,

K ⊗O OH� ⊗OG P ∼= KH� ⊗KG K ⊗O P,

which is also easily checked.

Note the following important remark. For a finite group G, eK,G is usu-
ally thought to have codomain RK(G) (as in the diagram in the introduction).
This allows for the composition d ∘ e : Pk(G) → RK(G) → Rk(G) known as
the Cartan homomorphism. However, even for finite groups eK is not a natu-
ral transformation between the functors PO(−) and RK(−), but only between
PO(−) and RK(−)∗. It follows that e and d are not naturally composable.

Now let G = lim←− N⊲OG
G/N be a profinite group. The following is immediate

from the naturality of dK and eK .

Proposition 4.2. The maps dK,G/N define a map of direct systems

{RK(G/N) ∣N ⊲O G} → {Rk(G/N) ∣N ⊲O G},

and hence a map d̂K,G : R̂K(G)→ R̂k(G). This map is the component at G of

a natural transformation d̂K : R̂K(−)→ R̂k(−).

Likewise, the maps eK,G/N define a map of inverse systems and hence a

map êK,G : P̂O(G) → P̂K(G). This map is the component at G of a natural

transformation êK : P̂O(−)→ P̂K(−).

The natural transformation d̂ℚp : R̂ℚp(−)→ R̂Fp(−) induces a natural trans-

formation d̂∗ℚp
: R̂Fp(−)∗ → R̂ℚp(−)∗, which can naturally be thought of as a

natural transformation P̂O(−)→ P̂ℚp(−) via the isomorphisms in Section 3.

Theorem 4.3. The natural transformations êK and d̂∗K commute with the nat-

ural maps P̂O(−)→ R̂∗k(−) and P̂K(−)→ R̂∗K(−) in the sense that the following
squares commute:

P̂O(G)
êK,G

//

��

P̂K(G)

��

R̂k(G)∗
d̂∗K,G

// R̂K(G)∗.
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Proof. This is immediate from the finite theory. For a finite group G we are
asserting that given a projective OG-module P and finitely generated KG-
module V with O-form MV , we have the equality

⟨[P ], [MV /pMV ]⟩G = ⟨[K ⊗O P ], [V ]⟩G,

which is precisely [11, §15.4(b)]. For profinite G just take limits.

Corollary 4.4. Having naturally identified P̂O(−) with R̂∗Fp
(−) and P̂ℚp(−)

with R̂∗ℚp
(−) as above, the natural transformations êℚp and d̂∗ℚp

are equal. Thus

eℚp and dℚp are dual.

As with finite groups, we can identify projective O[[G]]-modules by their
shadow in characteristic 0:

Proposition 4.5. The natural transformation êK is monic. Thus, given two
finitely generated projective O[[G]]-modules P,Q, if êK([P ]) = êK([Q]), then
P ∼= Q.

Proof. For finite groups this is [11, §16.1 Corollary 2]. That êK is monic now
follows from the exactness of lim−→ (see e.g. [10, 1.2.6]).

5. Characters

Denote by ℚdis

p the field ℚp given the discrete topology. For a finite group G,
denote by Conj(G) the set of conjugacy classes of G and by Conjp′(G) the set of
conjugacy classes of p-regular elements of G. The set of irreducible characters of
G over ℚp forms a basis for the vector space of (continuous) class functions from

G to ℚdis

p ([11, Theorem 6]). Similarly, the set of irreducible Brauer characters

of G over Fp forms a basis for the vector space of class functions from conjugacy
classes of p-regular elements of G ([11, Theorem 42]). Denoting the vector space

of continuous functions from a space X to ℚdis

p by C(X,ℚdis

p ), we can express
this paragraph succinctly as

C(Conj(G),ℚdis

p ) ∼= Rℚp(G)⊗ℤ ℚp

and
C(Conjp′(G),ℚdis

p ) ∼= RFp(G)⊗ℤ ℚp.

