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ABSTRACT: This paper discusses issues related to the efficiency of silicon
implementations of cellular processor arrays executing basic grel-ievege
processing operations - linear convolutions witkBXernels. Speed, accuracy, power
consumption and circuit area are considered. It is demonstrated, that qnerdel
execution, characteristic of SIMD machines, may offer certain advantaggr the
parallel one, characteristic of CNN-based processors. The discussidiosisated
using processing results from an analogue cellular processor array chip.

1. Introduction

The cellular neural networks (CNNs) were proposed not only as a paradigm fdexibyn but also

as an architecture suitable for the design of VLSI processiagsafl]. The concept of the CNN-
Univeral Machine (CNN-UM), which combined a CNN core with an atgonically programmable

cellular computer, lead to the development of a number of silicon inepkations of general-
purpose visual microprocessors [2,3]. Other sensor/processor arrgydéen developed [4,5],
which use general-purpose analogue processor arrays in SiM@le( instruction multiple data)
configuration, and are not based on continuous-time spatio-temporal pngcassociated with
CNNs.

Since the CNN paradigm is very general, it is importantaofg here that when we are referring to

a “CNN-based processor” we mean an architecture, whidrgelly based on the original Chua-
Yang CNN model [1]. At present many VLSI circuits are enuilt which implement this general
architecture (though usually with some modifications) [2,3], andyrmaage processing algorithms
are being published for these type of machines, e.g. [6-8]. Herensaler CNNs with nodes on a
rectangular grid, and ax3 neighbourhood. Our discussion can be easily extended to other
topologies. Furthermore, most of the discussion applies not only tosCbIN generally to all
analogue processor arrays, where the convolution operation is executed el.parall

1.1. Image Processing on CNN chips

It is often said, that the present-generation CNN-UM chipspaogiding the TeraOPS (10
operations per second) computing power [3,9]. However, when it comegractcal
implementations of image processing algorithms using the CNN-UM, it iseagphat thesffective
computing power (i.e. the amount of operations required to achieve tihvalegtiimage processing
result) is much smaller. This is because of the fact, thaten@OPS figure is calculated as “the
number of operations that would be required to solve numerically the kipdro&l differential
equations (PDEs) which are solved by a CNN". There is a smuafiber of image processing
algorithms, that are indeed expressed in terms of PDEs [10%, #ineralso interesting modelling
problems [11] where a solution of PDEs is explicitly required. H@mnea great majority of image
processing algorithms proposed for the CNN-UM systems in #ratiire, such as the ones in [6-
8], do not require solving PDEs. They can be efficiently execuwea ombination of arithmetic
and logic operations. Two particular, and arguably most often requiradtiops, are linear
convolutions with 33 kernels and binary image processing via “propagating” temphisally
every image processing problem is being solved as a combinagosgguential execution) of a
number of these. Furthermore, since it is difficult to provide the medjuamount of hardware
(requirement of multi-layer CNNs, and more complex operationskeirergl-purpose CNN-UM



implementations, the more complex algorithms that actually 98dEs are still executed on a
CNN-UM by a combination of more primitive tasks executed in tarative fashion [10-12].
Obviously, any “universal machine” type of cellular array caple@ment (at least in principle) any
algorithm. The choice of a set of primitive tasks does not impaifunctionality of the network —
but it will affect the parameters of the implementation: spsgidon area, accuracy and power
consumption. As these are of prime importance when it comes toeenigg practical vision
systems, it is important to consider how the trade-offs between these fmmsamed the choice of a
specific cell circuitry, can be efficiently made. In this pape will limit our discussion to pixel-
parallel visual microprocessors performing convolutions wi#3 ¥ernels, as defined in the
following section. In another paper [13] we discuss other fundamerdgkiprocessing operations
often performed on cellular processor arrays: binary “propagation” dguit

2. Convolutions on Cellular Processor Arrays

A convolution with a 33 kernel is a basic component of a large number of grey-stelgei
processing algorithms. The operation can be expressed in terms of pixel-weaeaopeas follows:

qu = Zcijux—2+i,y—2+j (1)

i=1.3

=13
whereuyy are pixels in the input imagey, are values of pixels in the output (result) image gnd
are the nine coefficients of the convolution kernel. Two typical kerredten used in image
processing are shown below:
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A CNN processor can execute the convolution opanati a single step (via B-template), since it
contains 9 multiplier circuits working in parall@s illustrated in Fig.1a. A simple SIMD processor,
such as the one illustrated in Fig.1b, containg@le processing unit only (ALU) and will require a
sequential execution of a number of instructiorsginbour transfers, additions and multiplications,
to calculate the weighted sum of neighbours give(il.

2.1 Accuracy

It is often said, that low-level image processimgpathms do not require great accuracy, and for
many grey-scale operations the equivalent accucdqgyerhaps 6-bits is sufficient. It has to be
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Figure 1. Conceptual diagrams of two alternative celliprocessor architectures used fox3
convolutions: (a) kernel-based, like a CNN-UM (b) sequential, like a simple Sidibine



recognised, however, that analogue processorsrane po error accumulation effects, and so the
overall error of processing is larger than thaadadingle operation error, or memory storage error.
On the other hand, systematic error effects (effgeband gain errors) can often be ignored or
easily compensated for. Even relatively large offsed gain errors result in contrast/brightness
adjustment only. It is the random errors (spatrad &#emporal noise) that are limiting the accuracy
of analogue processors, since they corrupt théasafiormation in the image.

