
Review More Arrays Modules Final Review

OUTLINE

1 REVIEW

2 MORE ARRAYS

Using Arrays
Why do we need dynamic arrays?
Using Dynamic Arrays

3 MODULES

Global Variables
Interface Blocks
Modular Programming

4 FINAL REVIEW

Review More Arrays Modules Final Review

THE STORY SO FAR...

Create arrays and new types of data

Advanced input/output

How to structure the flow of your program

Debug your programs

Review More Arrays Modules Final Review

MULTIDIMENSIONAL ARRAYS

We can easily declare multidimensional arrays using the
command

REAL :: a(10,5),b(5,10)

Again we access elements of the array using subscripts,
now separated by a comma

a(1,2) = b(1,1) + 10.
a(10,:) = (/ 1,2,3,4,5 /)
a(1:5,1) = (/ 1,2,3,4,5 /)

We can use : to indicate all elements in a dimension or a
subsection of them

Review More Arrays Modules Final Review

THE SHAPE OF THE ARRAY

Fortran has some intrinsic functions to use with arrays

In order for the functions to work the arrays they must be
conformal

REAL :: a(3,2),b(2,3),c(2,2)
! assign values to a and b
a(1,1) = ...
! use function MATMUL
c = MATMUL(a,b)

The rank is the number of dimensions

The shape of an array is a vector of the extent of each
dimension

If arrays have the same shape we can add and multiply
them together

Review More Arrays Modules Final Review

PASSING AN ARRAY TO A SUBPROGRAM

We can pass an array to a subroutine or a function as an
argument

PROGRAM test
REAL :: a(5),x,y
x = my_func(a)
CALL my_sub(a,x,y)

The subroutine and function must know the size of the
array

SUBROUTINE my_sub(a,x,y)
REAL, INTENT(INOUT) :: a(5),x,y
a(1) = ...

We cannot at least in this simple way return an array from
a function

Review More Arrays Modules Final Review

As your programs become more and more complex, the
time needed to compile them will increase

We therefore want to specify as much as we can at run
time

So far we can only change the size of an array in the code

Dynamic array allocation allows the size of arrays to be
set at runtime

Review More Arrays Modules Final Review

We declare a array without size in the following way

REAL, ALLOCATABLE :: a(:),two_dim_a(:,:)

Then to specify the size of the array at runtime we write

PRINT *,’Input size of a and two_dim_a
READ *,n,m,p
ALLOCATE(a(n),two_dim_a(m,p),STAT=error)

and deallocate or delete the memory space with the
statement

DEALLOCATE(a,two_dim_a)

Review More Arrays Modules Final Review

If we pass a dynamic array to a subprogram we must tell it
about the size of the array

CALL my_sub(a,n)

and inside the subroutine

SUBROUTINE my_sub(a,n)
INTEGER, INTENT(IN) :: n
! declare n before a
REAL, INTENT(INOUT) :: a(n)
DO i = 1,n
a(i) = ...

END DO

Review More Arrays Modules Final Review

DATA FOR ALL TO SEE

We often wish to allow lots of our subprograms to see the
same piece of data
This could be:

The number of points used in a finite difference scheme
The precision of the data variables
A mathematical constant such as π

To include a module (and let the program have access to
the variables) - we simple write the following statement at
the top of each program

USE module_name

Review More Arrays Modules Final Review

EXAMPLE MODULE

MODULE global_data
! double precision real number parameter

INTEGER, PARAMETER :: DP = KIND(1.0D0)
! mathematical constant pi

REAL(DP), PARAMETER :: &
PI_D=3.14159265358979323846264338327_dp
! number of points in finite difference

INTEGER :: no_of_points
END MODULE global_data

We can then set real numbers to double precision with

REAL(dp) :: x,y,z

Review More Arrays Modules Final Review

CONNECTING PROGRAMS

We use interface blocks to tell the compiler how to connect
together functions

An interface can allow us to return an array from a function

or assume the shape of an array on entry to a function

We can also use it to overload functions

See “Fortran 90 Programming” by Ellis, Philips and Lahey
for more information on overloading

Review More Arrays Modules Final Review

EXAMPLE - FUNCTION USING ASSUMED ARRAY SHAPE

MAIN PROGRAM

PROGRAM test
! interface at the top
INTERFACE
FUNCTION add_all_elements(a)
IMPLICIT NONE
REAL, INTENT(IN) :: a(:)
REAL :: add_all_elements
END FUNCTION
END INTERFACE
! create allocatable array with n elements
REAL :: a(:)
...
ALLOCATE(a(n))
PRINT *,add_all_elements(a)
END PROGRAM test

Review More Arrays Modules Final Review

EXAMPLE - FUNCTION USING ASSUMED ARRAY SHAPE

FUNCTION
FUNCTION add_all_elements(a)
IMPLICIT NONE
REAL, INTENT(IN) :: a(:)
REAL :: add_all_elements
INTEGER :: n,i
n=size(a)
add_all_elements = 0.
DO i=1,n
add_all_elements = add_all_elements + a(i)

END DO
END FUNCTION

Review More Arrays Modules Final Review

EASIER CONNECTING

If we put the function in previous example inside a module,
the module will create the interface for us

We use the keyword CONTAINS to put functions or
subroutines into a module

MODULE
MODULE array_ops
CONTAINS
FUNCTION add_all_elements(a)
IMPLICIT NONE
REAL, INTENT(IN) :: a(:)
...
END FUNCTION
END MODULE

Review More Arrays Modules Final Review

MORE THAN JUST DATA

Sometimes we may wish to connect functions or
subroutines to a data type

For example there are many functions we could associate
with the data type point ...

such as the distance function

so we can put the function into the module along with the
data type

when each data type is called it will have functions
associated with it

Review More Arrays Modules Final Review

WHAT YOU CAN DO NOW...

Able to produce, compile and run a fortran program

Use subroutines and functions to structure your program

Control the flow of your program

Read and write from files and control the way data is
formatted

Use simple modules to declare global variables

	Review
	More Arrays
	Using Arrays
	Why do we need dynamic arrays?
	Using Dynamic Arrays

	Modules
	Global Variables
	Interface Blocks
	Modular Programming

	Final Review

