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1 Overview

In this computer practical, a shallow water model implemented in MATLAB is used to demonstrate a number

of phenomena, including gravity waves, barotropic instability, orographic Rossby waves, geostrophic turbulence,

tsunamis and equatorially trapped waves. It can also be used perform rudimentary weather forecasts and investigate

numerical stability issues.

2 Model formulation

The two-dimensional model is implemented in MATLAB and has three prognostic variables: the two wind compo-

nents u and v, and the depth of the fluid layer h. One of the ways the model is forced is via height of the orography

H, a fixed two-dimensional field. Figure 1 illustrates the meaning of h and H. In its default configuration, the

model is intended to simulate a channel around the Earth between 20 and 70◦N with a spatial resolution of 100 km

(around one degree). The domain is periodic in the x direction and has solid north and south boundaries where

v = 0 and h is fixed at its initial values.

The perimeter of a sphere at a latitude of 45◦ is 2πRe cos 45◦ ∼= 28 thousand kilometres (comparable to the domain

size here).

A conservation equation for quantity q in two dimensions may be written as

∂q

∂t
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= Q, (1)

where Q represents any sources of q, and U and V represent any terms with spatial derivatives that depend on

the prognostic variables in the model. In a shallow water context and in the absence of any sources, we wish to

conserve the total volume and the total momentum in each direction, so want conservation equations for h, uh and

vh. Therefore, the shallow water equations in conservative (or flux) form may be written as:
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, (4)
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Figure 1: Schematic of the scenario being modelled, where h is the depth of the fluid and H is the height of the

orography.
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where f is the Coriolis parameter and g is the acceleration due to gravity. In this model, the Coriolis parameter is

modelled as varying linearly with y such that f = f0 + β(y − ȳ). Thus f = f0 in the middle of the domain in the y

direction. The pressure gradient terms have been put within the spatial derivatives on the left-hand side.

We integrate this scheme forward-in-time using the Lax-Wendroff scheme, which achieves reasonable ac-

curacy for only modest complexity. The scheme is second-order accurate, requires only one previous time-step,

and does not need any artificial diffusion in time or space to keep it stable. It works in two steps. Considering

generic quantity q from (1), in the first step it estimates q at mid-points in space and time:

q
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, (5)
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These can be thought of as forward-time, centred-space steps in one dimension, except that they move only half a

step in time and space. The source term Q has been neglected in this first step for simplicity. These equations are

applied to the quantities h, uh and vh to obtain h
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From the midpoint quantities, we calculate the new values of uq +U and vq +V for each of the quantities

being advected. For example, to advect uh we need u2h + gh2/2 at the midpoints, which can be computed from

(uh)2/h + gh2/2. We then do the second step as follows:

qn+1
i, j = qn

i, j + ∆t



−
(uq +U)

n+1/2

i+1/2, j − (uq +U)
n+1/2

i−1/2, j

∆x
−

(vq +V )
n+1/2

i, j+1/2
− (vq +V )

n+1/2

i, j−1/2

∆y
+ Qn

i, j



 . (7)

This can be thought of a centred-time, centred-space step in two dimensions (which is what gives the Lax-Wendroff

scheme second-order accuracy), except that the scheme here uses the values at midpoints to jump to the next time-

step, rather than the leapfrog scheme which uses the adjacent full points to jump two time-steps.

3 Running the model

The MATLAB files required are shallow water model.m, a script that runs the model, lax wendroff.m,

a function which implements the numerical scheme, and animate.m, a script that animates the height of the top

of the fluid h+H and the relative vorticity ζ = ∂v/∂x−∂u/∂y. They should be put in the current working directory.

Later experiments also require the data files reanalysis.mat and digital elevation map.mat. The

procedure for running the model is

1. Edit Section 1 of shallow water model.m to configure the model.

2. Type shallow water model at the MATLAB prompt to run the model.

3. Type animate at the MATLAB prompt to view the results.

Table 1 describes the parameters in Section 1 of shallow water model that can be modified, although obvi-

ously you can hack any part of the code if you want to. Note that the typical fluid depth is h = 10, 000 ± 500 m,

roughly corresponding to the depth of the troposphere. Multiplying this by g gives the surface pressure in Pa, so

h = 10 km corresponds approximately to ps = 1000 mb. Highs and lows in h then correspond proportionately to

highs and lows in surface pressure. Note that it its actually h+H that is plotted, which over orography is equivalent

to the pressure at sea level.

