A. 5 Lecture 6

Example 2.5 Derive the 'radial' growth vs time of an ice crystal with circular disk morphology, with initial starting radius $a=a_{0}$. Use the expression for the capacitance $C_{0}=\frac{2 a}{\pi}$ and that the mass of a disk is $m=\pi a^{2} h \rho_{i}$, where $h=2 \mu \mathrm{~m}$ is the thickness of the disk.
Answer We use the ice crystal growth equation (Equation 2.46). Make a change of variable by differentiating the expression for the mass (above):

$$
\begin{equation*}
\frac{d m}{d t}=2 a \pi h \rho_{i} \frac{d a}{d t} \tag{A.1}
\end{equation*}
$$

Then set the RHS equal to the RHS of Equation 2.46. You should have:

$$
\begin{equation*}
\frac{d a}{d t}=\frac{4}{h \pi}\left(\frac{s_{i}-1}{\frac{\rho_{i} R_{v} T_{\infty}}{e_{s} D_{v}}+\frac{\rho_{i} L_{v}}{k T_{\infty}}\left(\frac{L_{v}}{R_{v} T_{\infty}}-1\right)}\right) \tag{A.2}
\end{equation*}
$$

Call the term in brackets on the RHS, A. Integrating yields:

$$
a=a_{0}+\frac{4}{h \pi} A t
$$

Example 2.5a For the problem above what is the radial growth rate after 100 seconds? and therefore what is the temperature of the ice crystal? (assume the saturation ratio $s_{i}=1.10$ and $T_{\infty}=-15^{\circ} \mathrm{C}, P=900 \mathrm{hPa}$ and the initial size is $a_{0}=5 \mu \mathrm{~m}$).
Answer Use Equation A. 2

- For ice crystals at these ambient conditions you should find that $A=$ $\frac{s_{i}-1}{\frac{L_{s}}{\rho_{s i} T_{T} T_{\infty} T_{T_{v}}}+\rho_{i} \frac{L_{s}}{T_{\infty \times k}}\left(\frac{L_{s}}{R_{\nu} T_{s}}-1\right)}$ is equal to $\cong 2.53 \times 10^{-12} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. Note that $\rho_{i}=910$ $\mathrm{kg} \mathrm{m}^{-3}$ and $L_{s}=2.8 \times 10^{6} \mathrm{Jkg}^{-1}$.
- So the growth rate is $\frac{d a}{d t}=\frac{4}{2 \times 10^{-6} \pi} 2.5 \times 10^{-12} \cong 1.6 \times 10^{-6} \mathrm{~m} \mathrm{~s}^{-1}$.
- The 'radius' after 100 seconds is $a(t)=5 \times 10^{-6}+\frac{4}{2 \times 10^{-6} \pi} \times 2.5 \times 10^{-12} \times$ $100 \cong 164 \mu \mathrm{~m}$.
- For the initial temperature of the crystal use the mass growth rate (calculated using Equation A.1) and equate the latent heat of sublimation to the heat lost by Fourier's law.
- The mass growth rate is therefore:

$$
\begin{aligned}
\frac{d m}{d t} & =2 \times 5 \times 10^{-6} \pi \times 2 \times 10^{-6} \times 910 \times 1.6 \times 10^{-6} \\
& =2.9 \times 10^{-14}
\end{aligned}
$$

- Multiply the mass growth rate by the latent heat of sublimation, $L_{s}=$ 2.82×10^{6}, and equate to Fourier's law (note, $k \cong 0.023 \mathrm{~W} \mathrm{~m}^{-2}$):

$$
2.9 \times 10^{-14} \times 2.82 \times 10^{6}=4 \times 2 \times a k\left(T_{a}-T_{\infty}\right)
$$

- Rearranging for $T_{a}: T_{a}-T_{\infty} \cong 0.09 \mathrm{~K}$. So the ice crystal temperature is elevated above 258.15 K by 0.09 K .

Example 2.5b What is the radial growth rate of a drop at the same conditions?
Answer $\frac{d a}{d t}=\frac{A}{\left(2 A t+a_{0}^{2}\right)^{1 / 2}}$, under these conditions, A is the right hand side of Equation 2.37, but the supersaturation is not 0.10 as that is the supersaturation over an ice surface.

- The saturation ratio over ice (1.10 in this case) can be converted to vapour pressure, e by multiplying by the saturation vapour pressure $e_{s i}$ from the saturation vapour pressure (Equation 1.12).
- This gives $e=1.10 \times 610.7 \exp \left(\frac{2.82 \times 10^{6}}{461}\left[\frac{1}{273.15}-\frac{1}{258.15}\right]\right) \cong 182 \mathrm{~Pa}$.
- To get the saturation over liquid water divide the vapour pressure by the saturation vapour pressure over a liquid water surface: $\frac{182}{\exp \left(\frac{2.5 \times 10^{6}}{441}\left[\frac{1}{273.15}-\frac{1}{258.15}\right]\right)} \cong$ 0.95 . So the supersaturation is $0.95-1 \cong-0.05$. Meaning the drop will evaporate. The importance of this will become apparent when we cover supersaturation in clouds (Bergeron-Findeison process).
$-A$ in this case is therfore $\cong-8.5 \times 10^{-15} \mathrm{~ms}^{-1}$.
- So the growth rate is $\frac{A}{\left(2 A t+a_{0}^{2}\right)^{1 / 2}} \cong \frac{-8.5 \times 10^{-15}}{\left(2 \times-8.5 \times 10^{-15} \times 100+\left(5 \times 10^{-6}\right)^{2}\right)^{1 / 2}} \cong-1.76 \times$ $10^{-9} \mathrm{~ms}^{-1}$.
Example 2.5c If there are $100 \mathrm{mg}^{-1}$ of drops radius $10 \mu \mathrm{~m}$ at $-36^{\circ} \mathrm{C}$ how long in seconds would it take to freeze halve of them by homogeneous freezing?
Answer Use Equation 2.42 which defines a stochastic process (like radioactive decay) in which drops freeze to form ice crystals.
- It can be recognised that the rate of change of ice crystals is minus the rate of change of drops so Equation 2.42 can be written: $\frac{d N_{\text {drops }}}{d t}=$ $N_{\text {drops }} V_{\text {drop }} J(T)$, which has a solution similar to radioactive decay: $t_{1 / 2}=$ $\frac{1}{V J(t)} \ln \left(\frac{N_{I}}{N_{F}}\right)=\frac{1}{V J(t)} \ln (2)$
- The nucleation rate, J, (Equation 2.41) has a value of 3.15×10^{12} at $-36^{\circ} \mathrm{C}$.
- The volume of a $10 \mu \mathrm{~m}$ drop is $\frac{\pi}{6}\left(10 \times 10^{-6}\right)^{3} \cong 5.23 \times 10^{-16} \mathrm{~m}^{3}$.
- The half-life is therefore: $\frac{1}{V J(t)} \ln (2) \cong \frac{1}{5.23 \times 10^{-16} \times 3.15 \times 10^{12}} \times 0.693 \cong 420 \mathrm{~s}$

