
Sand Castle Summation For Pixel Processor Arrays
Laurie Bose1 Piotr Dudek2 Jianing Chen2 Stephen J. Carey2

1University of Bristol, Bristol, United Kingdom
2University of Manchester, Manchester, United Kingdom

Abstract—Pixel Processor Arrays (PPA) present a new vi-
sion sensor/processor architecture consisting of a SIMD array
of processor elements, each capable of light capture, storage,
processing and local communication. Such a device allows visual
data to be efficiently stored and manipulated directly upon the
focal plane, but also demands the invention of new approaches
and algorithms, suitable for the massively-parallel fine-grain
processor arrays. In this paper we implement an image-wide
population count algorithm exploiting the parallel processing of
the PPA. Performing such a global count was previously unviable
for vision processing tasks due to its exhaustive computation time.
Our approach shows an improvement of typically two orders of
magnitude reduction in computation time, thus allowing it to be
incorporated as a core component of many vision tasks upon the
PPA.

I. INTRODUCTION

Recent trends in edge computing bring to the fore the
concerns about power efficiency of the processing hardware.
Some of the most challenging applications are in computer
vision, where large amounts of raw sensory data (image pixels)
need to be processed. It is well known that data movements are
currently the most critical operations responsible for energy
consumption as well as the overall speed of the system. Min-
imising external memory access has become a necessity, and
one of the solutions is a distributed architecture, with memory
and processing resources collocated on a single device. As
many low-level image processing tasks are inherently parallel,
with computations localised (results are dependent on pixels
and their neighbours), and identical operations executed for
all pixels in the image, they are well suited to massively
parallel SIMD (Single Instruction Multiple Data) architectures.
An extreme level of parallelism can be achieved by allocating
a processor per pixel, in a fine-grained SIMD architecture. A
very large number of processing elements, each containing lo-
cal memory and arithmetic logic units, can efficiently execute
pixel-parallel algorithms. Such cellular processor architectures
have been considered in the past [1]–[4]. With more recent
advances in silicon fabrication technologies it is now possible
to integrate thousands of elementary processors on a silicon
chip, in a pixel-parallel image processor. Furthermore, it is
now possible to integrate image sensing elements within the
compute-memory fabric of the processor array on a single
“vision chip” [5]–[7]. The co-location of photosensors and
processors minimises the sensor-processor communications,
providing additional benefits in terms of speed and power
consumption of the system. We term such a device a Pixel

Fig. 1. Overview of the SCAMP vision system. The control program is
executed on the ARM M0 core, which instructs the SCAMP-5 massively-
parallel SIMD processor array to carry out operations on image arrays.
SCAMP-5 has 256x256 Processing Elements.

Processor Array (PPA), where sensing, processing, and local
memory are collocated on a processor-per-pixel basis. PPA
vision sensors have been demonstrated, with resolutions up
to 256 × 256 pixels [8]. The recent technological trends of
3D silicon wafer stacking provide a vehicle for vertically
integrating sensor and processor layers, promising future high-
resolution vision sensor devices, where computing power can
be placed behind each pixel of the image sensor [9]–[11].

The key advantage of PPA systems is that all low-level
image processing occurs on the vision sensor integrated circuit,
with no images transmitted off-chip in normal operation.
Instead, only results of computations, for instance extracted
features [12], classification results [13], or visual odometry
information [14], are read-out directly from the device.

In this paper we illustrate how digital global summation
can be efficiently implemented on a pixel-parallel device,
demonstrated upon the SCAMP-5 vision sensor [8]. The
architecture of the chip is briefly presented in the next section.

II. SCAMP-5 ARCHITECTURE

The overall architecture of the SCAMP-5 system used in
this work is illustrated in Figure 1. The SCAMP-5 chip
comprises a 256 × 256 array of Processing Elements (PEs)
which receive instructions from a single Controller (Arm
Cortex-M0). The controller has its own program and data
memory, and is responsible for the overall program flow, and
any sequential computing required in the algorithm. It also
issues microinstructions to the SCAMP-5 array. All PEs in
the array execute the same microinstruction, issued by the
Controller, i.e. the array operates as a SIMD processor.

