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1 Overview

In this practical we consider two coupled equations that describe two components that can react together and diffuse
/ move around in two-dimensions. The model is applicable for a wide variety of situations and very interesting
patterns can arise in the solutions. We use the Gray-Scott model (http://www.karlsims.com/rd.html). This example
is adopted from Benjamin F. Maier’s (https://github.com/benmaier) personal Github repository, supplemented with
descriptions taken from Karl Sims (http://www.karlsims.com/rd.html).

2 Model formulation

Figure 1 displays a simple schematic of a two component system with compounds A and B. In this system com-
ponents A and B start with an initial concentration but as component A is introduced with a constant rate, two B’s
react with one A to produce another B, whilst B is also removed from our system with a constant rate.

Now let us start to think about this problem from a computational perspective. We model the reaction-
diffusion of two chemicals A and B which are distributed across a grid of size N. In other words, we have a 2D
matrix with N × N cells. As they diffuse and react, they will move across the 2D space according to their initial
conditions and parameters that dictate these interactions. In the following we present equations that define this
model. Do not worry too much about the format of these equations and the operator symbols we use, the point of
this exercise is to practice modifying and running an existing model. The Gray-Scott model is described using two
partial differential equations:

∂A
∂t

= DA(∇2A)− AB2 + f (1 − A) (1)

∂B
∂t

= DB(∇2B) + AB2 − (k + f )B (2)

The first equation states that that rate of change of concentration of chemical A, at any given point in space,
is a function of how quickly it diffuses, represented by a diffusion coefficient DA, and the operator ∇2. This
operator is called the Laplacian, which is a differential operator that calculates the divergence of the gradient.
This provides us with information about concentration gradients, which is needed for diffusion. This makes sense
qualitatively since a concentration gradient can result in a mass flux from regions of high-to-low concentrations.
Before we move on, the discrete version of these equations are:

Ai j(t + 1) = Ai j(t) +
[
DA(∇2A)i j − Ai jB2

i j + f (1 − Ai j)
]
× ∆t (3)

Bi j(t + 1) = Bi j(t) +
[
DB(∇2B)i j + Ai jB2

i j − (k + f )Bi j

]
× ∆t (4)

Figure 1: Basic schematic of how two compounds A and B interact in our hypothetical system
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The symbol Ai j represents the concentration of chemical A at grid coordinates (i, j) (similar for B). We also have
parameters f and k which represent a ”feed” rate f and ”death” rate k.

First, we need to take care of the discretised Laplacian terms ∇2A and ∇2B. The discretised Laplacian of a
grid cell (i, j) can be computed by summing over neighboring cells and subtract the value of the original cell with
the total weight of neighbouring cells. One possible implementation is to only recognize direct neighbors of grid
difference ∆ = 1, i.e. at (i, j − 1), (i, j + 1), (i − 1, j), and (i + 1, j). The formula, which we can implement as
code, is

(∇2A)i j = Ai, j−1 + Ai, j+1 + Ai−1, j + Ai+1, j − 4Ai j (5)

which, along with Equations 3-4, enables us to calculate future values of A and B.

3 Downloading and compiling the code

Log into the server computer with an SSH window. Also, log into the server computer with an SFTP window.
Space the windows out on your screen so that you can easily move between them.
If you have not done this already, download the code you will be using today from GitHub by typing the following:

git clone https://github.com/EnvModelling/Env_modelling

this should download the code to your working directory.
In order to access the files you will need to change the working directory to where the files are. Type the following:
cd Env_modelling/Spatio-temporal-modelling

followed by the tab key and the command should auto-complete. Then press the enter key.

Type ls followed by the enter key. The screen should list the files in this directory.

4 Viewing and Editing the code

We will use the nano text editor to view some files. In this practical there is one file of interest called
Reaction_diffusion_2D.py. To look at the file type:

nano -l Reaction_diffusion_2D.py

the -l means to show line numbers. The code can be edited in the text editor and saved by typing Ctrl-X at the
same time and pressing Y to save the file. The important lines are 117-135 and 295-299 of this file.

5 Running the model

The procedure for running the model is to:

1. Edit the file Reaction_diffusion_2D.py to configure the model.

2. Type python3 Reaction_diffusion_2D.py at the command line, followed by enter to run the
model.

After running the model a plot of the model simulation will be shown in /tmp/<username>/*.png, which
you can download using SFTP by typing:

get /tmp/<username>/<filename>.png
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6 Experiments

FOR ALL EXPERIMENTS: I STRONGLY SUGGEST YOU OPEN UP A WORD OR POWERPOINT DOCU-
MENT AND INSERT THE FIGURES AND MAKE SOME NOTES AS YOU GO. YOU COULD BE ASKED
QUESTIONS ABOUT THEM IN THE ASSESSMENT.

6.1 Standard Branching instability simulation

Run the standard model by typing:

python3 Reaction_diffusion_2D.py

Download the resulting output image files from the SFTP window

get /tmp/<username>/exp0.png

get /tmp/<username>/exp1.png

These two files show the initial values of A and B and the final values respectively. Notice how quite generic initial
conditions (a square in the middle) gives rise to more natural conditions where a network of branches develop.
This shows that complex structure can form from arbitrary initial conditions.

This standard model has the feed rate, f = 0.060, and the kill rate, k = 0.062.

6.2 Sensitivity to feed rate across the domain

Set EXPERIMENT=2.

This changes the feed-rate, f , to vary so that it is small ( f = 0.30) in the middle of the domain and large
on the outside of the domain ( f = 0.80). The formula for this variation is f = exp

(
|x||y|
2500

)
. Following this run the

model by typing:

python3 Reaction_diffusion_2D.py

Download the resulting output image files from the SFTP window

get /tmp/<username>/exp0.png

get /tmp/<username>/exp2.png

These two files show the initial values of A and B and the final values respectively.

Question: How does the pattern change with distance from the centre? Write a sentence as the feed rate is
increased the pattern changes from being to )

6.3 Bubbles / skin

Set EXPERIMENT=3.

This increases the feed-rate, f = 0.11, and reduces the kill rate slightly. The result is that we form bub-
bles or structures that look like skin cells. Following this run the model by typing:

python3 Reaction_diffusion_2D.py

Download the resulting output image files from the SFTP window

get /tmp/<username>/exp0.png

get /tmp/<username>/exp3.png

These two files show the initial values of A and B and the final values respectively.

Description: You should notice the bubble structures that look like skin cells, or Giraffe skin. This demonstrates
that seemingly complex structures in nature can arise from some very simple laws.
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6.4 Mitosis / cell division

The last two simulations are animations of what happens when the initial condition is a circular cell at the centre.

Set EXPERIMENT=4.

This sets the feed rate, f = 0.0367, and the kill rate, k = 0.0649.

python3 Reaction_diffusion_2D.py

Download the resulting output image files from the SFTP window

get /tmp/<username>/exp4.png

get /tmp/<username>/animation.gif

These two files show the initial values of A and B and animation of how A varies with time respectively.

Question: We have a small feed rate here (c.f. Section 6.2). What happens over time to the single circle at the
centre?

6.5 Coral Growth / Branching instability

With EXPERIMENT=4, scroll down to lines 298 and 299 to increase the feed rate to f = 0.0545 and k = 0.062.

Run the model and download the files.

Description: You should notice that branching takes place when the corners start to develop. This is a process
known as rare-faction, which is when the chemical creating a new phase is directed to certain parts of the
structure allow it to grow faster. The same process occurs during ice crystal growth.
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