4 Experiments

4.1 Gravity waves

The simplest wave supported by the shallow water equations is the gravity wave. Gravity waves can be excited by

specifying initial conditions consisting of a non-uniform height field (specifically in this example a field that is flat
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Table 1: Parameters controlling the behaviour of the model. Note that nx and ny have to be the values shown

here if you are to load orography (via orography=EARTH OROGRAPHY) or an initial pressure field (via

initial conditions=REANALYSIS) from a file.

Variable Default value Description

g 9.81 m s−2 Acceleration due to gravity

f0 10−4 s−1 Mean Coriolis parameter

β 1.6 × 10−11 m−1 s−1 Meridional (latitudinal) gradient of Coriolis parameter

∆x, ∆y 105 m Horizontal grid spacing

nx 254 Number of zonal (longitudinal) gridpoints

ny 50 Number of meridional (latitudinal) gridpoints

dt mins 1 minutes Timestep

output interval mins 60 minutes Time between outputs

forecast length days 4 days Total simulation time

orography FLAT Set the orography (the H field)

initial conditions GAUSSIAN BLOB The initial height field

initially geostrophic false Is the wind initially in geostrophic balance (or at rest)?

add random noise false Add random noise to the initial height field?

except for a Gaussian blob towards the left of the domain) and the winds at rest (and therefore not in geostrophic

balance). The settings to use are as follows:

• orography = FLAT

• initial conditions = GAUSSIAN BLOB

• initially geostrophic = false

• f=0.;

• beta=0.;

Since gravity waves move fast, you may also wish to reduce output interval mins to 15 minutes, in order

to clearly see them propagate. You will note that gravity waves have no significant rotational component so cannot

be seen in the vorticity field. This is one way in which they may easily be distinguished from Rossby waves.

Exercise: Estimate the speed of the gravity waves: does it agree with the theoretical phase speed of c =
√

gh?

To estimate the phase speed easily you may want to uncomment the pause statement on line 118 of the

animate.m function, save it and run. This requires the user to advance the animation by pressing enter.

Be sure to comment it and save afterwards.

Exercise: The time-step of 1 minute seems very small: increase it until the model goes unstable (which you can

see during the simulation if it states max(|u|) = NaN. Can you explain this behaviour in the CFL criterion

(or perhaps a modified version of it)?

4.2 Tsunami

If we modify the previous experiment but add some orography then we model something like a tsunami where

the fluid is now treated as a very deep ocean with a varying bottom topography. The Gaussian blob in the initial

height field can be thought of as a displacement of the ocean surface due to an earthquake (although of much larger

magnitude than in a real tsunami in order that we don’t need to change the colour scale). The model will fail if

H is so high that h goes negative, so we add topography in the form of a Gaussian sea mount which at its highest

point is only 500 m below the surface:

• orography = SEA MOUNT
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Exercise: What features of a tsunami are apparent in the gravity wave as it approaches shallower seas?

4.3 Barotropic instability

Barotropic instability occurs if the meridional (latitudinal) potential-vorticity gradient, ∂[( f + ζ)/h]/∂y, changes

sign. This can occur in regions of strong shear, such as at the edges of a jet. The following example considers an

idealized Bickley jet which is of the form u ∝ sech2(y − ȳ), or equivalently h ∝ tanh(y − ȳ):

• orography = FLAT

• initial conditions = ZONAL JET

• initially geostrophic = true

• add random noise = true

• f=1.e-4;

• beta=1.6e-11;

• output interval mins = 60;

The following alternative example illustrates how cyclogenesis can occur on a front with strong shear. The height

field is initialized such that the initial wind is uniform westerly in the northern half of the domain and uniform

easterly in the southern half of the domain, with a strong wind shear at the interface:

• initial conditions = SHARP SHEAR

Exercise: Try the simulation with add random noise = false. What happens? Why?

4.4 Jupiter’s Great Red Spot

Jupiter’s Great Red Spot is an anticyclone that has persisted for at least 150 years, presenting a puzzle as to how

such a feature can be so long lived. One property of 2D geostrophic turbulence, which can be simulated by the

shallow-water equations, is that over time small-scale structures often tend to merge into larger ones in an “upscale”

cascade of energy. This is opposite to typical behaviour in 3D turbulence. In this example we initialize the height

field such that as we move from south to north the zonal (longitudinal) wind switches from easterly to westerly to

easterly to westerly, just like conditions on Jupiter:

• orography = FLAT

• initial conditions = SINUSOIDAL

• initially geostrophic = true

• add random noise = true

Exercise: Run a simulation of at least 15 days to investigate how persistent anticyclones form, their longevity and

the extent to which over time they merge together.

