The Accuracy and Scalability of Continuous-Time Bayesian Inference in Analogue CMOS Circuits

Przemyslaw Mroszczyk and Piotr Dudek
School of Electrical & Electronic Engineering
The University of Manchester
Manchester, M13 9PL, United Kingdom
przemyslaw.mroszczyk@postgrad.manchester.ac.uk
p.dudek@manchester.ac.uk

Abstract—This paper discusses the idea of Bayesian inference in factor graphs implemented as continuous-time current-mode analogue CMOS circuits using Gilbert multipliers for arithmetic operations. The computational accuracy, accounting for the systematic and random (fabrication mismatch) errors, and the scalability of such realisations were verified in simulations of networks consisting of 5 - 121 nodes implemented using models from a standard 90 nm CMOS technology. The obtained results show a relatively short settling time, typically below 3 μs at a power less than 7 mW, with the equivalent computational speed of over 35 arithmetic operations per nanosecond but with a limited accuracy, mainly affected by fabrication mismatch. Such realisations could be used in applications requiring fast and low power approximate Bayesian inference.

Keywords—Bayesian inference, belief propagation, factor graphs, Gilbert multiplier, analogue computation, CMOS

I. INTRODUCTION

A Bayesian network is a compact graphical model representing casual relations among a set of random variables. The network is defined by an acyclic graph with directed links and conditional probability tables (CPTs) encoding the “strength” of the probabilistic relations between nodes (Fig. 1). Such networks provide mathematical tools for plausible reasoning (Bayesian inference) under uncertainty based on the incorporated knowledge and the observational support, and can be used in decision support systems, information retrieval, pattern recognition, in various areas including robotics, bioinformatics or management. The computational task is to determine the conditional probabilities of random variables under constraints given by the priors and evidence. In terms of the computational complexity, Bayesian inference is an NP-hard problem and hence quickly becomes intractable for larger networks. To address this issue, apart from the computationally demanding inference methods such as global marginalisation, conditioning or clustering, some approximate solutions based on the Monte Carlo approach (e.g. Gibbs sampling) or the message-passing and belief propagation algorithms were proposed [1], [2]. For specific applications e.g. in artificial intelligence, signal processing and communication, the direct hardware realisation of belief propagation in analogue VLSI circuits has been suggested as much more advantageous than software solutions in terms of power and processing speed [5]-[7]. In particular, the sum-product scheme and the factor graphs for iterative decoding algorithms such as “turbo” codes and low-density parity-check (LDPC) codes [4] were successfully realised as continuous time circuits operating in the current mode domain and using arrays of Gilbert multipliers [5]. These decoders, however, were used for processing binary data which makes the computation, and the obtained results, less prone to errors caused by circuit nonlinearities, temperature and random device variability (fabrication mismatch). Belief propagation on signals representing probability distributions requires more precise operation and some preliminary research on that topic has been presented in [7], however this is limited to the analysis of a single network with only three nodes.

II. FACTOR GRAPHS

A Bayesian network can be represented as a factor graph where each Bayesian node consists of a pair of variable and factor nodes [4]. In the belief propagation scheme, nodes perform certain arithmetic operations related to Bayesian inference to calculate probabilities (beliefs) of the corresponding variables, and exchange computed results (messages) with their nearest neighbours. The messages circulate around the graph until convergence when no changes in the network state are observed. In a digital implementation this requires iterative computation whereas in an analogue circuit, the message exchange is continuous and the network settles to a solution. It is important to note that for networks
with loops where more than one path may exist between two nodes (e.g. nodes A and D in Fig. 1), the computed beliefs may only be approximations of Bayesian inference, with accuracy depending on the network, conditional probabilities and the inserted data [1], [2]. The circuit implementations of the factor graphs discussed in this paper are limited to 3-way factor and variable nodes operating on two-state variables with two element vectors representing normalised probabilities of true (T) and false (F). The mechanism of message passing and the arithmetic operations carried out by a 3-way node N (variable or factor) with neighbours X_1, X_2 and X_3 are presented in Fig. 2. The neighbours X_2, X_3 send messages X_n to node N and receive messages X_n from this node. In general, variable nodes are used for belief calculations and evidence insertion whereas factor nodes perform operations on messages using CPTs.

\[
\begin{bmatrix}
X_n^T \\
X_n^T
\end{bmatrix} = \alpha \begin{bmatrix}
X_n^T \cdot X_n^T \\
X_n^T \cdot X_n^T
\end{bmatrix}
\]

\[
\begin{bmatrix}
X_n^T \\
X_n^T
\end{bmatrix} = \alpha \begin{bmatrix}
X_n^T \cdot X_n^T \\
X_n^T \cdot X_n^T
\end{bmatrix}
\]

where $\alpha = 1/(I_{D1} + I_{D2})$ is the normalisation factor. This inherent normalisation is advantageous in the probabilistic calculus (e.g. in Bayesian inference), requiring computation on real numbers in the unity interval (0...1).

