MATH 20201 Algebraic Structures I. Exercises.

Sheet 1: Permutations

1. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix}$.

(i) Work out $\tau \circ \sigma, \sigma \circ \tau, \tau \circ \tau$ and $\sigma \circ \sigma$ (in standard notation).

(ii) Write $\sigma, \tau, \tau \circ \sigma, \sigma \circ \tau, \tau \circ \tau$ and $\sigma \circ \sigma$ as a composite of disjoint cycles.

- 2. Write the following permutations of $\Omega = \{1, 2, 3, 4, 5\}$ in standard notation. (i) $(134) \circ (25)$, (ii) $(134) \circ (134) \circ (134)$, (iii) $(231) \circ (321)$, (iv) $(1324) \circ (531) \circ (24)$.
- 3. Which of the following equations are true? (i) (12345) = (34512), (ii) (12345) = (23415), (iii) (54321) = (32154), (iv) (54321) = (15423).
- 4. Write

and

`

as a composite of disjoint cycles.

- 5. Write the following permutations of S_5 as a composite of disjoint cycles:
 - (i) $(1234) \circ (13) \circ (24) \circ (1432)$
 - (ii) $(12345) \circ (1342) \circ (15432)$
 - (iii) $(15) \circ (14) \circ (13) \circ (12)$
- 6. Prove that every non-trivial permutation of $\Omega = \{1, 2, 3, ..., n\}$ can be written as a composite of less than n transpositions.

Sheet 2: Groups

1. Which of the following sets are groups with respect to the binary operation given? Give proofs!

(i) The set of all 2x2 matrices of the form $\begin{pmatrix} a & a \\ 0 & 0 \end{pmatrix}$ where $a \in \mathbb{R}, a \neq 0$; under matrix multiplication.

(ii) The set of all 2x2 matrices of the form $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ where $a, b \in \mathbb{R}, a \neq 0 \neq b$, under matrix multiplication.

(iii) The set $\mathbb{Z} \times \mathbb{Z} = \{(a, b); a, b \in \mathbb{Z}\}$ with multiplication

$$(a,b)(n,m) = (a+n,b+m);$$

 $a, b, n, m \in \mathbb{Z}.$

(iv) The set $\mathbb{Z} \times \mathbb{Z}$ with multiplication

$$(a,b)(n,m) = (a+n,(-1)^n b + m);$$

 $a, b, n, m \in \mathbb{Z}.$

- (v) The power set $P(\Omega)$ of a non empty set Ω under intersection of sets.
- (vi) $P(\Omega)$ as in (v) with the binary operation

$$AB = (A \cup B) \setminus (A \cap B),$$

- $A, B \subseteq \Omega$. (You may take for granted that this operation is associative.)
- 2. For the set G and the binary operation * on G as given below, determine if (G, *) is a group. Give reasons if your answer is NO!
 (i) G = Q\{0}, a * b = ab (multiplication of numbers),
 (ii) G = {1, −1}, a * b = ab (multiplication of numbers),
 - (iii) $G = \mathbb{Z}$, a * b = ab (multiplication of numbers),
 - (iv) G is the set of even integers, a * b = a + b (addition of numbers), (v) $G = \{f, g\}$, where f and g are functions from Z to Z defined by
 - $f(n)=n, \ g(n)=-n \ \forall n \in \mathbb{Z}., \quad *=\circ \quad (\text{composition of functions}),$

(vi) $G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}, \quad * = \text{ matrix multiplication,}$ (vii) $G = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \right\}, \quad * = \circ$ (composition of permutations), (viii) $G = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \right\}, \quad * = \circ$ (composition of permutations), (ix) $G = \{0, 1\}, \quad a * b = ab$ (multiplication of numbers),

(x) G is the set of odd integers, a * b = ab (multiplication of numbers).

3. Prove that $\mathbb{R} \times \mathbb{R} \setminus \{(0,0)\}$ is a group under the binary operation

$$(a,b)(c,d) = (ac - bd, bc + ad),$$

where $(a, b), (c, d) \in \mathbb{R} \times \mathbb{R} \setminus \{(0, 0)\}.$

4. Let $G = \{e, a, b, c\}$, where

$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad a = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

and let * be matrix multiplication. Write out the multiplication table for (G, *) and prove that it is a group.

5. Let $G = \mathbb{R} \setminus \{1\}$, and a * b = a + b - ab. Prove that (G, *) is a group.

6. Let $G = \{e, a, b, c\}$ be the set of permutations of $\Omega = \{1, 2, 3, 4\}$ where $e = id, a = (12), b = (34), c = (12) \circ (34)$

and let $* = \circ$. (composition of permutations). Write out the multiplication table for (G, *) and prove that it is a group.

