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Topic 2

Physics of cloud formation

Now we have covered the necessary basic thermodynamics and definitions for cloud
formation and also noted how particle sizes are distributed in clouds we will now
start to consider the necessary physics of how cloud particles form and grow into
the sizes observed in clouds. We will first cover how cloud drops are formed, then
we will cover the subsequent growth of cloud drops and ice crystals.

2.1 Fick’s law of diffusion and Fourier’s law of heat transfer
These two laws can be used to great effect in describing the initial growth of water
drops and ice crystals.

2.1.1 Diffusion of water vapour

If ρv represents the concentration of water vapour mass then the current density of
water vapour is given by Fick’s 1st law:

j̄ = −Dv∇ρv (2.1)

where Dv is the diffusivity of water vapour in air (m2s−1) and j̄ is the diffusion flux
(kg m−2s−1). This law describes the observation that vapour moves from high to low
concentrations in order to smooth out gradients. Note that Dv depends on T and P:
Dv = 2.11 × 10−5

(
T

273.15

)1.94 (
101325

P

)
.

Another thing to note is that the vapour mass is conserved, so similar to Maxwell’s
equations (for an incompressible flow) we have a continuity equation:

∂ρv

∂t
= −∇ · j̄ (2.2)

this states that the local time rate of change of the vapour field is equal to the net
outflow and inflow of vapour mass, j̄ (current density).

Substitution of Eq 2.1 into Eq 2.2 yields Fick’s second law of mass diffusion:

∂ρv

∂t
= Dv∇

2ρv (2.3)

So the law governing diffusion of mass shows that the local time rate of change of
mass in a volume is proportional to the second gradient of the mass field.

2.1.2 Diffusion of heat

Perhaps not unsurprisingly because the transfer of heat by conduction is governed
by movement of particles (vibrations of molecules and electrons in a solid and colli-
sions and diffusion of molecules during random motion in a gas) the law governing
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heat transport by conduction is very similar to mass transfer by diffusion. It is called
Fourier’s law:

j̄h = −k∇T (2.4)

where k is the thermal conductivity of the air and j̄h is the current density of heat.
Note that k depends on T : k = (4.40 + 0.071T ) × 10−3

Assuming the air is relatively stationary then the local change of temperature of
the air will depend on the current density of heat to the air. If this heat is added at
a constant pressure (usually does) then the rate of change of temperature due to the
addition of heat will be:

∂T
∂t

= −
∇ · j̄h

ρcp
(2.5)

substituting Eq 2.4 in Eq 2.5 gives us:

∂T
∂t

= κ∇2T (2.6)

where κ = k
ρcp

.
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2.2.2 Cloud condensation nucleus counter

This is an instrument that measures the number of CCN in the atmosphere. It makes
use of Fick’s 2nd law and the result of Fouriers law between two flat parallel plates
that have different temperatures. In this case there will be a continuous flow of
heat and water vapour from one plate the the other so the set-up is usually called a
continuous flow diffusion chamber.

• Have two parallel plates adjacent parallel plates held at different temperatures,
T1 and T2.

• Coat them both with water so that the vapour pressure on both plates is at
water saturation for the temperature of the plate es(T1) and es(T2).

• Flow filtered (letting CCN with sizes less than � 1µm through) air with CCN
suspended in it through the parallel plates.

• The CCN in the air will be exposed to a supersaturation and will start to grow
into cloud drops.

• Measure the size of the particles that come out of the instrument and count
them with an optical particle detector if they are bigger than 1µm.

Equations 2.3 and 2.6 can be applied for the steady state case, since neither change
with time:

∇2ρv = 0 (2.15)
∇2T = 0 (2.16)

which have solutions:

ρv(x) = ρv(0) +
ρv(L) − ρv(0)

L
x (2.17)

T (x) = T1 +
T2 − T1

L
x (2.18)

where L is the separation distance between the plates. Note that from the ideal gas
law ρv = e

RvT so that:

e(x)
T (x)

=
es(T1)

T1
+

es(T2)/T2 − es(T1)/T1

L
x (2.19)

and that the saturation vapour pressure between the plates:

es(x) = es(T (x)) (2.20)

The CCN counter is usually operated for a range of temperature differences
between the plates so that one can derive a number of ccn vs supersaturation plot—
so called a CCN activity spectrum.
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2.2.3 Measured concentrations of CCN

It is often found that measurements in the atmosphere using a CCN counter can be
fitted to a power law:

Nc = CS k (2.21)

where Nc is the number concentration of activated CCN and S is the percent super-
saturation. For polluted air C � 300 − 3000 cm−3 and k = 0.2 − 2.0 and for clean
air C � 30 − 300 cm−3 and k = 0.3 − 1.0.

