
Accuracy and Efficiency of Grey-level Image Filtering on VLSI
Cellular Processor Arrays

Piotr Dudek

Department of Electrical Engineering and Electronics
University of Manchester Institute of Science and Technology (UMIST)

PO Box 88, Manchester M60 1QD, United Kingdom

ABSTRACT: This paper discusses issues related to the efficiency of silicon
implementations of cellular processor arrays executing basic grey-level image
processing operations - linear convolutions with 3×3 kernels. Speed, accuracy, power
consumption and circuit area are considered. It is demonstrated, that the sequential
execution, characteristic of SIMD machines, may offer certain advantages over the
parallel one, characteristic of CNN-based processors. The discussion is illustrated
using processing results from an analogue cellular processor array chip.

1. Introduction
The cellular neural networks (CNNs) were proposed not only as a paradigm for complexity, but also
as an architecture suitable for the design of VLSI processing arrays [1]. The concept of the CNN-
Univeral Machine (CNN-UM), which combined a CNN core with an algorithmically programmable
cellular computer, lead to the development of a number of silicon implementations of general-
purpose visual microprocessors [2,3]. Other sensor/processor arrays have been developed [4,5],
which use general-purpose analogue processor arrays in SIMD (single instruction multiple data)
configuration, and are not based on continuous-time spatio-temporal processing associated with
CNNs.

Since the CNN paradigm is very general, it is important to clarify here that when we are referring to
a “CNN-based processor” we mean an architecture, which is largely based on the original Chua-
Yang CNN model [1]. At present many VLSI circuits are being built which implement this general
architecture (though usually with some modifications) [2,3], and many image processing algorithms
are being published for these type of machines, e.g. [6-8]. Here we consider CNNs with nodes on a
rectangular grid, and a 3×3 neighbourhood. Our discussion can be easily extended to other
topologies. Furthermore, most of the discussion applies not only to CNNs, but generally to all
analogue processor arrays, where the convolution operation is executed in parallel.

1.1. Image Processing on CNN chips

It is often said, that the present-generation CNN-UM chips are providing the TeraOPS (1015
operations per second) computing power [3,9]. However, when it comes to practical
implementations of image processing algorithms using the CNN-UM, it is apparent that the effective
computing power (i.e. the amount of operations required to achieve the equivalent image processing
result) is much smaller. This is because of the fact, that the TeraOPS figure is calculated as “the
number of operations that would be required to solve numerically the kind of partial differential
equations (PDEs) which are solved by a CNN”. There is a small number of image processing
algorithms, that are indeed expressed in terms of PDEs [10], there are also interesting modelling
problems [11] where a solution of PDEs is explicitly required. However, a great majority of image
processing algorithms proposed for the CNN-UM systems in the literature, such as the ones in [6-
8], do not require solving PDEs. They can be efficiently executed by a combination of arithmetic
and logic operations. Two particular, and arguably most often required operations, are linear
convolutions with 3×3 kernels and binary image processing via “propagating” templates. Virtually
every image processing problem is being solved as a combination (i.e. sequential execution) of a
number of these. Furthermore, since it is difficult to provide the required amount of hardware
(requirement of multi-layer CNNs, and more complex operations) in general-purpose CNN-UM

implementations, the more complex algorithms that actually solve PDEs are still executed on a
CNN-UM by a combination of more primitive tasks executed in an iterative fashion [10-12].
Obviously, any “universal machine” type of cellular array can implement (at least in principle) any
algorithm. The choice of a set of primitive tasks does not impair the functionality of the network –
but it will affect the parameters of the implementation: speed, silicon area, accuracy and power
consumption. As these are of prime importance when it comes to engineering practical vision
systems, it is important to consider how the trade-offs between these parameters, and the choice of a
specific cell circuitry, can be efficiently made. In this paper we will limit our discussion to pixel-
parallel visual microprocessors performing convolutions with 3×3 kernels, as defined in the
following section. In another paper [13] we discuss other fundamental image processing operations
often performed on cellular processor arrays: binary “propagation” algorithms.

