
Bringing A Robot Simulator to the
SCAMP Vision System

Yanan Liu
Bristol Robotics Laboratory

University of Bristol
Bristol, UK

yanan.liu@bristol.ac.uk

Jianing Chen
School of Electrical & Electronic Engineering

University of Manchester
Manchester, UK

jianing.chen@manchester.ac.uk

Laurie Bose
Visual Information Labratory

University of Bristol
Bristol, UK

lauriebose@gmail.com

Piotr Dudek
School of Electrical & Electronic Engineering

University of Manchester
Manchester, UK

p.dudek@manchester.ac.uk

Walterio Mayol-Cuevas
Visual Information Laboratory

University of Bristol
Bristol, UK

walterio.mayol-cuevas@bristol.ac.uk

Abstract—This work develops and demonstrates the integra-
tion of the SCAMP-5d vision system into the CoppeliaSim robot
simulator, creating a semi-simulated environment. By configuring
a camera in the simulator and setting up communication with the
SCAMP Python host through remote API, sensor images from
the simulator can be transferred to the SCAMP vision sensor,
where on sensor image processing such as CNN inference can be
performed. SCAMP output is then fed back into CoppeliaSim.
This proposed platform integration enables rapid prototyping
validations of SCAMP algorithms for robotic systems. We demon-
strate a rover localisation and tracking task using this proposed
semi-simulated platform, with a CNN inference on SCAMP to
command the motion of a robot. We made this platform available
online.

Index Terms—CoppeliaSim, Semi-simulation, Pixel Processor
Array, CNN inference, in-sensor computing

I. INTRODUCTION

The SCAMP vision system [1] is a smart camera device
supporting in-sensor processing. The mixed-signal (analogue
and digital) general-purpose processing circuits, integrated
with image sensors in a pixel processor array (PPA), enable
low-power consumption, and efficient parallel computing with-
out external hardware. With these features, it is increasingly
being integrated with robots for various applications [2]–[6].
However, it is often time-consuming and difficult to prototype
ideas using real robotic platforms. To improve experimen-
tal flexibility, we integrate a comprehensive robot simulator
CoppeliaSim [7] with the SCAMP hardware system, to test
and validate ideas rapidly (Fig. 1). CoppeliaSim is a robot
environment simulator where each agent can be controlled
via remote API [8]. Its simulated sensor readings can be
transferred to other independent platforms written in Python,
C/C++, or Matlab through several communication protocols.

This work is accepted by ICRA2021 workshop On and Near-sensor Vision
Processing, from Photons to Applications (ONSVP). This work was supported
by UK EPSRC EP/M019454/1, EP/M019284/1, EPSRC Centre for Doctoral
Training in Future Autonomous and Robotic Systems: FARSCOPE and China
Scholarship Council (No. 201700260083).

Fig. 1. Example robot simulation environment. The virtual SCAMP camera
sensor is ’mounted’ under the drone facing the ground. Real-time image can be
obtained from the sensor with a resolution of 256×256 which is set the same
as that of the SCAMP hardware. Note that the current version of SCAMP-5d
only supports gray-scale images; hence CNN inference on SCAMP only relies
on gray-level features from the scene.

We developed a Python based interface between CoppeliaSim
and the SCAMP vision system. Based on the proposed semi-
simulation platform, we implemented a convolutional neural
network (CNN) [9], [10] on the SCAMP, processing the
imported camera images for localisation purpose from the
robot simulator where the camera is mounted under a drone.

II. SCAMP PYTHON HOST AND THE SEMI-SIMULATED
PLATFORM

The SCAMP vision system is connected to a computer via
USB through scamp5d interface library1. SCAMP Host is a
GUI executed on the computer to interact with the vision
system and visualise the data sent back from the device.
This work develops a scamp python module for the Python
GUI based on previous C/C++ host libraries, to simplify the

1https://scamp.gitlab.io/scamp5d doc/



Fig. 2. Semi-simulated platform by integrating the SCAMP with CoppeliaSim
Robot Simulator. This platform takes advantage of the SCAMP parallel
computation ability and the rich simulation scenes in the simulator, where
applications can be exploited and validated virtually.