It has been found that the number of cloud drops is a function of the vertical
wind speed in the cloud (Twomey, 1959), because this determines the rate of cooling
and therefore the peak supersaturation in the cloud. The reason for this is even
though supersaturation may be reached it takes time for vapour molecules to diffuse
to the CCN; hence a higher supersaturation can be achieved for a higher vertical
wind:

Nc � 0.88C2/(k+2)
[
70w3/2

]k/(k+2)
(2.22)

where w is the vertical wind speed in m s−1.
Example 2.2 A CCN counter is used to measure the number of active CCN verses
super-saturation at the ground. From analysis of the data a power-law (Equa-
tion 2.21) is fitted to the data, and the parameters of the fit are C = 200 cm−3 and
k = 0.50. Calculate the number of cloud drops activated at cloud base for a wind
speed of w = 0.2, 0.5, 1.0 and 5.0 m s−1.
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2.3 Growth of single cloud drops
In the case of diffusion of heat and mass between two parallel plates we assumed
a steady-state so that the diffusivity and thermal conductivity could be neglected.
For growth of droplets in the atmosphere we again assume a steady-state for Equa-
tion 2.3, but write down the Laplacian in radially symmetrical coordinates as we are
considering diffusion to a sphere:

∇2ρv =
d2

dr2 (ρv) +
2
r

d
dr

(ρv) = 0 (2.23)

One can see by substitution that a solution to this is ρv(r) = ρv,∞ + (ρv,a − ρv,∞) a
r ,

where ρv,∞ is the vapour density at∞ and ρv,a is the vapour density on the boundary
of the drop a. To get the growth rate of the drop, we need to compute the current
density (or flux) of water vapour entering the sphere per unit time and integrate over
the surface of the sphere. From Equation 2.1 (i.e. Fick’s 1st law) the current density
is:

j̄(r) = −Dv
d
dr
ρv = −Dv

(ρv,∞ − ρv,a)a
r2 (2.24)

which is the vapour current density measured away from the sphere (along r). On
the sphere’s surface this current density or flux is −D (ρv,a−ρv,∞)

a . Integrated over the
whole surface of the sphere we therefore have:

dm
dt

= 4πaDv(ρv,∞ − ρv,a) (2.25)

and using the ideal gas law ρ = e/(Rv × T ):

dm
dt

=
4πaDv

Rv

(
e∞
T∞
−

es(Ta)
Ta

)
(2.26)

Using similar arguments for the transfer of heat it can be shown that:

dq
dt

= 4πak(T∞ − Ta) (2.27)

If we assume that upon condensation the latent heat release is removed by the heat
flux away from the drop:

Lv
dm
dt

= −
dq
dt

(2.28)

So substituting Equation 2.27 in Equation 2.28 we obtain:

dq
dt

= −Lv
dm
dt

= 4πak(T∞ − Ta) (2.29)

which can be rearranged to give

Ta = T∞ +
Lv

4πak
dm
dt

(2.30)



TOPIC 2. PHYSICS OF CLOUD FORMATION 6

So heat is being added to the drop and being transferred away. The drop heats up be-
cause when the vapour molecules become incorporated into the drop they loose their
internal energy which is transferred to latent heat of vapourisation. Equations 2.25
and 2.29 were first derived by Maxwell. They along with an equation for the satu-
ration vapour pressure (Equation 1.11) give two equations with two unknowns and
can be solved iteratively using a computer.

