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A.S
Example 2.5

Answer

Example 2.5a

Answer

Lecture 6

Derive the ‘radial’ growth vs time of an ice crystal with circular disk morphol-
ogy, with initial starting radius a = a,. Use the expression for the capacitance
Co = 27“ and that the mass of a disk is m = ma*hp;, where h = 2 um is the
thickness of the disk.
We use the ice crystal growth equation (Equation 2.46). Make a change of
variable by differentiating the expression for the mass (above):
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Then set the RHS equal to the RHS of Equation 2.46. You should have:
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Call the term in brackets on the RHS, A. Integrating yields:
+ 4 At
a=ay+ —
°" hn

For the problem above what is the radial growth rate after 100 seconds? and
therefore what is the temperature of the ice crystal? (assume the saturation
ratio s; = 1.10 and T, = —15°C, P = 900hPa and the initial size is @y = Sum).
Use Equation A.2

— For ice crystals at these ambient conditions you should find that A =
o is equal to = 2.53 x 10712 m? s~!. Note that p; = 910

(1)
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kg m= and L, = 2.8 x 10°Jkg~'.

— So the growth rate is % = =—2--25x 1072 = 1.6 x 10 ms~".
— The ‘radius’ after 100 seconds is a(r) = 5x 107° + =1+ x2.5x 1072 x
100 = 164um.

— For the initial temperature of the crystal use the mass growth rate (cal-
culated using Equation A.1) and equate the latent heat of sublimation to
the heat lost by Fourier’s law.

— The mass growth rate is therefore:

dm

- - 2x5%x 107 x2x10°%x910x 1.6 x 107°

= 29x107"

— Multiply the mass growth rate by the latent heat of sublimation, L; =
2.82 x 10°, and equate to Fourier’s law (note, k = 0.023 W m™2):

29x1074%x282%x10°=4x2%xak(T,-Ts).
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— Rearranging for 7,;: T, — T = 0.09K. So the ice crystal temperature is
elevated above 258.15K by 0.09 K.

Example 2.5b What is the radial growth rate of a drop at the same conditions?

Answer ¥ = —A ___ yunder these conditions, A is the right hand side of Equa-

it (ama2)'?’
tion 2.37, but the supersaturation is not 0.10 as that is the supersaturation

over an ice surface.

— The saturation ratio over ice (1.10 in this case) can be converted to
vapour pressure, e by multiplying by the saturation vapour pressure e,;
from the saturation vapour pressure (Equation 1.12).

e o] _ 2.82x10° 1 1 ~
— This gives e = 1.10 X 610.7 exp( 161 [273_15 - 258_15]) =~ 182 Pa.
— To get the saturation over liquid water divide the vapour pressure by the

saturation vapour pressure over a liquid water surface: BRLE =
2.5x10

1 i
CXP| 61 [273.|5 _258.15])

0.95. So the supersaturation is 0.95 — 1 = —0.05. Meaning the drop will
evaporate. The importance of this will become apparent when we cover
supersaturation in clouds (Bergeron-Findeison process).

— A in this case is therfore = —8.5 x 107" ms™'.

. _ —15
— So the growth rate is A2 o = 8.5x10 7 = —1.76 X
(2At+ag) (2x-8.5x10-15x100+(5x10)’)

107 ms~!.

Example 2.5¢ If there are 100 mg~! of drops radius 10u m at -36°C how long in seconds
would it take to freeze halve of them by homogeneous freezing?
Answer Use Equation 2.42 which defines a stochastic process (like radioactive decay)
in which drops freeze to form ice crystals.

— It can be recognised that the rate of change of ice crystals is minus

the rate of change of drops so Equation 2.42 can be written: dN% =

NaropsVaropJ (T), which has a solution similar to radioactive decay: #;, =

N
v 0 (§) = 77 n @)
— The nucleation rate, J, (Equation 2.41) has a value of 3.15 x 10'% at
_36°C.

— The volume of a 10u m drop is £ (10 X 10‘6)3 =523 %1071 m’.

— The half-life is therefore: #(t) In(2) = r—rm——= X 0.693 = 420s