Both Conj(−) and Conjp′(−) are covariant functors from finite groups to
topological spaces. A standard compactness argument verifies that for a profi-
nite group G we have Conj(G) ∼= lim←−NConj(G/N). By regarding an element
g of G as p-regular if and only if it is p-regular in every continuous finite quo-
tient (“the supernatural order of ⟨g⟩ is prime to p” [12, I.1.3]), we also have
Conjp′(G) ∼= lim←−NConjp′(G/N). Thus we regard Conj(−) and Conjp′(−) as
functors from profinite groups to profinite topological spaces.
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Now since C(Conj(−),ℚdis

p ) and C(Conjp′(−),ℚdis

p ) are contravariant func-
tors and direct limits commute with tensor products, we obtain the same de-
scription of class functions on a profinite group G (for pro-p groups cf. [1,
§11.4]):

Proposition 5.1. For a profinite group G, we have ring isomorphisms

C(Conj(G),ℚdis

p ) ∼= R̂ℚp(G)⊗ℤ ℚp

and
C(Conjp′(G),ℚdis

p ) ∼= R̂Fp(G)⊗ℤ ℚp.

The dual statement requires some notation. Given a finite set X, denote by
ℚp[X] the free ℚp-module with basis X – as a functor this is the composition

of “free abelian group” with (ℚp ⊗ℤ −). If X = lim←−Xi is a profinite space, we
define

ℚp[[X]] := lim←− iℚp[Xi].

Given a covariant functor F from profinite groups to topological abelian groups
and a profinite group G = lim←−G/N , define

F (G) ⊗̂ℚp := lim←−N (F (G/N)⊗ℤ ℚp).

For a finite group G, more-or-less by definition we have natural isomorphisms

ℚp[Conj(G)]∗ ∼= C(Conj(G),ℚdis

p )

and
ℚp[Conjp′(G)]∗ ∼= C(Conjp′(G),ℚdis

p )

and hence taking limits, the dual of Proposition 5.1 is

Proposition 5.2. For a profinite group G, we have homeomorphisms

ℚp[[Conj(G)]] ∼= P̂ℚp(G) ⊗̂ℚp

and
ℚp[[Conjp′(G)]] ∼= P̂O(G) ⊗̂ℚp.

6. Blocks

It follows from observations of Gabriel [5] that block theory makes sense
for profinite groups. Recall that an idempotent e in a ring R is said to be
central if it lives in the center of R, orthogonal to an idempotent f if ef = 0
and fe = 0, and (centrally) primitive if it cannot be written as the sum of two
non-zero orthogonal (central) idempotents. Fix a p-modular system (K,O, k)
and a profinite group G. The following proposition is due essentially to Gabriel.
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Proposition 6.1. Let G be a profinite group. There exists a set of pairwise
orthogonal centrally primitive central idempotents E = {ei ∣ i ∈ I} in O[[G]] such
that

O[[G]] ∼=
∏
i∈I
O[[G]]ei.

The images E′ = {e′i ∣ i ∈ I} of the ei in k[[G]] are again pairwise orthogonal
centrally primitive central idempotents, and

k[[G]] ∼=
∏
i∈I

k[[G]]e′i.

Proof. The first claim is [5, IV§3 Corollaries 1 and 2]. It is easily checked that the
e′i are pairwise orthogonal central idempotents, and that k[[G]] ∼=

∏
i∈I k[[G]]e′i.

That the e′i are centrally primitive follows by noting that the lift of a central
idempotent is unique (as one can see by mimicking the proof of [13, Theorem
3.1(c)], for example).

We call the indecomposable factorsO[[G]]ei, k[[G]]e′i the blocks ofO[[G]], k[[G]]
respectively and the corresponding central idempotents the block idempotents.
Blocks are not functorial in general, but are functorial if we restrict our interest
to surjective group homomorphisms. We return to finite groups, and denote by
SFGp the category of finite groups and surjective group homomorphisms. In
order to make precise the connection between blocks, projectives and simples,
we define the following functors from SFGp to abelian groups:

For A ∈ {O, k}, the covariant functor IdemA(−) takes a finite group G to
the free abelian group with basis the conjugacy classes of primitive idempotents
of AG. Given a morphism � : G ↠ H, IdemA(�) sends the idempotent [e] ∈
IdemA(G) to [�(e)] ∈ IdemA(H).

The covariant functor CIcovA(−) takes G to the free abelian group with basis
the primitive central idempotents of AG. On morphisms, CIcovA(�) sends the
central idempotent [c] ∈ CIcovA(G) to [�(c)] ∈ CIcovA(H).

The contravariant functor CIconA(−) takes G to the free abelian group with
basis the primitive central idempotents of AG. On morphisms, CIconA(�) sends
the primitive central idempotent [d] ∈ CIconA(H) to [c], where c is the unique
central primitive idempotent of AG such that d�(c) = d (a standard argument
shows that such a c exists and is unique: existence follows since �(1)d = d, while
uniqueness follows from the fact that distinct primitive central idempotents are
orthogonal. See e.g. [13, §37] for more on this).

