MATH39032

(Mathematical modelling of finance): Examples 4

PDE Transformations: Lectures 10-12

1. Consider the Black-Scholes equation for an option, V(S,t), in the usual notation

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0.$$

Suppose that the risk-free interest rate r(t) and the volatility $\sigma^2(t)$ are both non-constant known functions of t. Show that the following steps reduce the Black-Scholes equation to the heat-conduction equation:

(a) Set $S = Xe^x$, V = Xv, and put t = T - t' to show that:

$$\frac{\partial v}{\partial t'} = \frac{1}{2}\sigma^2(t')\frac{\partial^2 v}{\partial x^2} + [r(t') - \frac{1}{2}\sigma^2(t')]\frac{\partial v}{\partial x} - r(t')v.$$

(b) Introduce a new time variable $\tau = \int_0^{t'} \frac{1}{2} \sigma^2(s) ds$, to show that

$$\frac{\partial v}{\partial \tau} = \frac{\partial^2 v}{\partial x^2} + a(\tau) \frac{\partial v}{\partial x} - b(\tau)v,$$

where you need to determine $a(\tau)$ and $b(\tau)$.

(c) Consider the first-order partial differential equation obtained by omitting the $\frac{\partial^2 v}{\partial x^2}$ term, namely

$$\frac{\partial v}{\partial \tau} = a(\tau) \frac{\partial v}{\partial x} - b(\tau)v.$$

Verify that the general solution of this equation is

$$v = F(\hat{x})e^{-B(\tau)},$$

where $\hat{x} = x + A(\tau)$ and you need to determine $A(\tau)$ and $B(\tau)$, and where F() is an arbitrary function.

(d) Now consider the full second-order equation for v in (b); seek a solution of the form

$$v(x,\tau) = e^{-B(\tau)}u(\hat{x},\tau).$$

Show that u satisfies the heat-conduction equation

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial \hat{x}^2}.$$

2. Find a similarity solution to the problem

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2}, \qquad \begin{array}{c} -\infty < x < \infty \\ \tau > 0 \end{array}$$

1

with

$$u(x,0) = \mathcal{H}(x)$$

where $\mathcal{H}(x)$ is the Heaviside function. Search for a solution of the form $u(x,\tau)=U(\xi)$ where $\xi=x/\sqrt{\tau}$.

3. Uniqueness proof: Suppose that $u_1(x,\tau)$ and $u_2(x,\tau)$ are both solutions to the initial value problem

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2} \quad -\infty < x < \infty, \quad \tau > 0$$

with

$$u(x,0) = u_0(x)$$

for $u_0(x)$ sufficiently well-behaved, and such that as $|x| \to \infty$

$$u(x,\tau)e^{-ax^2} \to 0$$

for any a > 0 and $\tau \ge 0$. Show, routinely, that $v(x, \tau) = u_1 - u_2$ is also a solution of the heat conduction equation above, with v(x, 0) = 0.

Show that if

$$E(\tau) = \int_{-\infty}^{\infty} v^2 dx,$$

then

$$E(\tau) \ge 0, \quad E(0) = 0,$$

and by integrating by parts, that

$$\frac{dE}{d\tau} \le 0;$$

Thus $E(\tau) \equiv 0$, hence $v(x,\tau) \equiv 0$ and thus, $u_1(x,\tau) \equiv u_2(x,\tau)$ as required.