List of symbols

- \ddot{x} Second derivative wrt time of x—i.e. acceleration along x
- ÿ Second derivative wrt time of y—i.e. acceleration along y
- ΔP Pressure difference (N m⁻² or Pa)
- ΔP change in pressure
- Δx change in distance
- v Number of ions that solute dissociates into
- Ω Rotation frequency of earth in radians per second. i.e $\frac{2\pi}{24 hours}$
- ω Angular frequency of oscillation (rad s⁻¹)
- ϕ Latitude: watch radians and degrees mode
- ρ_a Density of air (units of kg m⁻³)
- ρ_s Density of the solute (units of kg m⁻³)
- ρ_v Mass of water per unit volume
- ρ_w Density of pure water, 1000 kg m⁻³
- ρ_{sol} Density of the water / solute mixture (units of kg m⁻³)
- ρ Density of air $\sim 1 \text{ kg m}^{-3}$
- σ Surface tension of water, 0.075 N m⁻¹
- ${\bf a}$ acceleration (a vector quantity measured in m s⁻²)
- **F** Force (a vector quantity measured in newtons)
- \mathbf{F}_A Force exerted by object A on something else
- \mathbf{F}_B Force exerted by object *B* on something else

LIST OF SYMBOLS 2

- v Velocity (a vector quantity measured in m s⁻¹)
- A Area of a window (m^2)
- c phase speed of gravity wave
- D Diameter of aerosol particle (e.g. units of metres)
- *e* Partial pressure of water vapour (units of pascals)
- e_s Saturation vapour pressure (units of pascals)
- f Coriolis parameter (rad s⁻¹)
- f Coriolis parameter
- F_x Force per unit volume in the x direction
- $F_{\rm v}$ Force per unit volume in the y direction
- g Acceleration due to gravity (9.8 m s^{-2})
- h Depth of fluid (m
- L_{ν} Latent heat of vapourisation, $2.5 \times 10^6 \,\mathrm{J\,kg^{-1}}$
- m Mass (measured in kg)
- M_a Molecular weight of air, 29 g mole⁻¹
- M_s Molecular weight of solute
- M_w Molecular weight of water, 18 g mole⁻¹
- *n* number of moles of gas
- N_p Number concentration of particles (units of m⁻³)
- n_s Number of moles of solute
- n_w Number of moles of water
- P Pressure (units of pascals)
- *PGF* pressure gradient force per unit volume
- R_{ν} Specific gas constant for water vapour, 461 J kg⁻¹ K⁻¹
- R Radius of a circle (m)
- R radius that air travels around (m)

LIST OF SYMBOLS 3

- R_a Specific gas constant for air, 287 J kg⁻¹ K⁻¹
- r_w Mass mixing ratio of water vapour (e.g. units of kg kg⁻¹ or g kg⁻¹)
- R_{gas} Universal gas constant, 8.314 J mole⁻¹ K⁻¹
- *RH* Relative humidity, unit-less, can be expressed as a percentage.
- T Temperature (units of kelvin)
- t time (s)
- u East-west velocity (m s⁻¹)
- u_g Component of geostrophic wind in the x direction
- V Volume of gas (units cubic metres)
- v North-south velocity (m s⁻¹)
- v_g Component of geostrophic wind in the y direction
- v_t Velocity around circle (m s⁻¹)
- v_{gr} Gradient wind (m s⁻¹)
- W an objects weight. Equal to its mass, m, multiplied by the field strength due to gravity, $g = 9.8 \text{ m s}^{-2}$.
- x East-west position (m)
- y North-south position (m)