In fact, IdemA(−) makes sense as a functor with domain the category of
finite groups and all homomorphisms, in which case it is naturally isomorphic to
PA(−) by the correspondence e↔ AGe. However, as central idempotents need
not be preserved by arbitrary maps, we require all group homomorphisms in
this section to be surjective. We regard CIcovA(−) as a subfunctor of IdemA(−)
via the inclusion [c] to [c] – this corresponds to taking the block AGc to the
projective left module AGc. Define the pairing

CIcovA(G)× CIconA(G)→ ℤ
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on idempotents by setting ⟨c, d⟩G to be the number of non-zero primitive sum-
mands of cd, and extending bilinearly. This pairing is non-singular and has the
property that

⟨CIcov(�)(c), d⟩H = ⟨c,CIcon(�)(d)⟩G,
so defines a duality

CIcovA(−) ∼= CIconA(−)∗.

Think of Rk(−),CIconk(−) as functors from SFGp and define a map �k,G :
Rk(G)→ CIconk(G) by sending the irreducible module [V ] to dim(V )[c], where
c is the unique central primitive idempotent such that cV ∕= 0.

Proposition 6.2. The map �k,G is the component at G of a natural transfor-
mation �k : Rk(−)→ CIconk(−).

Proof. We are asserting that for V an irreducible kG-module and � : G ↠ H,
we have the equality dim(�V )[d] = dim(V )[c], where c is the unique centrally
primitive central idempotent such that �(c)V ∕= 0, and d is the unique centrally
primitive central idempotent in kG with d�V ∕= 0; that is, with �(d)V ∕= 0.
Since �(−) preserves dimension, this is immediate.

Taking direct limits over the finite extensions of Fp, we get a natural trans-
formation � = �Fp : RFp(−)→ CIconFp(−).

Proposition 6.3. The natural transformation � : RFp(−) → CIconFp(−) is

dual to the inclusion CIcovFp(−)→ IdemFp(−).

Proof. For a finite group G, the square to be checked is

CIcovFp(G)

∼
��

// IdemFp(G)

∼
��

CIconFp(G)∗
�∗G // RFp(G)∗.

This amounts to saying that for a block idempotent c, the functions ⟨c,−⟩ ∘ �G
and ⟨FpGc,−⟩ are equal. This is easily verified – for a module M , both send
[M ] to the dimension of cM .

By functoriality, for A ∈ {O, k} we can thus define the following maps from
the profinite group G = lim←−N⊲OGG/N to topological abelian groups:

ĈIcovA(G) := lim←−CIcovA(G/N),

ĈIconA(G) := lim−→CIconA(G/N).

In this way we regard ĈIcovA(−) and ĈIconA(−) as (covariant and contravari-
ant, respectively) functors from profinite groups with surjective homomorphisms
to topological abelian groups. To obtain concrete descriptions of these functors,
we note the following.
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Proposition 6.4. For A ∈ {O, k}, restricting the surjective inverse system
{A[G/N ], 'MN} to the central idempotents of A[G/N ] expresses the central
idempotents of A[[G]] as the inverse limit of the central idempotents of the
A[G/N ].

The set of centrally primitive central idempotents of A[[G]] is a discrete subset
of A[[G]], and can be obtained as the direct limit of the centrally primitive central
idempotents of the A[G/N ].

Proof. The map from a profinite ring to itself defined by x 7→ x−x2 is continu-
ous, so the inverse image of 0 is closed. The first claim follows by applying this
argument to the center of A[[G]].

For the second claim, take c a primitive central idempotent and find some
map ' to a finite quotient with '(c) ∕= 0. The only primitive central idem-
potent in the inverse image of '(c) under ' is c itself, because ' restricted
to the primitive central idempotents not mapping to 0 is injective. Hence,
the set of primitive central idempotents is discrete. The maps required for
the direct system are those yielding CIcon(−): namely, given a quotient map
'MN : A[G/N ]→ A[G/M ], take the centrally primitive central idempotent d in
A[G/M ] to the unique centrally primitive central idempotent c of A[G/N ] such
that 'MN (c)d ∕= 0.