Although it is possible to transfer data from the Controller
to the SCAMP-5 array, the primary input to the array is
optical, via photosensors in each PE. The typical operation978-1-6654-3948-0/21/$31.00 ©2021 IEEE

Fig. 2. The architecture of the SCAMP-5 Processing Element. A-F are
analog registers, PIX is image sensor input, IN is a global input. S0-S6
are general-purpose binary registers. Rx are special-purpose registers. ALU
executes transfers and arithmetic and logic operations, ’Blur’ and ’Prop’ are
additional asynchronous hardware accelerators. FLAG is local activity register.
NEWS provides 4-neighbour communications. SLCT and SREC provide array
addressing and ’Event’ unit enables sparse read-out.

is to acquire an image, and then process it in the SCAMP-5
array, according to the sequence of microinstructions sent by
the Controller. The results of computations are read-out from
the SCAMP-5 array by the Controller. Readout of entire data
arrays is possible, but primarily for debugging.

The detail of the PE architecture is shown in Figure 2. Each
PE contains six general-purpose “analog” registers that can
store a gray-level pixel values, and thirteen binary registers.
Several binary registers also have special-purpose designa-
tions. The ALU provides basic arithmetic and logic operations,
for instance addition or subtraction of two analog registers, or
logic AND operation between binary registers.

The analog NEWS register is used to transfer analog data
between neighbouring PEs in the array. For instance, moving
the content of each PEs A register, into that of its ”south”
neighbouring PE. Globally this results in the image held across
the A registers of the array, being shifted one pixel to the
South. Data transfer in binary registers is achieved using
a multi-directional propagation operation. Each PE transfers
content to its neighbours in the array, with the registers
RN,RS,RE,RW determining which neighbours to transfer to.

The details of the SCAMP-5 implementation can be found
in [8]. The datapath is implemented using mixed-signal cir-
cuits, in particular storage and arithmetic operations on regis-
ters A-F are using analog current-mode signal representation.
This has some implications with respect to the precision and
accuracy of arithmetic operations, and often requires special
care be taken to ensure the inherent processing errors do not
adversely affect the computation results.

The analog current-mode computations allow operations
such as global summation (all elements of the array are
effectively added in one clock cycle) but this has limited
precision, and in many situations a more accurate global
summation, or pixel-counting mechanism, is required as will
be presented in Section III.

III. SANDCASTLE SUMMATION

This section describes a method for global summation of
digital binary images on SCAMP-5, outputting the number of

set/white pixels in said image. Our approach is fast enough
to be used in place of the SCAMP-5’s global analog image
summation in many SCAMP-5 applications, such as visual
odometry [14] and neural network inference [13]. Doing so
provides a more accurate summation free from the noise
inherent in analog summation, and can thus significantly
improve accuracy and performance for certain tasks.

A. Naive Approach

The SCAMP-5 has the ability to locate a set pixel within a
binary image, outputting the location of the PE holding this set
data. A basic approach to performing global summation of a
binary image would involve iteratively locating and eliminat-
ing such set pixels from the image until none remain, counting
the number of eliminations made. The computation time of
such an approach scales linearly with the number of set pixels
in the binary image. This becomes prohibitively expensive
in most tasks where the image may contain thousands of
set pixels. Our proposed approach stills make use of this
functionality to locate set pixels, but is only used to readout a
small set of pixels whose locations encode information about
the total global summation.