\[
I_D = I_s \exp \left(\frac{kV_{GS}}{U_f} \right)
\]

where V_{GS} is the gate-source voltage, I_s is the characteristic current of MOS transistor, $U_f \approx 25.85\, \text{mV}$ is the thermal voltage and k is the slope factor. Based on (1), the diode-connected transistors M_1 and M_2 work as logarithmic current $I-V$ converters of the input currents I_{D1} and I_{D2} generating voltages $V_{X1} \sim \ln(I_{X1})$ and $V_{X2} \sim \ln(I_{X2})$, which in turn control the differential pair M_1,M_2. Due to the exponential characteristics of M_1 and M_2, the output currents I_{D1} and I_{D2} have the same proportions as the respective input currents I_{X1}, I_{X2} and their sum is constant and equal to I_0 (the input current providing the second multiplicand). The circuit from Fig. 3 performs multiplication with normalisation given by:

\[
\begin{bmatrix}
I_{D1} \\
I_{D2}
\end{bmatrix} = \alpha \cdot I_s \begin{bmatrix}
I_{X1} \\
I_{X2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
I_{D1} \\
I_{D2}
\end{bmatrix} = \alpha \cdot I_s \begin{bmatrix}
I_{X1} \\
I_{X2}
\end{bmatrix}
\]

The disparities between the actual and the ideal results observed in the multiplier circuit are caused by design issues (non-ideal current mirrors, operating point violations, leakage) and the non-ideally exponential characteristics of MOS devices in subthreshold region. Also, random parameter variability affects the symmetry of the circuit, which further increases the computational errors. In order to reduce the level of systematic errors, cascode current mirrors exhibiting higher output resistance and better linearity are used. They however require a higher voltage headroom necessary to keep transistors in saturation. This is critical especially for the bottom current source on transistors M_5 and M_7. Therefore, the sources of transistors M_5 and M_7 (the logarithmic $I-V$ converters) are connected to the reference voltage V_{REF} (rather than directly to the ground potential) which can be used to adjust the operating point of the bottom current source preventing M_5 and M_7 entering the linear region. Also, the leakage currents of the MOS transistors in the current mirrors determine the lower bound of the operating signal level which can be correctly replicated. In the proposed solution, to assure the correct operation of the circuit for currents in range 1 nA - 1 µA (necessary to encode probabilities within range 0.1% - 100%), transistors $M_{5,8}$ and $M_{13,16}$ were implemented as high threshold voltage devices (HVT). Yet another source of systematic errors results from the second order effects in MOS transistors such as the Early effect and the variable slope factor k which depends on the operating point of the transistor [3]. The level of errors caused by such effects was observed to be smaller for thick gate oxide devices (TGO) and was further reduced by proper scaling of M_1,M_2; however, this could be a technology-dependent issue.

The absolute computational error, defined as the difference between the normalised output current $[I_{D1}, I_{D2}]$ and its corresponding value calculated from (2), was obtained using scripts for combined Matlab-Hspice simulations. The obtained histogram of the absolute systematic error distribution of the
multiplier from Fig. 3 generated based on 5000 random pairs \([I_{x1}, I_{x2}]\) with \(I_0\) in the range 50 nA - 1 \(\mu\)A is shown in Fig. 4.

Fig. 4. Histogram of the absolute systematic error of the circuit from Fig. 3.

For more complex operations the equivalent hardware structures can be built using the circuit from Fig. 3. In order to reduce the complexity, the input signals should be distributed using their voltage representations rather than currents. The structures of two such systems for dot product and vector-matrix multiplications are presented in Fig. 5.

Fig. 5. Block diagrams of the arithmetic circuits for a) dot product and b) matrix-vector multiplications.

IV. RESULTS

A. Accuracy

The accuracy of Bayesian inference implemented in analogue hardware using the multiplier cell form Fig. 3 was verified in the simulations of several synthetic networks of a regular structure shown in Fig. 6 and generated for different numbers of nodes from 3 (3×3) to 121 (11×11) and random CPTs with entries within the range 5% - 95%. The input test vector consisted of the prior probability of the middle top node \(A\) and the evidence for the middle bottom node \(B\) (Fig. 6).

These nodes were chosen to enforce the message propagation in the entire network to verify the settling time, however in practice it may depend on the test conditions and CPTs, and cannot straightforwardly be determined from the network structure. The simulation results of 6 different networks consisting of 5 to 121 nodes implemented using 3-way factor and variable nodes are presented in Table 1.

TABLE I. SIMULATION RESULTS OF THE TEST NETWORKS SHOWING THE COMPLEXITY, PERFORMANCE AND ACCURACY SCALING ISSUES.