To form an analytic expression one can make use the Clausius-Clapyron equa-
tion:

des

dT
=

Lves

RvT 2 ∴ (2.31)

es(Ta) = es(T∞) exp
(

Lv

Rv

(
Ta − T∞

TaT∞

))
(2.32)

es(Ta) � es(T∞)
(
1 +

Lv

Rv

(
Ta − T∞

T 2
∞

))
(2.33)

and Equations 2.26 and 2.30 to give:

dm
dt
�

4πaDves(T∞)
RvT∞

sl −
1 + Lvδ

RvT∞

1 + δ

 (2.34)

where δ = Lv
4πakT∞

dm
dt is very small and so, making approximations 1

1+δ
= 1 − δ and

δ
1+δ

= δ the expression in the brackets becomes sl − 1 + δ
(
1 − Lv

RvT∞

)
or sl − 1 +

Lv
4πakT∞

dm
dt

(
1 − Lv

RvT∞

)
. We can rearrange and make dm

dt the subject to get the result:

dm
dt

(
1 +

Dves(T∞)Lv

kRvT 2
∞

[
Lv

RvT∞
− 1

])
�

4πaDves(T∞)
RvT∞

(sl − 1) (2.35)

dm
dt
� 4πa

sl − 1
RvT∞

es(T∞)Dv
+ Lv

T∞k

(
Lv

RvT∞
− 1

) (2.36)

Now since dm
dt = d

dt 4/3πa3ρw = 4πa2ρw
da
dt we can write:

a
da
dt
�

sl − 1
ρwRvT∞

es(T∞)Dv
+

ρwLv
T∞k

(
Lv

RvT∞
− 1

) (2.37)

a
da
dt
� A (2.38)

(2.39)

where A is a constant depending on temperature and supersaturation. For constant
supersaturation and temperature etc the result of this is:

a(t) =

√
2At + a2

0 (2.40)
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where a0 is the intial radius of the drop. So after all that the increase in size of a
drop with time is a parabola. This equation shows that if a cloud contains some
large particles and some small particles the difference between the squares of the
particle sizes remains constant with time a2

0,1 − a2
0,2 so if they are growing they will

become closer together in size. Therefore this growth process alone cannot explain
the observed size distribution of drops within a cloud. ∴ other growth processes
need to be considered.

Now we have covered this theory for drops we can use it to determine the growth
rate of ice crystals; however, we need to take into account the deviation from spher-
ical geometry.

2.4 Ice nuclei
There has been some suggestions in the literature that because the number of CCN
activated depends on supersaturation over liquid water then the number of Ice Nu-
clei (IN) activated depends on supersaturation over ice. This has led to the develop-
ment of ice nucleus counters based on this principle.

2.4.1 Ice nucleus counter

Due to the success of the parallel plate continuous flow diffusion chamber for mea-
suring CCN, similar instruments have been made to measure IN. The differences
are:

• The temperature of the plates are held below the melting point for ice.
• The plates are coated with ice and not liquid water.
• Supersaturation is reached wrt ice and not necessarily water.

We will talk about some issues and types of IN in a couple of lectures time.
Example 2.3 How long does it take for a drop of diameter 10µm to grow to a
precipitation-sized drop of 2 mm given an in-cloud supersaturation of 2%? Assume
the temperature is 290k, pressure is 900hPa and calculate the diffusivity and ther-
mal conductivity from the expressions for Dv and k in your notes. Use Equation 1.11
for es.

Other questions to consider:
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• For the problem above what is the drop growth rate after 100 seconds? and
therefore what is the temperature of the drop? (hint: differentiate and substi-
tute in Equation 2.29).

• Formation of rain requires particles of different sizes, which have different
terminal fall-speeds. Given this can you say anything about why the growth
of drops by vapour diffusion is not able to explain the formation of rain in real
clouds?

THE KEY POINTS TO TAKE HOME HERE ARE:

• CCN spectra are parameterised using a power-law.
• Fick’s and Fourier’s laws—can be used to solve for diffusion of mass and heat

to / from drops.
• Explain why the temperature of a growing drop is warmer than it’s surround-

ings.
• The final result that the growth rate is a parabola.
• Be able to calculate a(t) due to vapour diffusion.
• Understand how continuous flow diffusion chambers work and that CCN and

IN counters operate on very similar principles.