Fig. 3. The CNN architecture for localisation. A shared convolutional layer
is used for object 2D localisation on the SCAMP, where networks for labels
indicating x and y are using identical convolutional layers but different fully-
connected layers.

connection of the SCAMP host to third party software. With
this method, the host visualisation and remote API can be co-
designed on the scamp python module. The remote API is
supported by the CoppeliaSim2.

We demonstrate an application of a CNN-based vision
task performed in our environment. In the semi-simulated
platform, a real (hardware) SCAMP vision system collaborates
with CoppeliaSim robotics simulation environment through
the remote API. The environment setup and sensor image
collection is performed in the simulator while the SCAMP
hardware is in charge of CNN inference with sensor images
from the simulator and outputting useful information to the
simulator (Fig. 2).

III. EXPERIMENTS ON PLATFORM

The SCAMP vision system is suitable for mobile robot plat-
forms due to its combination of high performance, low power
consumption and light weight. In the experiments presented
in this paper, the SCAMP system is mounted on an aerial
vehicle (drone), and used to localise a mobile ground vehicle
(rover) moving in the 2D simulated environment. The location
information is used to guide the drone to track the rover. We
implement the localisation task using a neural network.

1) Localisation Dataset: The localisation training dataset
is collected from the simulation environment, by placing the

2https://www.coppeliarobotics.com/helpFiles/en/b0RemoteApiOverview.
htm

Fig. 4. Selected images for training. The inputs for SCAMP are gray-scale
images with a low resolution of 64×64 considering the network architecture
for parallel computation purpose, resulting in a challenging localisation task.

Fig. 5. Binary activations comparison after image convolution on SCAMP
and using PyTorch simulation. White and yellow dots represent ’1’s while the
dark area is ’-1’s. This shows the similarity of binary activations after the first
convolutional layer, but with differences introduced due to non-idealities of
analogue computing in hardware

rover at a series of positions within the map, with different
orientations under the view-field of a camera. An image is
recorded once there is a change in the rover pose or camera
pose. With this method, a dataset of 104,000 training images
and 19,200 testing images was collected (Fig. 4). To simulate
the vibration and tilting of a flying drone, random noise is
introduced into the camera pose, and this can also be regarded
as a type of data augmentation that benefits CNN training.

2) CNN inference for rover localisation: The localisation
task is cast as a classification problem by splitting the x and
the y axes into eight labels, giving 64 possible positions to
localise the rover. During the CNN training, the training loss
for backpropagation is the loss summation of x and y as
shown in Fig. 3. We trained a binarized CNN using batch
normalisation and using both binary weights and activations
to reduce the error caused by continuous analogue electronic
current computing. The final testing accuracy for localisation
is around 93%, which conservatively, only counts the correct
predictions of the CNN. In a practical situation, a close
prediction to the ground truth should still allow tracking
to proceed without significant difficulty. Fig. 7 visualises a
sequence of 8 frames with CNN inference on SCAMP where
the prediction possibility distribution can be seen plotted as
light blue curves along x and y axes, the final prediction is
obtained with two highest possibilities from two curves along
axes. The complete localisation and tracking are processed
frame by frame, and the instructions to pilot the drone are



Fig. 6. Neuron activations after the first fully connected computed using
SCAMP hardware and PyTorch simulation. Binary activations and bit counting
strategies are used to mitigate against the inherent noise of the analogue
processing on SCAMP, resulting in similar activation values in fully-simulated
and in hardware implementations.

Fig. 7. Rover localisation result visualisation, showing SCAMP CNN
inference results for several consecutive frames. The network outputs are
plotted as light blue curves along x and y axes, with the largest values for
each axis (red straight line) indicating the final 2D localisation prediction
(pink circle). The full experimental video for rover localisation and tracking
can be seen from https://youtu.be/semthdfXH5A.

generated using the PID control to minimise the distance
between the drone position and the predicted rover position.