It follows that the block idempotents of A[[G]] are a basis for ĈIconA(G):

Corollary 6.5. For A ∈ {O, k} and G a profinite group we have isomorphisms

ĈIconA(G) ∼=
⊕
c

ℤ[c]

and
ĈIcovA(G) ∼=

∏
c

ℤ[c]

where c runs through the set of centrally primitive central idempotents of A[[G]].

Taking limits of �k,G/N , �
∗
k,G/N we obtain the natural transformation

�̂k : R̂k(−)→ ĈIconk(−)

and its dual
�̂∗k : ĈIcovk(−)→ P̂O(−).

Irreducible k[[G]]-modules are naturally partitioned into blocks by �̂k,G. Writing
{ci ∣ i ∈ I} for the maximal set of pairwise orthogonal centrally primitive central
idempotents of A[[G]] (for A ∈ {O, k}), a projective A[[G]]-module P splits
into blocks by P 7→

∏
i ciP , but note that this map does not commute with

surjections.
One also obtains a natural “p-block” structure on K[[G]], via the composition

R̂K(−)
d̂K // R̂k(−)

�̂k // ĈIconk(−).
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7. The Cartan homomorphism

The Cartan homomorphism ck,G : Pk(G) → Rk(G) for a finite group G is
simply given by [P ] 7→ [P ]. That is, it records the multiplicity of the compo-
sition factors of a projective kG-module P . The information in ck,G is usually
recorded in the Cartan Matrix C(G) of G with respect to k. The rows of C(G)
are indexed by simple kG-modules, the columns by indecomposable projective
kG-modules, and C(G)S,P is the multiplicity of S as a composition factor of P .
While the Cartan homomorphism is not a natural transformation, the informa-
tion recorded in the Cartan matrix makes its computation a valuable tool in the
study of finite groups.

We demonstrate in this section how we might try to understand projective
modules for certain well behaved profinite groups in terms of the Cartan matrices
of their finite quotients. Our approach makes use of the Jennings filtration [7].

Let G be a finite group with U a normal p-subgroup, and suppose k is
sufficiently large for G. Let J0 = kU, J1 = J = rad(kU), and for each i ∈ ℕ
recursively define J i := rad(J i−1).

Lemma 7.1. We have kG/JkG ∼= k[G/U ].

Proof. We have k[G/U ] ∼= (kG)U ∼= kG/IUkG, where IU is the kernel of the
augmentation map kU → k given by u 7→ 1. The result now follows from the
fact that IU = J .

Since U is normal, one can show by induction that for each d ∈ ℕ0, J i is a kG-
module, with action from G given by conjugating elements of U . It follows that
for each i, J i/J i+1 is a kG-module. This also shows that J ikG is a submodule
of kG, since for g ∈ G, j ∈ J i, x ∈ kG we have gjx = (gjg−1)(gx) ∈ J ikG.

Define the map

� : J i/J i+1 ⊗k kG/JkG→ J ikG/J i+1kG

by (j + J i+1 ⊗ x) 7→ jx + J i+1kG. This map is a well-defined surjective kG-
module homomorphism.

Lemma 7.2. The maps J i/J i+1 ⊗k kG/JkG→ J ikG/J i+1kG are kG-module
isomorphisms, for each i.

Proof. Since the maps are surjective, we need only show that the sum of the
dimensions on either side agree. The left hand side is∑

i⩾0

dimk(J i/J i+1 ⊗k kG/JkG) = dim(kG/JkG)
∑
i⩾0

dim(J i/J i+1)

= dim(k[G/U ]) dim(kU)

= (∣G∣/∣U ∣)∣U ∣ = ∣G∣.
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The right hand side is∑
i⩾0

dimk(J ikG/J i+1kG) =
∑
i⩾0

(dim(J ikG)− dim(J i+1kG))

= dim J0kG

= dim kG = ∣G∣.

From this isomorphism and Lemma 7.1 we observe that we have filtered kG
by projective k[G/U ]-modules. The same applies for arbitrary projectives:

Lemma 7.3. Let P be a projective kG-module. The maps J i/J i+1⊗k P/JP →
J iP/J i+1P are isomorphisms, for each i.

Note that since U acts trivially on simple kG-modules, the natural map
Rk(G/U)→ Rk(G) is an isomorphism. Denote by X the kG-module kU given
above, with action from G given by conjugating elements of U .