- 7. Using cycle notation, make a list of all elements of the symmetric group S_4 .
- 8. Make a list of all elements of the group $GL(2, \mathbb{Z}_2)$.

Sheet 3: Subroups

- 1. For the following subsets S of the given group (G, *) determine whether or not S is a subgroup. Give reasons if your answer is NO.
 - (i) G = C, * = +, S = {n + mi | n, m ∈ Z},
 (ii) G = C, * = +, S = {3n + mi | n, m ∈ Z},
 (iii) G = Q* = Q\{0}, * = × (multiplication of numbers), S = {1, -1},
 (iv) G is the set of all permutations of Ω = {1, 2, ..., n}, * = ∘, S is

(iv) G is the set of all permutations of $\Omega = \{1, 2, ..., n\}$, * = 0, S, the set of all transpositions,

(v)
$$G = \mathbb{Z}_6, \ * = \oplus, \ S = \{0, 2, 4\},$$

(vi) $G = \mathbb{Z}_6, \ * = \oplus, \ S = \{0, 1, 3\}.$

- 2. Let $n \ge 2$ and A_n denote the subset of S_n consisting of all permutations of $\{1, 2, \ldots, n\}$ that can be written as a composite of an even number of transpositions. Prove that A_n is a subgroup of S_n .
- 3. Work out the orders of the following elements.

(i)
$$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i, \ \frac{1}{2} + \frac{\sqrt{3}}{2}i, \ \frac{\sqrt{3}}{2} + \frac{1}{2}i \in \mathbb{C}^*$$

(ii)
$$4, 15, 18, 33 \in \mathbb{Z}_{36}$$

(iii) $\sigma, \tau, \theta \in S_9$, where

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 5 & 6 & 7 & 4 & 9 & 8 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\theta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 5 & 6 & 7 & 8 & 9 & 2 & 1 \end{pmatrix}$$

$$(\mathrm{iv})\left(\begin{array}{cc} 0 & 1\\ -1 & 1\end{array}\right), \left(\begin{array}{cc} 1 & 1\\ 0 & 1\end{array}\right), \left(\begin{array}{cc} 0 & -1\\ 1 & 0\end{array}\right) \in GL(2,\mathbb{R}).$$

- 4. What are the largest possible orders of elements in S_3, S_5 and S_7 ?
- 5. (i) Compute $\langle 5 \rangle$ in \mathbb{Z} .
 - (ii) Compute $\langle (1234) \rangle$ in S_4 .
 - (iii) Compute $\langle 1 \rangle$, $\langle 2 \rangle$ and $\langle 3 \rangle$ in \mathbb{Z}_8 . (iv) Compute $\left\langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle$ in $GL(2, \mathbb{R})$.
- 6. Prove that in the symmetric group S_n ,

$$C((12...n-1)) = \langle (12...n-1) \rangle,$$

i.e. the centralizer of the cycle (12...n - 1) (of length n - 1) in S_n coincides with the cyclic subgroup generated by that cycle.

- 7. Using inspection of all the 24 elements of S_4 (or otherwise), work out the centralizer of the transposition (12) in S_4 .
- 8. Prove that the centralizer of the transposition (12) in S_n with $n \ge 4$ is the subgroup $C((12)) = \{ \sigma \in S_n \mid 1\sigma, 2\sigma \in \{1, 2\} \}.$
- 9. Work out the centralizer C(g) in $GL(2, \mathbb{R})$ in each of the following cases:

(i)
$$g = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, (ii) $g = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, (iii) $g = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

10. Work out the centre of

$$T(2,\mathbb{R}) = \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right); \ a,b,c \in \mathbb{R}, \ ac \neq 0 \right\}.$$

11. Work out the centre of

$$UT(3,\mathbb{R}) = \left\{ \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right); \ a,b,c \in \mathbb{R} \right\}.$$

- 12. Let G be a group and $g \in G$.
 - (i) If C(g) = G, what can we say about g?
 - (ii) If C(g) = G for all $g \in G$, what can we say about G?

Sheet 4: Cyclic Groups

- 1. Which elements of the cyclic group $(\mathbb{Z}_{30}, \oplus)$ are generators?
- 2. Prove that $(\mathbb{Q}, +)$ is not a cyclic group.
- 3. Find all orders of subgroups of (i) \mathbb{Z}_{31} , (ii) \mathbb{Z}_{32} , (iii) \mathbb{Z}_{33} .
- 4. Find all subgroups of \mathbb{Z}_{15} .
- 5. If G is a cyclic group of order n, and m divides n, show that G contains a subgroup of order m.