2. Convolutions on Cellular Processor Arrays

A convolution with a 3×3 kernel is a basic component of a large number of grey-scale image
processing algorithms. The operation can be expressed in terms of pixel-wise operations as follows:

 ∑
=
=

+−+−=
3..1
3..1

2,2

j
i

jyixijxy ucq (1)

where uxy are pixels in the input image, qxy are values of pixels in the output (result) image and cij
are the nine coefficients of the convolution kernel. Two typical kernels, often used in image
processing are shown below:












=

121

242

121

16

1
d













−
−
−

=
101

202

101

4

1
v (2)

A CNN processor can execute the convolution operation in a single step (via B-template), since it
contains 9 multiplier circuits working in parallel, as illustrated in Fig.1a. A simple SIMD processor,
such as the one illustrated in Fig.1b, contains a single processing unit only (ALU) and will require a
sequential execution of a number of instructions: neighbour transfers, additions and multiplications,
to calculate the weighted sum of neighbours given by (1).

2.1 Accuracy

It is often said, that low-level image processing algorithms do not require great accuracy, and for
many grey-scale operations the equivalent accuracy of perhaps 6-bits is sufficient. It has to be

a22

a11

a12

a13

a33

To 8
neighbours

From 8
neighbours

Local memories
(registers)

3x3 processing core

bus

To/from 4
neighbours

ALU (configurable)

Local memories
(registers)

bus

a

 (a) (b)
Figure 1. Conceptual diagrams of two alternative cellular processor architectures used for 3×3
convolutions: (a) kernel-based, like a CNN-UM (b) sequential, like a simple SIMD machine

recognised, however, that analogue processors are prone to error accumulation effects, and so the
overall error of processing is larger than that of a single operation error, or memory storage error.
On the other hand, systematic error effects (e.g. offset and gain errors) can often be ignored or
easily compensated for. Even relatively large offset and gain errors result in contrast/brightness
adjustment only. It is the random errors (spatial and temporal noise) that are limiting the accuracy
of analogue processors, since they corrupt the spatial information in the image.

Of particular concern are spatially distributed errors, resulting in fixed-pattern-noise (FPN) effects.
This is because they are correlated on pixel-wise basis, and thus the error accumulation results in
error addition. The random noise errors, on the other hand, are uncorrelated, and so the
accumulation follows a root-of-sum-of-squares law. Consider illustration in Fig.2, where a random
noise σn=0.09% and fixed-pattern-noise σfpn=0.04% are applied iteratively to an image. After N

iterations the total random noise is nNσ while the total FPN is fpnNσ ; for example after 100

iterations we get random noise of 0.9% and fixed-pattern-noise of 4%. Furthermore, the averaging
can be applied to reduce the noise, and the spatial noise seems to be more critical than the temporal
noise, especially that it is usually preferable to increase the time of processing, rather than reduce
the spatial resolution of the image.

The fixed-pattern error in analogue processor arrays is due to mismatch between circuit components
(mostly transistors). The mismatch is caused by local fluctuations of physical parameters, and can
be minimised by using large-area devices. Thus a trade-off between circuit area and accuracy exists,
and it becomes critical in cellular pixel-per-processor arrays, where one of the imperatives is to
minimise the silicon area of a single cell (large-resolution arrays are required), and thus mismatch
problems are severe. Typical size of the entire processing cell in a state-of-the art vision chip is
below 250µm2, and it is desirable to decrease this area even further. This area has to contain
photodetectors as well as local memories, arithmetic circuitry and all associated control circuits.
Typical current mismatch for a saturated 10µm2 transistor is in the order of 2%.

The solution shown in Fig.1a requires nine multiplier circuits in a single cell, while the solution in
Fig.1b requires one multiplier only. Given equal silicon area used to implement the processing core,
we can expect the circuit in Fig.1b to provide significant improvement in terms of accuracy. This is
the basic, and most fundamental observation, but consideration of some more detailed issues
provides further arguments in favour of using the circuit in Fig.1b.

