
Computer Practical: Solar System Model
Paul Connolly, September 2020

1 Overview

In this computer practical, a solar system model implemented in the compiled language FORTRAN is used to
demonstrate analysis of time-series data using Fourier methods and understand interactions between planets and
stars. Fourier methods are often used to analyse time-series that are periodic (e.g. seismology, and noise frequen-
cies).

2 Model formulation

The three-dimensional model is implemented in FORTRAN. The FORTRAN code solves for the motion of the
planets and writes the output into data lists called ‘arrays’, which it then writes to a special file format known as
NetCDF. This file can then be read in and plotted by Python. It predicts and stores the position and velocity in
all three dimensions of all of the planets and the sun. The model applies both Newton’s Second Law of Motion
(~F = m~a) and Newton’s Law of Universal Gravitation:

~F = −G
m1m2

r3 ~r (1)

Consider a mass, m1, and mass, m2, separated in space by distance:

r1,2 =

√
(x1 − x2)

2
+ (y1 − y2)

2
+ (z1 − z2)

2 (2)

Note that this is just the distance between two points at (x1, y1, z1) and (x2, y2, z2) respectively. Newton’s law of
Gravitation says the magnitude of the force, | ~F1,2| between these two masses is:

| ~F1,2| = −G
m1m2

r2
1,2

(3)

where G = 6.67× 10−11 m3 kg−1 s−2 is the gravitational constant. We need to find the force acting along the x, y
and z axes in three dimensions, so we apply Equation 1 to get:

Fx,1,2 = −G
m1m2

r3
1,2
× (x2 − x1) (4)

Fy,1,2 = −G
m1m2

r3
1,2
× (y2 − y1) (5)

Sun

Mercury

Venus

Earth

+others...

Figure 1: Schematic of the scenario being modelled, where the arrows represent the forces each body experiences
due to the interaction with all other bodies.

1

Fz,1,1 = −G
m1m2

r3
1,2
× (z2 − z1) (6)

(7)

all we have done here is take the magnitude of the force and multiplied by the ratio of the distance along each
respective axis and the distance between the masses. This is just two interacting masses, but for multiple we can
just add up the contributions from each mass, e.g. for the x-axis:

Fx,1 = −G
m1m2

r3
1,2
× (x2 − x1)− G

m1m3

r3
1,3
× (x3 − x1)− · · · (8)

Fx,1 = −
∑
i 6=1

G
m1mi

r3
1,i
× (xi − x1) (9)

This is just for the net force on one mass, but we need to consider the forces on all masses. Once we know these
forces, which change with time, we then set equal to the product of mass and acceleration along each axis. So for
the motion along the x-axis we have:

Fx,1 = m1
d2x
dt2 (10)

These are the equations that the FORTRAN model can solve for us.

3 Downloading and compiling the code

Log into the server computer with a Google Chrome SSH window. Also, log into the server computer with a
Google Chrome SFTP window. Space the windows out on your screen so that you can easily move between them.
If you have not done this already, download the code you will be using today from GitHub by typing the following:

git clone https://github.com/EnvModelling/solar-system-model

this should download the code to your working directory.
In order to access the files you will need to change the working directory to where the files are. Type the following:
cd solar

followed by the tab key and the command should auto-complete. Then press the enter key.

Type ls followed by the enter key. The screen should list the files in this directory.
Finally, type make followed by the enter key. This will compile the FORTRAN code into machine code that the
computer can run.

4 Viewing and Editing the code

We will use the nano text editor to view some files. The file that takes input data is called namelist.in. To
see what variables we can change, type:

nano -l namelist.in

the -l means to show line numbers. The code can be edited in the text editor and saved by typing Ctrl-X at the
same time and pressing Y to save the file. The important lines are lines 42-49 of this file. The interact variable
has length 10 and each element is set to either .true. or .false.. .true. means that object interacts will
all other objects; whereas .false. means it does not interact.

The exclamation mark is a so-called ’comment’ in FORTRAN. This means the code does not read it.
Therefore we can see the default is for the the planets to only interact with the sun (as lines 48 and 49 do not have
an exclamation mark at the start.

2

Table 1: Parameters that you will change, which control the behaviour of the model.

Variable Default value Description
interact(1:10) All false except the first one specify which bodies interacting with each other
tfinal 1.d4 this means 1.e4. It is the length of the simulation in years.
gm values for the solar system The product of G and the object’s mass.

Table 2: Approximate orbital periods of each of the planets.

Planet Period in earth years
Mercury 0.25
Venus 0.6
Earth 1.0
Mars 1.9
Jupiter 11.9
Saturn 29.5
Uranus 84.0
Neptune 164.8
Pluto 248.0

5 Running the model

After the code has been compiled (see Section 3), the procedure for running the model is to type:

1. Edit the file namelist.in to configure the model.

2. Type ./run.sh at the command line, followed by enter to run the model.

Table 1 describes the parameters in namelist.in that can be modified, although obviously you can hack any
part of the code if you want to. Not that if you do change any FORTRAN code you will need to type make again
to compile the code to the machine executable.

6 Experiments

FOR ALL EXPERIMENTS: I STRONGLY SUGGEST YOU OPEN UP A WORD OR POWERPOINT DOCU-
MENT AND INSERT THE FIGURES AND MAKE SOME NOTES AS YOU GO. YOU COULD BE ASKED
QUESTIONS ABOUT THEM IN THE ASSESSMENT.