To demonstrate the CNN inference on SCAMP in terms
of accuracy, Fig. 5 and Fig. 6 compare the binary activation
layer and first fully-connected layer between PyTorch soft-
ware implementation and SCAMP hardware implementation,
which shows a high degree of similarity between PyTorch
and SCAMP results, but with differences resulting from
analogue signal processing on SCAMP. To further validate
the performance of CNN localisation on SCAMP, a chaotic
trajectory is pre-set in the simulator for the rover to move
along. The drone trajectory is plotted with guidance from
SCAMP CNN inference. Fig. 8 shows the comparison among
the ground truth rover course, CNN on PyTorch guided drone
course and CNN on SCAMP guided drone course. Again,

Fig. 8. Tracking trajectories with a drone. There are three paths: the pre-set
rover trajectory as the groundtruth, drone tracking trajectory with CNN on
PyTorch guidance, and drone tracking trajectory with guidance from SCAMP
CNN inference.

the fully simulated results are similar, but not identical to
the semi-simulated results using SCAMP hardware. These
results indicate that the methodology based on training neural
networks in software, using established frameworks such a
PyTorch, and then implementing them on SCAMP analogue
hardware, can produce useful results. However, software and
hardware performance are not identical since the analogue
hardware effects can not always be accurately modelled. It is
useful to be able to perform hardware-in-the-loop simulations
combining the virtual environments and the SCAMP hardware,
as presented in this paper. We make our SCAMP Python host,
CoppeliaSim model and its configuration available online:
https://github.com/yananliusdu/scamp5d interface.

IV. CONCLUSION

In this work, we proposed a semi-simulated platform where
a SCAMP hardware interacts with the robot simulator via
remote API for a rapid prototype validation. The SCAMP
CNN inference results with the simulated sensor readings can
instruct the motion of an agent in the proposed platform. Fur-
ther applications related to the SCAMP and robots integration
can be easily explored based on the developed platform.

REFERENCES

[1] J. Chen, S. J. Carey, and P. Dudek, “Scamp5d vision system and
development framework,” in Proceedings of the 12th International
Conference on Distributed Smart Cameras, 2018, pp. 1–2.

[2] J. Chen, Y. Liu, S. J. Carey, and P. Dudek, “Proximity estimation
using vision features computed on sensor,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 2689–2695.

[3] Y. Liu, L. Bose, C. Greatwood, J. Chen, R. Fan, T. Richardson,
S. J. Carey, P. Dudek, and W. Mayol-Cuevas, “Agile reactive
navigation for a non-holonomic mobile robot using a pixel processor
array,” IET Image Processing, 2021. [Online]. Available: https:
//ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ipr2.12158



[4] C. Greatwood, L. Bose, T. Richardson, W. Mayol-Cuevas, J. Chen, S. J.
Carey, and P. Dudek, “Tracking control of a uav with a parallel visual
processor,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017, pp. 4248–4254.

[5] A. McConville, L. Bose, R. Clarke, W. Mayol-Cuevas, J. Chen, C. Great-
wood, S. Carey, P. Dudek, and T. Richardson, “Visual odometry using
pixel processor arrays for unmanned aerial systems in gps denied
environments,” Frontiers in Robotics and AI, vol. 7, 2020.

[6] H. Castillo-Elizalde, Y. Liu, L. Bose, and W. Mayol-Cuevas, “Weighted
node mapping and localisation on a pixel processor array,” in IEEE
International Conference on Robotics and Automation (ICRA), Xi’an,
China, May, 2021.

[7] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 1321–
1326.

[8] S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing v-rep to deep
robot learning,” arXiv preprint arXiv:1906.11176, 2019.

[9] Y. Liu, L. Bose, J. Chen, S. J. Carey, P. Dudek, and W. Mayol-Cuevas,
“High-speed light-weight cnn inference via strided convolutions on a
pixel processor array,” in The 31st British Machine Vision Conference
(BMVC 2020), 2020.

[10] L. Bose, P. Dudek, J. Chen, S. J. Carey, and W. W. Mayol-Cuevas, “Fully
embedding fast convolutional networks on pixel processor arrays,” in
European Conference on Computer Vision – ECCV 2020.