Sheet 5: Cosets, Lagrange's Theorem

- 1. For each pair G, H (where $H \leq G$) determine [G : H] and list all right cosets of H in G.
 - (i) G = Z₁₅, H = ⟨12⟩,
 (ii) G = {e, (12), (34), (12)(34)} (a subgroup of the symmetric group S₄), H = ⟨(12)(34)⟩,
 (iii) G = ℝ* = (ℝ \ {0}, ×), H = (ℝ₊, ×).
- 2. What are the right cosets of $H = \{z \in \mathbb{C} \setminus \{0\}; |z| = 1\}$ in $\mathbb{C}^* = (\mathbb{C} \setminus \{0\}, \times)$?
- 3. For $H \leq G$ as specified below, determine the right cosets of H in G.
 - (i) $G = \mathbb{R}^*, H = \langle -1 \rangle$ (ii) $G = \mathbb{C}^*, H = \mathbb{R}^*$ (iii) $G = \mathbb{C}^*, H = \mathbb{R}_+$ (iv) $G = \mathbb{Z}_{36}, H = \langle 30 \rangle$ (v) $G = T(2, \mathbb{R}), H = UT(2, \mathbb{R})$ (vi) $G = D(2, \mathbb{R}), H = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}; \lambda \in \mathbb{R}, \lambda \neq 0 \right\}$ (vii) $C = CL(n, \mathbb{R}), H = SL(n, \mathbb{R})$ [Hint: Show the

(vii) $G = GL(n, \mathbb{R}), H = SL(n, \mathbb{R})$ [Hint: Show that the right coset determined by a matrix $A \in GL(n, \mathbb{R})$ with determinant det A = a is the set of all nxn matrices B with determinant det B = a.]

- 4. For G and H as in Ex.3, work out [G:H], the index of H in G.
- 5. Let G be a group, $H \leq G$, and $x, y \in G$. Prove that Hx = Hy if and only if $xy^{-1} \in H$.
- 6. Prove that the right cosets of \mathbb{Z} in \mathbb{R} are in 1-1 correspondence with the set $[0,1) = \{x \in R \mid 0 \le x < 1\}$.

- 7. In the symmetric group S_4 , work out the cosets
 - (i) H(134), (ii) H(23), (iii) H(1432),

where $H = \langle (1234) \rangle$ is the cyclic subgroup generated by (1234).

- 8. Let G be a finite group and $K \leq H \leq G$. Prove that [G:K] = [G:H][H:K].
- 9. Let G be a finite group with |G| = n. Prove that $g^n = e$ for all $g \in G$.
- 10. Let G be a finite group and $K, H \leq G$ with (|K|, |H|) = 1, i.e. the orders of the subgroups K and H are coprime. Prove that $H \cap K = \{e\}$.

Sheet 6: Homomorphisms and Isomorphisms

1. Which of the following maps are group homomorphisms?

(a)
$$\varphi : \mathbb{C}^* \to \mathbb{R}, \ \varphi(z) = \log |z| \ (z \in \mathbb{C}^*)$$

(b) $\varphi : \mathbb{C} \to \mathbb{R}, \ \varphi(a+bi) = b \ (a,b \in \mathbb{R})$
(c) $\varphi : GL(2,\mathbb{R}) \to \mathbb{R}, \ \varphi\left(\begin{pmatrix}a & b\\ c & d\end{pmatrix}\right) = a - d,$
 $a,b,c,d \in \mathbb{R}.$
(d) $\varphi : T(2,\mathbb{R}) \to D(2,\mathbb{R}), \quad \varphi\left(\begin{pmatrix}a & b\\ 0 & d\end{pmatrix}\right) = \begin{pmatrix}a & 0\\ 0 & d\end{pmatrix},$
 $a,b,d \in \mathbb{R}, \ ad \neq 0$
(e) $\varphi : S_n \to S_{n+1}, \text{ where for } \sigma = \begin{pmatrix}1 & 2 & \dots & n\\ 1\sigma & 2\sigma & \dots & n\sigma\end{pmatrix} \in S_n,$
 $\varphi(\sigma) = \begin{pmatrix}1 & 2 & \dots & n & n+1\\ 1\sigma & 2\sigma & \dots & n\sigma & n+1\end{pmatrix} \in S_{n+1}$
(f) $\varphi : \mathbb{Z} \to \mathbb{S}_n, \ \varphi(k) = (123...n)^k \in S_n, \ k \in \mathbb{Z}$

- 2. Let $\varphi : G \to H$ be a homomorphism of groups. Show that if $a \in G$ has order n, then $\varphi(a) \in H$ has order dividing n.
- 3. Let G be a group. Show that the map $\varphi : G \to G$ defined by $\varphi(a) = a^{-1}$ is a homomorphism if and only if G is abelian.
- 4. Let G be a group and $x \in G$. Show that the map $\varphi_x : G \to G$ defined by $\varphi_x(a) = x^{-1}ax$ for all $a \in G$ (with x fixed) is an isomorphism.
- 5. By using group-theoretic properties, show that the following statements are true.
 - (a) $S_4 \ncong \mathbb{Z}_{24}$.
 - (b) $\mathbb{Z} \ncong \mathbb{Q}$.
 - (c) $\mathbb{Q} \ncong \mathbb{Q}^*$.
 - (d) $GL(2,\mathbb{R}) \cong UT(3,\mathbb{R})$.