In some cases, for example in the case of the convolution kernel v in (2), which is used to detect
vertical edges in the Sobel algorithm, it is more important to ensure that the positive and negative
terms are of equal magnitude – the accuracy of their absolute values (even if it changes from pixel
to pixel) is of lesser importance. The processor in Fig.1b allows all coefficients to be calculated by
the same multiplier circuit, if required, thus ensuring perfect matching between the coefficients.

Furthermore, some simple and often required operations, such as neighbour transfers (which
correspond to image translations), are implemented in the Fig.1a via the multipliers, and thus prone
to FPN errors introduced by the multipliers. In contrast, neighbour transfers in Fig.1b do not

 (a) (b) (c)

Figure 2. Error accumulation on the analogue processor array [3]: (a) original image, (b) image
after 25 transfers between two analogue registers, (c) image after 100 transfers between two
analogue registers. The majority of the visible noise has a fixed-pattern character. (The results
come from different captures, they do not correspond to the same image frame).

introduce these errors, and are only limited by the mismatch error of the analogue memory cell,
which is typically very small (e.g. 0.09% in the chip reported in [14]).

There is, however, another aspect of the sequential solution – the possibility of improving the
accuracy beyond the limit set by the device mismatch – which sets the solutions of Fig.1a and
Fig.1b much further apart in terms of the achievable accuracy. This aspect is exemplified by the
design used on the SCAMP-2 chip, where an “ALU-free” philosophy has been adopted [14]. The
current-mode processing is used to perform all arithmetic operations in the analogue memory/bus
system, without the need for any extra ALU circuitry. The instruction set is reduced to summation,
inversion, and division by 2. Using these primitives all arithmetic operations are performed.
Although this somewhat restricts the practical values of coefficients in convolution kernels,
nevertheless this is usually not a problem. The area-savings offered by the “ALU-free” approach
can be used to improve the accuracy of the analogue memories, by using more cell area to
implement memories. If these analogue memories have better matching, this improves the accuracy
of arithmetic operations also. It also reduces random noise. But, most importantly, a sequential
error-correction scheme described in [15] can be used to achieve accurate division operation, thus
significantly reducing the overall FPN associated with mismatch of coefficients in convolution
kernels and cell-to-cell mismatch. Figure 3 illustrates the results of the Sobel edge detection
algorithm (based on two 3×3 convolution kernels) executed on the SCAMP-2 processor. In case
illustrated in Fig.4b the accuracy of division is 2.3%, which corresponds to the limit set by the
transistor mismatch. In Fig.4c the accuracy has been increased to 0.2%, significantly beyond the
transistor mismatch accuracy, through the error correction algorithm.

Of course, in each implementation of a cellular processor array the accuracy depends on a particular
circuit design, and so it might be expected that even more optimal solutions than the one presented
above exist. For example, using transistors in ohmic region should improve their matching
properties [16]. Also, for each implementation, the absolute level of accuracy can be adjusted
according to trade-offs between application requirements, total circuit area, speed and power
consumption. What we hoped to illustrate, however, is that significant improvements in FPN,
beyond transistor mismatch, are only possible through a sequential process, using the same device
several times during the calculation, as opposed to a parallel execution of the convolution kernel.

It has to be said, that the improvements in terms of FPN are achieved at a cost of increased
processing time. This trade-off certainly exists. However, given that usually not that many 3×3
grey-scale convolutions are required per image frame, for a majority of applications the sequential
solution seems to be the more optimal one. Especially, when we consider that the parallel
multiplication offered by the circuit in Fig.1a does not provide as great speed-up as it might be
expected. This issue will be briefly exposed in the next section.