Algorithm 1 Sand Castle Sum
S0 // Binary image to sum
RN,RS,RE,RW = False // Clear transfer directions

// Stack set pixel data vertically using data transfers
for n = 1 to 256 do

// Set PE transfer directions for current image
RN = S0
RS = NOT (S0)

// Perform parallel data transfer:
// DNEWS operation propagates data in the direction
// determined by the state of RN, RS
S0 = DNEWS(S0)

end for

RS = False // Clear South transfer for all PEs
RN = True // Set North transfer for all PEs
S1 = DNEWS(S0)
S0 = XOR(S1, S0) // Eliminate all but stack tops

// Extract remaining set pixels from image
Events[256,2] = Scan Events(R11,256)

// Compute total Sum
Total Set Pixels = 0
for n = 1 to 256 do

// Add together Y locations (stack heights)
Total Set Pixels += Events[n,1]

end for

return Total Set Pixels

Fig. 3. Stages of global summation of a binary image using our proposed sandcastle summation approach both both a generated image (top row) and a real
life scene (bottom row). Set pixels iteratively fall from their PEs into those below exploiting the parallel data transfer of SCAMP-5, forming into vertical
stacks. Progress over an increasing amount of iteration is illustrated from left to right, with the rightmost image showing the elimination of set pixels but
those at the top of each stack. These remaining set pixels can be extracted from the array to give the height of each stack which when summed give the
original total number of set pixels.

B. Accelerated Approach

Our improved approach first transforms the binary image
into a form more applicable to conducting global summation.
This involves iteratively letting each set pixel ”fall” vertically
from its current PE, into the PE below whenever that PE does
not contain a set pixel. Similar to letting falling grains of
sand form piles, this iterative process results in the ”falling”
pixels stacking across the bottom of the PE array. This iterative
process can be implemented efficiently using parallel data
transfer operations, performing 255 iterations to ensure that
all set pixels have come to rest within a vertical stack as is
illustrated in Figure 3.

After these vertical stacks are formed the transformation
is completed by performing an XOR operation between this
stacked image and a vertically shifted copy of itself. This
eliminates all set pixel but those at the top of each vertical
stack as shown in Figure 3, leaving us 256 set pixels - one
per column of PEs. The Y location of each of these remaining
pixels then encodes the height of its associated stack. By
iteratively locating and eliminating these remaining pixels (up
to 256), the heights of each stack can be extracted from the
array and added together, giving the total number of set pixels
in the original binary image.

Essentially this approach can be viewed as conducting
partial summations of the set pixels directly upon the PE array
itself, thus leading to less information needing to be extracted
from the array to determine the global summation. As the
transfer of data off of the array is highly time consuming
relative to most other operations, this new approach is easily
over an order of magnitude faster than the naive approach of
iteratively eliminating set pixels from the image.

Note that direction of digital data transfer operations upon

SCAMP-5 can be chosen on a per PE basis, with each PE
containing 4 digital registers, determining which of its 4
neighbouring PE to connect to during transfer. This control
over the direction of data transfer allows us to efficiently
implement a scheme whereby PEs containing set pixels copy
the data from the PE below, and PEs with empty pixels copy
from the PE above. This directional transfer setup causes set
pixels to ”fall” into any empty PE below their current location
whenever a digital data transfer operation is performed, and
when performed repeatedly forms the vertical stacks of set pix-
els required for our approach. This approach listed Algorithm
1.

The computation time to perform this proposed method of
global summation is constant, coming in at 331µs, whereas the
computation time of the naive approach described in Section
III-A increases with the number of set pixels in the image.
For a typical binary edge image our proposed approach can
be well over two orders of magnitude faster. As an example
for the image shown in 3 such a naive approach performing
sequential pixel eliminations takes over 43000µs.

IV. CONCLUSIONS

This paper presented a novel algorithm for global summa-
tion of a binary image upon PPA devices. Our approach is
around two orders of magnitude faster in practice than a naive
approach, fast enough to be used as a standard function for
many real-time vision application. While exploiting the paral-
lel processing of the SCAMP-5, this work should applicable to
PPA architectures in general and should aid others in building
their own applications for pixel-parallel architectures.