<table>
<thead>
<tr>
<th>Network</th>
<th>#MOS</th>
<th>I_{DC}</th>
<th>mean(abs. error)</th>
<th>std(abs. error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN-1(Fig. 1)</td>
<td>3,290</td>
<td>232.2 (\mu)A</td>
<td>1.007 %</td>
<td>0.596 %</td>
</tr>
<tr>
<td>TN-3×3</td>
<td>5,918</td>
<td>431.7 (\mu)A</td>
<td>0.734 %</td>
<td>0.635 %</td>
</tr>
<tr>
<td>TN-5×5</td>
<td>16,406</td>
<td>1,166 mA</td>
<td>0.645 %</td>
<td>0.522 %</td>
</tr>
<tr>
<td>TN-7×7</td>
<td>32,126</td>
<td>2,256 mA</td>
<td>0.711 %</td>
<td>0.584 %</td>
</tr>
<tr>
<td>TN-9×9</td>
<td>53,078</td>
<td>3,701 mA</td>
<td>0.619 %</td>
<td>0.440 %</td>
</tr>
<tr>
<td>TN-11×11</td>
<td>79,262</td>
<td>5,500 mA</td>
<td>0.618 %</td>
<td>0.470 %</td>
</tr>
</tbody>
</table>

The operation of the VLSI realisation of the test network from Fig. 1 and its software implementation using the message passing algorithm (MPA) were compared with the method using global marginalisation algorithm (GMA) for exact inference [2]. The statistical parameters of the absolute errors based on 500 random input vectors for nodes \(A\), \(D\) and \(E\) are presented in Table 2. It can be observed that the mean absolute error of the VLSI realisation is slightly higher when compared with the exact solution (GMA) but more importantly, the MPA also exhibits a considerable level of inaccuracy when applied to networks with loops. This indicates the existence of a certain lower bound of the attainable precision when using belief
propagation and it should be considered when attempting further circuit optimisation, which may not necessarily improve the overall computational accuracy.

The influence of fabrication mismatch on the absolute computational error was verified in simulations of the circuit implementation of the network in Fig. 1. The results showing the mean value of the absolute error with bars representing the standard deviations, obtained assuming averaging of the currents generated by a certain number of identical networks, are presented in Fig. 8. At each point, the networks were tested for 100 random sets of input vectors. The corresponding histograms of the absolute error assuming no averaging and for averaging over 100 network copies are shown in Fig. 9. It can be observed that the mean value of the error can, to some extent, be reduced by averaging over multiple hardware copies of the same network. The error reduces slowly, therefore a large number of structures may be required to obtain satisfying precision. In practical solutions, rather than building a set of the same network realisations, the number of network copies can be observed that the mean value of the error reduces significantly so that more precise results could be obtained reusing the same hardware only at the expense of processing time.

B. Scalability

The computational complexity and hence the size and the power consumption of the analogue hardware depend on the number of nodes but also on the complexity of each node determined by the number of its neighbours and the number of states of the processed variables. The implementations of several example Bayesian networks (Mendel Genetics, Car Diagnostic, Alarm and Hail Finder) [9] were analysed in terms of the complexity in the analogue hardware and the computational requirements in software (Table 3). The circuit from Fig. 3, in a standard 90 nm CMOS technology, occupies a 6.8 µm × 10 µm area (comparable with three D flip-flops). Using the number of multipliers required for a network realisation, the necessary silicon area can be estimated (the number of arithmetic multiplications is not equivalent to the number of analogue multiplier blocks, see Fig. 5).

<table>
<thead>
<tr>
<th>Case</th>
<th>mean(abs. error)</th>
<th>std(abs. error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLSI - MP4</td>
<td>1.200 %</td>
<td>0.613 %</td>
</tr>
<tr>
<td>VLSI - GMA</td>
<td>1.250 %</td>
<td>0.762 %</td>
</tr>
<tr>
<td>MP4 - GMA</td>
<td>0.548 %</td>
<td>0.660 %</td>
</tr>
</tbody>
</table>

The results showing the mean value of the absolute error with bars representing the standard deviations, obtained assuming averaging of the currents generated by a certain number of identical networks, are presented in Fig. 8. At each point, the networks were tested for 100 random sets of input vectors. The corresponding histograms of the absolute error assuming no averaging and for averaging over 100 network copies are shown in Fig. 9. It can be observed that the mean value of the error can, to some extent, be reduced by averaging over multiple hardware copies of the same network. The error reduces slowly, therefore a large number of structures may be required to obtain satisfying precision. In practical solutions, rather than building a set of the same network realisations, the number of network copies can be observed that the mean value of the error reduces significantly so that more precise results could be obtained reusing the same hardware only at the expense of processing time.

V. CONCLUSIONS

In this paper the accuracy and scaling issues of the hardware implementations of factor graphs for Bayesian inference using belief propagation mechanism in analogue continuous-time circuits have been discussed. In particular, design guidelines towards improved computational accuracy of the arithmetic circuit for vector and matrix operations have been proposed. The reliability and scalability of such systems was verified in simulations using models from a standard 90 nm CMOS technology. It has been observed that efficient implementations of larger networks may be difficult due to the large area occupation and highly computational inaccuracy. Nevertheless, the proposed idea of averaging and the use of reconfigurable systems provides a promising solution dedicated for smaller networks, with applications in low power systems requiring real-time Bayesian inference.

REFERENCES