A.3 Lecture 3 and 4

This question on seeding stratocumulus clouds can be calculated analytically, meaning I could ask you about it on the exam. If so you will be given Equation 1.33 and 1.37 There is a spreadsheet to do the calculations if you're struggling.

- Example 1.3 A stratocumulus cloud, 100m thick, has a liquid water mixing ratio of 0.5 g m^{-3} and a number concentration of 50 drops cm^{-3} of air. Over a period of time you are able to increase the concentration of salt particles entering the cloud base to 500 drops cm^{-3} of air. In both cases the size distribution can be considered to be exponentially distributed. What is the change in the cloud albedo?
 - Answer You should be able to derive (and demonstrate the derivation in the exam) Equation 1.38 in the notes. Once you get to here it is quite straight forward.

 - The third moment, M₃ can be calculated by dividing the liquid water mixing ratio by πρ_w/6 so that M₃ = 0.5×10⁻³×6/π×1000 ≈ 9.55 × 10⁻⁷ m³ m⁻³.
 The zeroth moment, M₀ = 50 × 10⁶ m⁻³ so the second moment from Equation 1.38 is 0.6 (×50 × 10⁶)^{1/3} × (9.55 × 10⁻⁷)^{2/3} ≈ 0.0214.
 The albedo from Equation 1.37 is A_c = π×0.0214×100/π×0.0214×100+15.4 = 0.30.

 - After addition of seed aerosol, $M_0 = 500 \times 10^6 \text{ m}^{-3}$ so the second moment from Equation 1.38 is $0.6 (\times 500 \times 10^6)^{1/3} \times (9.55 \times 10^{-7})^{2/3} \cong$ 0.0462.
 - The albedo from Equation 1.37 is $A_c = \frac{\pi \times 0.0462 \times 100}{\pi \times 0.0462 \times 100 + 15.4} = 0.49.$
 - So $\Delta A_c = 0.49 0.30 = 0.19$.