REFERENCES

[1] M. J. Duff et al., “Review of the CLIP image processing system,” in
Proc. National Computer Conference. AFIPS Press Arlington, Va,
1978, pp. 1055–1060.

[2] J. C. Gealow, F. P. Herrmann, L. T. Hsu, and C. G. Sodini, “System
design for pixel-parallel image processing,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 32–41, 1996.

[3] M. Ishikawa, K. Ogawa, T. Komuro, and I. Ishii, “A cmos vision
chip with simd processing element array for 1ms image processing,
1999 dig. tech. papers of 1999 ieee int,” in Solid-State Circuits
Conf.(ISSCC99)(San Francisco, 1999.2. 16)/Abst, pp. 206–207.

[4] P. Dudek and P. J. Hicks, “A general-purpose cmos vision chip with a
processor-per-pixel simd array,” in Proceedings of the 27th European
Solid-State Circuits Conference. IEEE, 2001, pp. 213–216.

[5] J. Poikonen, M. Laiho, and A. Paasio, “MIPA4k: A 64× 64 cell mixed-
mode image processor array,” in 2009 IEEE International Symposium
on Circuits and Systems. IEEE, 2009, pp. 1927–1930.

[6] A. Lopich and P. Dudek, “A general-purpose vision processor with
160x80 pixel-parallel SIMD processor array,” in Proceedings of the
IEEE Custom Integrated Circuits Conference, 2017.

[7] A. Rodriguez-Vazquez, J. Fernández-Berni, J. A. Leñero-Bardallo,
I. Vornicu, and R. Carmona-Galán, “CMOS vision sensors: embedding
computer vision at imaging front-ends,” IEEE Circuits and Systems
Magazine, vol. 18, no. 2, pp. 90–107, 2018.

[8] S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek, “A
100,000 fps vision sensor with embedded 535GOPS/W 256× 256 SIMD
processor array,” in 2013 Symposium on VLSI Circuits. IEEE, 2013,
pp. C182–C183.

[9] T. Yamazaki, H. Katayama, S. Uehara, A. Nose, M. Kobayashi, S. Shida,
M. Odahara, K. Takamiya, Y. Hisamatsu, S. Matsumoto et al., “A
1ms high-speed vision chip with 3d-stacked 140 GOPS column-parallel
PEs for spatio-temporal image processing,” in 2017 IEEE International
Solid-State Circuits Conference (ISSCC). IEEE, 2017, pp. 82–83.

[10] L. Millet, S. Chevobbe, C. Andriamisaina, L. Benaissa, E. Deschaseaux,
E. Beigne, K. B. Chehida, M. Lepecq, M. Darouich, F. Guellec et al.,
“A 5500-frames/s 85-GOPS/W 3-d stacked BSI vision chip based on
parallel in-focal-plane acquisition and processing,” IEEE Journal of
Solid-State Circuits, vol. 54, no. 4, pp. 1096–1105, 2019.

[11] T. Finateu, A. Niwa, D. Matolin, K. Tsuchimoto, A. Mascheroni,
E. Reynaud, P. Mostafalu, F. Brady, L. Chotard, F. LeGoff et al.,
“A 1280× 720 back-illuminated stacked temporal contrast event-based
vision sensor with 4.86 µm pixels, 1.066 GEPS readout, programmable
event-rate controller and compressive data-formatting pipeline,” in 2020
IEEE International Solid-State Circuits Conference-(ISSCC). IEEE,
2020, pp. 112–114.

[12] J. Chen, S. J. Carey, and P. Dudek, “Feature extraction using a portable
vision system,” 2017.

[13] L. Bose, J. Chen, S. J. Carey, P. Dudek, and W. Mayol-Cuevas, “A
camera that cnns: Towards embedded neural networks on pixel processor
arrays,” in The IEEE International Conference on Computer Vision
(ICCV), October 2019.

[14] ——, “Visual odometry for pixel processor arrays,” in Proceedings of
the IEEE International Conference on Computer Vision, 2017, pp. 4604–
4612.