Sheet 7 : Conjugacy

- 1. For $\sigma, \tau \in S_6$ as specified below, decide whether of not τ is a conjugate of σ . If your answer is "yes", find an element $\theta \in S_6$ such that $\tau = \theta^{-1}\sigma\theta$.
 - (a) $\sigma = (1234) (56), \tau = (12) (3456),$
 - (b) $\sigma = (12345), \tau = (123456),$
 - (c) $\sigma = (45) (36) (12), \tau = (16) (25) (34),$
 - (d) $\sigma = (12)(346), \tau = (123)(56).$
- 2. Work out the number of conjugacy classes in S_5 and S_6 .
- 3. Determine the number of cycles of length n in S_n . [Hint: Use Theorem 7.2, the class formula, and the fact that $C((12...n)) = \langle (12...n) \rangle$. This will be nicer than a purely combinatorial solution.]
- 4. Work out the order of the centralizer of (12)(34) in S_4 and find all its elements. [Hint: Apart from obvious members of the centralizer, consider (1324).]
- 5. Use the formula for conjugates in S_n to prove that $Z(S_n) = \{e\}$ for $n \ge 3$.
- 6. Show that in any group conjugate elements have the same order.

Sheet 8 : Normal Subgroups

- 1. For a group G and a subgroup $H \leq G$ as specified below, decide if H is normal in G.
 - (a) $G = S_4, \ H = \langle (1234) \rangle;$
 - (b) $G = T(2, \mathbb{R}), H = UT(2, \mathbb{R});$
 - (c) $G = GL(2, \mathbb{R}), H =$ the subgroup of scalar matrices in $GL(2, \mathbb{R});$
 - (d) $G = S_4, H = \{e, (12)(34), (13)(24), (14)(23)\};$ (e) $G = SL(2, \mathbb{R}), H = \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle.$
- 2. Suppose $H \triangleleft G$ and $K \triangleleft G$. Show that $H \cap K \triangleleft G$.
- 3. Suppose that $H \triangleleft G$ and $K \triangleleft G$. The product of H and K in G is the set $HK = \{hk ; h \in H, k \in K\}$. Show that $HK \triangleleft G$.
- 4. Let $H \leq K \leq G$.
 - (a) Suppose $H \lhd G$. Show that $H \lhd K$.
 - (b) Suppose that $H \triangleleft K$ and $K \triangleleft G$. Does this imply that $H \triangleleft G$?
- 5. Let N and M be normal subgroups of G such that $N \cap M = \{e\}$. Show that for all $x \in N$ and all $y \in M$ one has xy = yx.[Hint: Show that $x^{-1}y^{-1}xy = e$.]
- 6. Let G be a group, and let $H \triangleleft G$ be a cyclic group of order two which is normal in G. Prove that $H \subseteq Z(G)$.

Sheet 9: Factor Groups and the First Isomorphism Theorem

- 1. For the maps in Ex. 6.1, if they are homomorphisms, find the kernel and the image.
- 2. Show that $\mathbb{R}^*/\mathbb{R}_+ \cong \{\pm 1\}$, where $\mathbb{R}_+ = \{r \in \mathbb{R}^*; r > 0\}$ and $\{\pm 1\}$ is regarded as a group under multiplication.
- 3. Show that $\mathbb{C}^*/\{z \in \mathbb{C}; |z|=1\} \cong \mathbb{R}_+$, where $\mathbb{R}_+ = \{r \in \mathbb{R}^*; r > 0\}$.
- 4. Show that $T(2,\mathbb{R})/UT(2,\mathbb{R}) \cong D(2,\mathbb{R})$.
- 5. Let

$$N = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array} \right); \ a, b \in \mathbb{R}, \ a \neq 0 \right\} \le T(2, \mathbb{R}).$$

Show that N is normal in $T(2, \mathbb{R})$, and prove that $T(2, \mathbb{R})/N \cong \mathbb{R}^*$. [Hint: Consider the map $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \to ac$.]

6. Let

$$N = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; a, b \in \mathbb{R} \right\} \le UT(3, \mathbb{R}).$$

Show that N is normal in $UT(3, \mathbb{R})$, and prove that $UT(3, \mathbb{R})/N \cong \mathbb{R}$. [Hint: Consider the map

$$\left(\begin{array}{rrr}1&a&b\\0&1&c\\0&0&1\end{array}\right)\to c.]$$