2.2 Efficiency

Let’s assume, that the effective number of elementary arithmetic operations performed by the CNN
based processor to calculate 3×3 convolution is equal to 17 (9 multiplications and 8 additions) per
cell. Note that this corresponds to a processor shown in Fig.1a, rather than a PDE-solving CNN. If

 (a) (b) (c)

Figure 3. Edge detection on the analogue processor array [3]: (a) original image, (b) result with
2.3% division error (transistor mismatch limit), (c) result with 0.2% division error (sequential
error compensation applied)

we were to use the TeraOPS figures sometimes quoted for the CNN-UM chips the number of
“operations” would be much higher. We also ignore other CNN-specific arguments, such as bias
term. We consider here 8 additions, as opposed to 1 summation operation, because the power
consumption will usually depend on the number of arguments of the arithmetic operation.

While the 17 operations are in general required to implement any 3×3 kernel, the CNN solution is
still inherently inefficient, as compared with a sequential SIMD machine. This is because in many
cases the minimum number of operations required to implement convolutions is smaller, due to the
possible decomposition of the convolution kernels that can be exploited when implementing them
in a sequential way. As an example, consider the vertical Sobel edge detection kernel v and the
smoothing kernel d, shown in (2). Possible sequential implementations of these convolutions are
shown in Table 1. From these implementations it can be seen, that the total number of operations
(additions, subtractions and multiplications) is equal to 5 for the edge detection kernel and 8 for the
smoothing kernel. The CNN core, however, will always perform 17 operations

The inherent inefficiency of the CNN core is even more prominent if we consider, that a number of
templates used for typical CNN image processing tasks are sparse, with only a few non-zero
elements. Consider an extreme case of a B-template, used for example in [6]:












=

010

000

000

B (3)

A 3×3 kernel-based processor will still perform 17 operations to implement this template in case
when only one neighbour transfer operation is all that is required. It shall be pointed out, that
multiplication by zero still consumes power on the state-of-the-art CNN-UM chips! Indeed, the
peculiarities of analogue VLSI design often lend themselves to the situation where arithmetic zero
is represented by some non-zero biasing current or voltage level (for example, the one-transistor
synapse strategy [16], which is the key to the compact circuit implementation of the CNN-UM
architecture [2] requires zero to be represented by a fixed current).

It should be stated, that a particular SIMD processor implementation may require more elementary
operations per arithmetic operation, due to the limitations of its instruction set (e.g. neighbour
transfers may be allowed only via a particular register) or constraints imposed by the accuracy of
processing (e.g. error cancellation schemes on analogue microprocessors). For example, on the
SCAMP-2 chip [14] the kernels v and d are implemented with 19 and 32 elementary instructions
respectively. On the other hand, practical CNN-UM implementations require additional calibration
steps to achieve reasonable accuracy levels [2], and these should be also considered.

In the end, as it was the case when we considered the accuracy, the particulars of the
implementation will have a great effect on the overall efficiency of the system and imaginative
circuit solutions may be deployed to improve overall power consumption of CNN chips.
Nevertheless, it can be said that the CNN processing cores are inherently inefficient when executing
grey-scale convolutions. They will usually perform more operations than it is needed, and these

Table 1. SIMD programs for the implementation of two examples of convolution kernels (2)

* v - SOBEL VERTICAL:
A = I/4
C = A + A(north)
C = C + A + A(south)
C = C(east) – C(west)

* d – SMOOTHING:
A = I/4
C = A + A(north)
C = C + A + A(south)
A = C/4
C = A + A(east)
C = C + A + A(west)

operations will consume power and also take up silicon space (since hardware to perform these
operations must be provided).