Proposition 7.4. Let B be the matrix representing the map Rk(G) → Rk(G)
given on simples by [S] 7→ [X ⊗k S]. Then

C(G) = B ⋅ C(G/U).

Proof. The (S, T )th entry of B is the number of times S appears as a composi-
tion factor of X⊗k T . The (T, PU )th entry of C(G/U) is the number of times T
appears as a composition factor of PU . Thus, the (S, PU )th entry of B ⋅C(G/U)
is ∑

T

(# times S a factor of X ⊗ T ) ⋅ (# times T a factor of PU ).

Meanwhile, the (S, P )th entry of C(G) is the number of times S appears as a
composition factor of P . But from Lemma 7.3 we have

[P ] =

⎛⎝∑
i⩾0

[J i/J i+1]

⎞⎠⊗ [PU ],

and hence (since {J i/J i+1} is a filtration of X),

C(G)S,P =
∑
T

(# times T a factor of PU ) ⋅ (# times S a factor of X ⊗ T )

= (B ⋅ C(G/U))S,PU .

We return now to infinite groups. Let G = lim←− i∈ℕG/Ui be a countably
based virtually pro-p group, with the Ui a descending chain of open normal
pro-p subgroups. Note that there are finitely many simple k[[G]]-modules since
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G is virtually pro-p – indeed, we have Rk(G) ∼= Rk(G/Ui). For each i, let Bi
be the matrix Rk(G)→ Rk(G) given by tensoring with the finite k[[G]]-module
k[Ui/Ui+1] (with G acting by conjugation). Let Ci be the Cartan matrix of
G/Ui. By induction on i and the discussion above we see

Cn = BnBn−1 . . . B2C1.

For an arbitrary countably based pro-p group it seems difficult to control the
matrices Bi. We can understand the situation better when G is a compact
analytic pro-p group. Such a profinite group G is characterized by the existence
of an open normal uniformly powerful pro-p subgroup U (for further details
about such groups, see [6]).

Theorem 7.5. Let G be a compact analytic pro-p group. Then we can find an
inverse system of finite groups G = lim←− i∈ℕG/Ui for which the matrices Bi are
equal.

Proof. Let U be a uniformly powerful open subgroup of G and write U0 =
G,U1 = U,U2 = [U,U ]Up, Ui+1 = [Ui, U ](Ui)

p. We have G = lim←− i∈ℕG/Ui.

For each i ⩾ 1 we have an isomorphism � : Ui/Ui+1 → Ui+1/Ui+2 given by
powering by p. This isomorphism extends to an isomorphism of k[[G]]-modules
k[Ui/Ui+1]→ k[Ui+1/Ui+2] since on a basis element uUi+1 of Ui/Ui+1 we have

�(g ⋅ uUi+1) = �(gug−1Ui+1) = gupg−1Ui+2 = g ⋅ �(uUi+1).

Thus the maps (k[Ui/Ui+1]⊗k−) and (k[Ui+1/Ui+2]⊗k−) on Rk(G) are equal,
and hence the matrices Bi and Bi+1 are equal.

7.1. Example

Let k = F9, a sufficiently large field for Gn = SL2(ℤ/3nℤ). The Car-

tan matrices for G1, G2, G3 over k are C(G1) =

⎛⎝ 3 0 0
0 1 0
0 0 3

⎞⎠ , C(G2) =⎛⎝ 27 18 0
18 21 0
0 0 81

⎞⎠ and C(G3) =

⎛⎝ 567 540 0
540 549 0
0 0 2187

⎞⎠.

Let G = SL2(ℤ3) = lim←− nGn. From [6, Theorem 5.2] we know that the
kernel U1 of the natural map G ↠ G1 is an open normal uniformly powerful
pro-3 subgroup of G, and we can take for Ui the kernel of G ↠ Gi. Thus by
Theorem 7.5 the matrices Bi discussed above are equal. From C(G1) and C(G2)
we deduce that

B = C(G2)C(G1)−1 =

⎛⎝ 9 18 0
6 21 0
0 0 27

⎞⎠ .
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By diagonalizing B we can now write down the general formula for C(Gn) =
Bn−1C(G1):

C(Gn) =
1

4

⎛⎝ 33n−2 + 3n+1 33n−2 − 3n 0
33n−2 − 3n 33n−2 + 3n−1 0

0 0 4 ⋅ 33n−2

⎞⎠ .

The determinant of C(Gn) is 37n−5.
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