4.5 Orographic Rossby waves

A dominant feature of the Earth’s atmosphere is the presence of large-scale Rossby waves, or planetary waves.

In the northern hemisphere, these are excited by flow over major mountain ranges such as the Himalayas and the

Rockies. Let’s first simulate the flow over an isolated Gaussian mountain:

• orography = GAUSSIAN MOUNTAIN

• initial conditions = UNIFORM WESTERLY

• initially geostrophic = true

• forecast length days = 4;
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Exercise: Explain the initial meander in terms of vortex stretching and compression.

Exercise: Rerun the simulation with f = 0 s−1 and β = 0 m−1 s−1. What happens? Why?

Exercise: Rerun the simulation with f = 1 × 10−4 s−1 and β = 0 m−1 s−1. What happens? Why?

A more realistic simulation of northern hemisphere conditions on Earth can be realised with the following:

• orography = EARTH OROGRAPHY

Note that you will need to place the file digital elevation map.mat in the current working directory.

Exercise: What features of the mean large-scale flow on Earth can be identified?

4.6 Equatorially trapped waves

Numerous types of wave can occur in the Tropics that are trapped next to the equator because the Coriolis parameter

goes through zero at this point. In this example, values of f0 and β are chosen to simulate an equatorial beta plane,

with the equator running horizontally through the middle of the domain. The pressure field is initialized such that

there are easterlies near the equator, but with shear to either side on which instabilities can grow:

• f0 = 0 s−1

• β = 2.5 × 10−11 m−1 s−1 (i.e. write beta = 2.5e-11)

• orography = FLAT

• initial conditions = EQUATORIAL EASTERLY

• add random noise = true

You may need to extend the simulation for 15 days or so.

Exercise: Visit http://www.met.rdg.ac.uk/˜swsyangg/eq wave.html to identify which type of

wave you have simulated. Note that this web site shows the initial pattern, but very rapidly nonlinear effects

will cause it to be increasingly distorted.

4.7 Equatorial Kelvin wave

Another type of equatorially trapped wave that is observed in the ocean is the Kelvin wave. This is a kind of gravity

wave that occurs in the oceanic mixed layer; because the mixed layer is shallow, it travels slow enough that the

Coriolis force can act on it. Specifically the fact that the Coriolis force acts to the right of a parcel’s direction of

motion in the northern hemisphere and to the left of its direction of motion in the southern hemisphere means that

a positive height anomaly propagating along the equator will be reinforced by the Coriolis force (and therefore

long-lived), only if it is travelling in one particular direction. This is the equatorial Kelvin wave.

Rather than reduce the depth of the simulation (and the plotting script) to be equivalent to the oceanic

mixed layer, the simplest way to simulate an equatorial Kelvin wave in this model is to perform the gravity wave

experiment above, but at the equator and with β increased by a factor of 20 to make the Coriolis force relatively

much more important.

• f0 = 0 s−1

• β = 5 × 10−10 m−1 s−1

• orography = FLAT

• initial conditions = GAUSSIAN BLOB

• initially geostrophic = false

• add random noise = false

• output interval mins=15;

• forecast length days=4;

Exercise: Which is the equatorial Kelvin wave and which is the equatorial Rossby wave in your simulation?

5



4.8 Weather forecast

To get an idea of the suitability of the shallow-water equations to make weather forecasts, we will initialize them

with the pressure field from the ECMWF reanalysis from 1 July 2000. This is actually from the southern hemi-

sphere, but flipped to be run in the northern hemisphere with no orography. If you have just run simulations at the

equator, be sure to reset f0 and β to the values in Table 1.

• orography = FLAT

• initial conditions = REANALYSIS

• initially geostrophic = true

• forecast length days = 4;

• f = 1e-4;

• beta = 1.6e-11;

• add random height noise = false;

Note that you will need to place the file reanalysis.mat in the current working directory.

Exercise: Initially in the forecast, the height field shows rapid fluctuations. What causes these?
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