3. Conclusions
Although detailed comparisons between specific implementations of the two architectures can be
made (if complete performance data are available), we have not compared particular chip designs in
this paper. Instead, we tried to emphasise how some fundamental features of the two architectures
affect the parameters of the implementation. We have reasoned that the parallel execution of 3×3
convolutions, as performed on CNN-based processors, is not optimal, in terms of accuracy and
efficiency. The sequential execution, as performed on SIMD machines, does increase processing
time, but allows the optimisation of the power consumption by performing fewer elementary
operations. At the same time, it leads to the reduction in circuit area, while enabling accuracy
improvements. Since the reduction of feature size will make it even easier to achieve high speeds of
processing in future generation of analogue processors, for reasons of accuracy and efficiency
outlined above, it might be expected that the techniques that use sequential rather than parallel
execution of convolution kernels will be of greater use in the design of analogue cellular processors.

References
[1] L.O.Chua and L.Yang, “Cellular neural networks: Theory and applications”, IEEE Transctions
on Circuits and Systems, vol 35, pp.1257-1290, Oct 1988.
[2] G. Liñán et. al. “Architectural and Basic Circuit Considerations for a Flexible 128x128 Mixed-
Signal SIMD Vision Chip”, Analog Integr. Circuits and Sig. Proc. , vol.33, pp.179–190, 2002
[3] A.Paasio, A.Kananen, K.Halonen and V.Porra, “TOPS Information Processing on a Single
Chip”, Circuits and Devices Magazine, pp.13-15, May 1998
[4] P.Dudek, “A Processing Element for an Analogue SIMD Vision Chip”, Proc. European
Conference on Circuit Theory and Design, ECCTD’03, vol.III, pp.221-224, September 2003.
[5] Jacques-Olivier Klein et al. "A Universal Switched Capacitor Computation Cell Applied to a
Programmable Vision Chip", Proc. Conf. ECCTD’03, vol III, pp.225-228, September 2003
[6] G.Grassi et al. “Object-Oriented Image Analysis Using the CNN Universal Machine: New
Analogic CNN Algorithms …”, IEEE Trans. on Cicrcuits and Systems – I, vol.50, no.4., pp.488-
499, April 2003
[7] P.Arena, L.Fortuna and L.Occhipinti, “A CNN Algorithm for Real Time Analysis of DNA
Microarrays”, IEEE Trans. on Cicrcuits and Systems – I, vol.49, no.3., pp.335-340, March 2002
[8] P.Arena, A.Basile, M.Bucolo and L.Fortuna, “An Object Oriented Segmentation on Analog
CNN Chip”, IEEE Trans. on Cicrcuits and Systems – I, vol.50, no.7., pp.837-846, July 2003
[9] T.Roska, “Computer-Sensors: Spatial-Temporal Computers for Analog Array Signals,
Dynamically Integrated with Sensors”, Journal of VLSI Signal Processing, 23, pp.221-237, 1999
[10] T.Kozek and D.L.Vilariño, “An Active Contour Algorithm for Continuous-Time Cellular
Neural Networks”, Journal of VLSI Signal Processing, 23, pp.403-414, 1999
[11] D.Balya, Cs.Rekeczky, T.Roska, “A realistic mammalian retinal model implemented on
complex cell CNN universal machine”, ISCAS 2002, vol IV, pp.161-164, 2002
[12] I.Szatmari and Cs.Rekeczky, “A Nonlinear Wave Metric and its CNN Implementation for
Object Classification”, Journal of VLSI Signal Processing, vol. 23, pp.437-447, 1999.
[13] P.Dudek, “Fast and Efficient Implementation of Trigger-Wave Propagation on VLSI Cellular
Processor Arrays”, CNNA’2004
[14] P.Dudek “A 39x48 General-Purpose Focal-Plane Processor Array Integrated Circuit”, ISCAS
2004
[15] J.-S. Wang and C.-L. Wey, “Accurate CMOS Switched-Current Divider Circuits”, Proc.
ISCAS’98, vol I, pp.53-56, May 1998.
[16] A.Rodríguez-Vázquez et al. “MOST-Based Design and Scaling of Synaptic Interconnections
in VLSI Analog Array Processing VLSI Chips”, Journal of VLSI Signal Processing, 23, pp.239-
266, 1999

