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2.5 Growth of single ice crystals
Recall that the electrostatic potential function, Φ (Ē = −∇Φ) satisfies Laplace’s
equation, ∇2Φ = 0 and that ΦS is a constant on a conductor and Φ∞ is a constant
at ∞. If we assume a growing or sublimating ice crystal of the same geometry as a
conducting body, in the steady-state ρv also satisfies Laplace’s equation.

Recall Gauss’ law from electro-statics, that the flux of Ē through a closed sur-
face is equal to the charge enclosed within the surface (remember Q = CV):∫

S
∇Φ · n̂dS = −

Q
ε0

= −
1
ε0

Ce (ΦS − Φ∞) (2.45)

Therefore we can draw a complete analogy with the growth of a crystal:

dm
dt

=

∫
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)
(2.46)

Note that if the capacitance is that of a spherical conductor (Ce = 4πε0a) we get the
same result as for a drop. We make some changes to the definition of Ce, since there
is no need to use ε0 and we also multiply by 4π to get:

dm
dt

= 4πCDv
(
ρv,∞ − ρv,S

)
(2.47)

Look similar to the case for a drop? So we can just take the result we derived
previously:
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) (2.48)

Note the changes are that we now use C instead of a, si instead of sl, esi instead of
esl and Ls (latent heat of sublimation) instead of Lv.

For a simple, thin hexagonal plate we calculate the capacitance of a circular disk
or radius a, i.e. C0 = 2a

π
. Nowadays computer models can calculate the capacitance

of more complex geometries, but McDonald (1963) measured the electrostatic ca-
pacitance of brass ice crystal models and came up with shape factors to multiply C0

by to get the capacitance of other geometries—see Figure 2.5. The shape factor, f ,
can be used to calculate the capacitance of other crystals by C = f ×C0.

2.6 Vapour growth and nucleation within clouds
Now we have covered CCN, IN and growth by vapour diffusion of single drops
and ice crystals lets start to put all of these things together—see Figure 2.6. Note
that in general because IN are typically in much lower concentrations than CCN
the number of ice crystals formed by heterogeneous ice nucleation is much much
less than that formed by homogeneous ice nucleation. This can have an unexpected
effect on the ice crystal number.
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Figure 2.5: McDonald’s early work showed that the electro-static analogy works
very well for ice crystal growth.

Example 2.4 Derive the ‘radial’ growth vs time of an ice crystal with circular disk
morphology, with initial starting radius a0.

Other questions to consider:

• For the problem above what is the radial growth rate after 100 seconds? and
therefore what is the temperature of the ice crystal? (assume the saturation
ratio si = 1.10 and T∞ = −15◦C and the intial size is a0 = 5µm).

• What is the radial growth rate of a drop under the same conditions?
• If there are 100 mg−1 of drops radius 10µ m at -36◦C how long in seconds

would it take to freeze halve of them by homogeneous freezing?
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Figure 2.6: Top 4 figures shows a comparison between two model simulations of
a warm cloud. It can be seen that the droplet number increases with increasing
vertical wind because the supersaturation at cloud base increases; Middle 4 figures
shows a comparison between two model simulations of a cold cloud where only
homogeneous nucleation can act. It can be seen that liquid water condenses first
(supercooled liquid water) and then homogeneous nucleation occurs. The final ice
crystal number concentration is highest in the case with the highest updraft. Once
ice crystals form they remove supersaturation and conditions approach ice satura-
tion (equilibrium). The evaporation of drops in favour of ice crystal growth is known
as the Bergeron-Findesen Process; Bottom 4 figures shows a comparison between
two model simulations the same cold cloud as middle except that there are some
heterogeneous ice nuclei in addition to homogeneous nucleation. In the case of the
slow updraft conditions of water saturation are not reached because the low number
of ice crystals is enough to deplete the supersaturation so that supercooled liquid
water cannot form. In the case with the high updraft speed saturation over liquid
water is reached and therefore both heterogeneous and homogeneous nucleation can
occur. ∴ adding IN in a cold cloud tends to reduce the total crystal number.
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THE KEY POINTS TO TAKE HOME HERE ARE:

• Be able to apply the equations of ice crystal growth for crystals of different
morphology.

• Understand different ice nucleation modes and the variables important to ice
nucleation in clouds.

• Be able to calculate the number of ice crystals formed by homogeneous nu-
cleation.

• Understand how these processes interact within clouds.
• Know what the Bergeron–Findeisen (B–F) mechanism is and why it can lead

to precipitation.


