List of Symbols

- $\overline{\mathbf{j}}$ Current density of vapour mass
- \mathbf{j}_h Current density of heat
- \ddot{z} Acceleration of drop
- $\delta \rho$ Air density perturbation
- δP Pressure perturbation
- ϵ Ratio of gas constants for dry and moist air = 0.622
- η Viscosity of air.
- $\hat{\mathbf{k}}$ Unit vector in vertical direction.
- λ_0 Slope parameter for exponential fit (m⁻¹)
- ρ_0 Reference air density
- ρ_v Mass of water vapour per unit volume of air
- $\rho_{\nu,\infty}$ Vapour density at infinite distance from drop
- $\rho_{v,a}$ Vapour density on drop surface
- τ Residence time of salt particles in atmosphere
- v Wind velocity vector field
- $\theta_{q,sat}$ Wet equivalent potential temperature (K)
- *a* Drop radius
- *a* Radius of salt water drop
- A_c Albedo of a liquid layer cloud (fraction)
- A_c Albedo of a liquid layer cloud (fraction)
- A_E Area of Earth's surface

LIST OF SYMBOLS

- a_i Average radius of ice crystals
- a_l Average radius of liquid drops
- A_p Planetary albedo

ALMR Adiabatic liquid water mixing ratio kg/kg

- *C* Capacitance of an ice crystal
- C_0 Capacitance of a thin circular disk: $\frac{2a}{\pi}$
- C_D Drag coefficient of sphere falling in air
- c_i Specific heat capacity of ice
- c_p Heat capacity of dry air = 1005Jkg⁻¹K⁻¹
- c_p Specific heat capacity of air
- c_w Heat capacity of liquid water = 4187Jkg⁻¹K⁻¹
- c_w Specific heat capacity of liquid water
- *D* Particle diameter
- D_v Diffusivity of water vapour in air
- *e* Vapour pressure

E(D, d) Collision efficiency between drop of diameter D and d

- e_{∞} vapour pressure at infinite distance from drop
- e_v Vapour pressure at surface of drop
- $e_{s,drop}$ Vapour pressure at surface of drop
- $e_{sat,l}$ Saturation vapour pressure over liquid water
- e_{si} Saturation vapour pressure over flat liquid water surface
- e_{sw} Saturation vapour pressure over flat ice water surface
- *F* Average solar irradiance
- F_0 Solar flux at top of the atmosphere
- f_1 Fraction of Earth's surface covered by ocean
- f_2 Fraction of Earth's oceans covered by marine clouds

LIST OF SYMBOLS

 f_3 Fraction of marine clouds that are seeded

 $F_{diabatic}$ Processes changing θ that are not adiabatic.

 f_{H-M} Temperature dependent function for H-M multiplication.

- *g* Gravitational field strength
- *g* Gravitational field strength
- *H* Depth of boundary layer
- J Homogeneous nucleation rate of ice in supercooled water
- *k* Thermal conductivity of air
- L_f Latent heat of fusion
- L_s Latent heat of sublimation for water, ~ 2.82×10^6 J kg⁻¹
- L_{ν} latent heat of vapourisation for water $\approx 2.5 \times 10^{6} \text{J kg}^{-1}$
- L_{ν} latent heat of vapourisation for water $\approx 2.5 \times 10^{6} \text{Jkg}^{-1}$
- M_0 Zeroth moment of a size distribution
- M_2 Second moment of a size distribution
- M_3 Third moment of a size distribution
- m_{rime} The mass of rime accreted
- *N* Concentration of cloud drops in seeded cloud
- *N* Particle number density
- N_0 Concentration of cloud drops in un-seeded cloud
- n_0 Intercept parameter for exponential fit (m⁻⁴)
- *N_c* Number concentration of activated CCN
- N_i Number concentration of ice crystals
- N_l Number concentration of liquid drops
- *N_{IN}* Number concentration of ice nuclei
- n_{spray} Number of drops sprayed
- P Pressure

Р	Total pressure
---	----------------

- *P*⁰ Reference pressure
- P_1 Temperature of air at cloud base, K
- P_2 Pressure of air above cloud base, Pa
- P_c Pressure difference over drop interface
- P_{H-M} Production rate of ice due to H-M multiplication.
- Q Total water mixing ratio (vapour plus liquid) kgkg⁻¹
- R' Gas constant for dry air = 287Jkg⁻¹K⁻¹
- R_a Specific gas constant for air
- R_v Specific gas constant for water vapour
- *Re* Reynolds number $Re = \frac{ud\rho_a}{\eta}$
- S_i Supersaturation over ice
- s_i saturation over ice
- S_l Supersaturation over liquid water
- *S*₁ Supersaturation over liquid water
- s_l saturation over liquid water
- T Temperature
- T_1 Temperature of air at cloud base, *K*
- T_2 Temperature of air above cloud base, Pa
- T_{∞} Temperature at infinite distance from drop
- T_a Temperature at the surface of drop
- T_c Temperature in degrees celcius.
- *u* Velocity of sphere falling in air
- V_{spray} Total volume of sea spray
- *w* Ascent velocity of parcel
- *w* Vertical wind speed

LIST OF SYMBOLS

- w_i Ice water mixing ratio
- w_l Liquid water mixing ratio.
- w_l Liquid water mixing ratio
- w_s Saturated vapour mixing ratio kgkg⁻¹
- w_v Water vapour mixing ratio
- *y* Maximum displacement between drop centres which may result in collision