6.1 3-D Plot of planetary orbits

The first simulation to do is a standard simulation where the planets only interact with the sun. Kepler orbits are
accurate over 1000 year time-scales and produce perfectly elliptical orbits (so-called Keplerian orbits after the
Philosopher who studied the mathematics of the orbits of the planets). This is the default case, so we just need to
type:

./run.sh

at the command line, followed by enter. The code will take about 2-minutes to run and an output file will be
created. Check that the file is there by typing ls /tmp/<username>/ where <username> is your username.

3

Exercise: To plot the orbits of the planets you will need to run a Python script. Type the following, pressing
enter after each line

cd python/

python3 plot_solar_system01.py

after a short while Python will put a file in the ls /tmp/<username>/ directory. To download it, go to
your SFTP window and type:

get /tmp/<username>/orbits.png

followed by enter, where <username> is your username. This should be a 3-D plot of the planets orbits.

6.2 Time series plot of sun-planet distance: perihelion and aphelion)

You will now plot the distance between the sun and the planets against time. From the SSH window in the python
directory type python3 plot_solar_system02.py at the command line, followed by enter. When it is
finished go to your SFTP window and type:

get /tmp/<username>/milankovitch.png

followed by enter, where <username> is your username.

You should see 9 plots showing the distance between the planets and the sun vs time. These show various peaks
and troughs, which are distances of perihelion (closest approach) and aphelion (furthest distance). The shape of
the oscillations do not change over the 10000 years shown.

Exercise: Look at the plot of the sun-Pluto distance versus time. From this plot how can you get the orbital period
of earth? (i.e. the time taken to go once around the sun).

6.3 Fourier Transform (and harmonics)

Now you will look at the periodic oscillations in your data a different way by performing a Fourier transform,
which is a plot of power against frequency (or time-period) of a wave. In the SSH window, in the python directory
type:

python3 plot_solar_system03a.py

followed by enter. When it is finished go to your SFTP window and type:

get /tmp/<username>/fourier.png

followed by enter, where <username> is your username.

This is a frequency spectrum of all of the planet-sun distances.

Exercise: How do the peak values in each of the plots compare to the orbital period of each planet (Table 2)?

Exercise: We will look at the plot for Earth in more detail. Edit the plot_solar_system03a.py by typing
nano -l plot_solar_system03a.py. On line 48 you will need to edit the line so that it says:

plt.xlim((0.1, 1.2))

(be sure to delete the # sign, which is a comment line in Python). After editing, type Ctrl-X, and then
save. Then run the python script again:

python3 plot_solar_system03a.py

4

Download the fourier.png plot again, using SFTP, which will now have a zoomed in x-axis (make sure
you have saved and made notes on the previous plot).

You can see there are several peaks of lower power than the main peak. Estimate their value from the plot
write down their values.

Take the reciprocal of the x-value of these 4 peaks to get the orbital frequency (i.e. one divided by the time
period) and then divide each result by the smallest of the 4 frequencies (the one corresponding to the orbital
period). What do you notice?

Why do you think you get this result?

If you spot any peaks in the Fourier plot that have a whole number multiple of the main peak’s frequency it
is likely due to this effect.

6.4 Interaction between planets / conjunction

Jupiter, with its orbital period of around ∼ 11.8 years interacts with the planets to perturb their orbits from perfect
ellipses over 10,000 and 100,000 year time-scales. These are known as Milankovitch cycles and are important to
the study of paleo-climate. Here you will run the model including this interaction, albeit only for 10,000 years, so
you wont see the full Milankovich cycle (although there is nothing to stop you running the model for longer)1.
The settings to use are as follows. You will need to move out of the python directory up one. Type:

cd ..

followed by enter to do this. Then edit namelist.in to:

• delete the exclamation mark (comment) at the start of lines 45 and 46.

• add exclamation marks (a comment) at the start of lines 48 and 49.

Now run the model again by typing ./run.sh at the command line, followed by enter. After 2 minutes the
simulation will be finished. After this change back to the python directory by typing:

cd python

followed by enter.

Exercise: Now edit the plot_solar_system03a.py by typing nano -l plot_solar_system03a.py.
On line 48 you will need to edit the line so that it says:

plt.xlim((10, 30))

type Ctrl-X, and then save. Then run the python script again:

python3 plot_solar_system03a.py

followed by enter.

Download the fourier.png plot again, using SFTP, which will now have a zoomed in x-axis on Saturn.

You should see a little bump on the line for Saturn. This is the period corresponding to the conjunction of
Saturn and Jupiter: the so called ‘Great conjunction’. This is when Jupiter and Saturn are closest together.
Read the value of this off the x-axis (approximately).

Exercise: We may calculate the period of the great conjunction, T , using the formula:

1
T

=
1
Tj
− 1

Ts
(11)

where Tj ∼= 11.8 years is the orbital period of Jupiter and Ts ∼= 29.5 years is the orbital period of Saturn.
How does the theoretical value compare to the value from your graph?

1If you would like to run the model for 100,000 years, change line 39 of namelist.in to tfinal=1.d5,

5

6.5 Sun’s wobble / Exo-planets

Gas giants in other solar systems are often found by looking at the motion of distant stars. If a ‘wobble’ is detected
then there must be a large object orbiting the parent star. Here we look at the sun’s wobble due to planets in our
solar system.

Exercise: from the python directory type python3 plot_solar_system03b.py on the command line and
press enter. Then download the file from the SFTP window by typing:

get /tmp/<username>/fourier_sun.png

where <username> is your actual username, followed by enter.

Can you see the influences of all the planets in the solar system? Which planet(s) have a large influence on
the motion / wobble of the sun?

6