Of particular concern are spatially distributedoesy resulting in fixed-pattern-noise (FPN) effects
This is because they are correlated on pixel-wassh and thus the error accumulation results in
error addition. The random noise errors, on theemthand, are uncorrelated, and so the
accumulation follows a root-of-sum-of-squares l&@®onsider illustration in Fig.2, where a random
noise d,=0.09% and fixed-pattern-nois#,,=0.04% are applied iteratively to an image. Aftér

iterations the total random noise {@aﬂwhile the total FPN isNo,,; for example after 100

iterations we get random noise of 0.9% and fixetlepa-noise of 4%. Furthermore, the averaging
can be applied to reduce the noise, and the spatisé seems to be more critical than the temporal
noise, especially that it is usually preferablencrease the time of processing, rather than reduce
the spatial resolution of the image.

The fixed-pattern error in analogue processor arreylue to mismatch between circuit components
(mostly transistors). The mismatch is caused bgllflactuations of physical parameters, and can
be minimised by using large-area devices. Thuadetoff between circuit area and accuracy exists,
and it becomes critical in cellular pixel-per-preser arrays, where one of the imperatives is to
minimise the silicon area of a single cell (largsalution arrays are required), and thus mismatch
problems are severe. Typical size of the entiregssing cell in a state-of-the art vision chip is
below 25@m?, and it is desirable to decrease this area evehefu This area has to contain
photodetectors as well as local memories, arithongtcuitry and all associated control circuits.
Typical current mismatch for a saturatequd transistor is in the order of 2%.

The solution shown in Fig.1la requires nine mukipkircuits in a single cell, while the solution in
Fig.1b requires one multiplier only. Given equditen area used to implement the processing core,
we can expect the circuit in Fig.1b to provide gigant improvement in terms of accuracy. This is
the basic, and most fundamental observation, buosideration of some more detailed issues
provides further arguments in favour of using timeuwt in Fig.1b.

In some cases, for example in the case of the dotmo kernelv in (2), which is used to detect
vertical edges in the Sobel algorithm, it is marportant to ensure that the positive and negative
terms are of equal magnitude — the accuracy of #ieolute values (even if it changes from pixel
to pixel) is of lesser importance. The processdfigilb allows all coefficients to be calculated by
the same multiplier circuit, if required, thus ensg perfect matching between the coefficients.

Furthermore, some simple and often required omersti such as neighbour transfers (which
correspond to image translations), are implemeiméde Fig.1a via the multipliers, and thus prone
to FPN errors introduced by the multipliers. In tast, neighbour transfers in Fig.1b do not
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Figure 2. Error accumulation on the analogue praar array [3]: (a) original image, (b) image

after 25 transfers between two analogue regis{glsmage after 100 transfers between two

analogue registers. The majority of the visiblesednas a fixed-pattern character. (The results

come from different captures, they do not corregporthe same image frame).




introduce these errors, and are only limited by nhismatch error of the analogue memory cell,
which is typically very small (e.g. 0.09% in theheported in [14]).

There is, however, another aspect of the sequesniation — the possibility of improving the
accuracy beyond the limit set by the device mismatowvhich sets the solutions of Fig.1a and
Fig.1b much further apart in terms of the achiegatcuracy. This aspect is exemplified by the
design used on the SCAMP-2 chip, where an “ALU-:frgleilosophy has been adopted [14]. The
current-mode processing is used to perform alh@mdtic operations in the analogue memory/bus
system, without the need for any extra ALU ciropiffhe instruction set is reduced to summation,
inversion, and division by 2. Using these primisivall arithmetic operations are performed.
Although this somewhat restricts the practical ealwf coefficients in convolution kernels,
nevertheless this is usually not a problem. Tha-aevings offered by the “ALU-free” approach
can be used to improve the accuracy of the analogemories, by using more cell area to
implement memories. If these analogue memories hatter matching, this improves the accuracy
of arithmetic operations also. It also reduces oamdhoise. But, most importantly, a sequential
error-correction scheme described in [15] can keElue achieve accurate division operation, thus
significantly reducing the overall FPN associateithwnismatch of coefficients in convolution
kernels and cell-to-cell mismatch. Figure 3 illastss the results of the Sobel edge detection
algorithm (based on twox3 convolution kernels) executed on the SCAMP-2 gssor. In case
illustrated in Fig.4b the accuracy of division i88%, which corresponds to the limit set by the
transistor mismatch. In Fig.4c the accuracy has beereased to 0.2%, significantly beyond the
transistor mismatch accuracy, through the errarection algorithm.

Of course, in each implementation of a cellularcpssor array the accuracy depends on a particular
circuit design, and so it might be expected th&newore optimal solutions than the one presented
above exist. For example, using transistors in chmaigion should improve their matching
properties [16]. Also, for each implementation, thiesolute level of accuracy can be adjusted
according to trade-offs between application requests, total circuit area, speed and power
consumption. What we hoped to illustrate, howeverthat significant improvements in FPN,
beyond transistor mismatch, are only possible thinoa sequential process, using the same device
several times during the calculation, as opposeddarallel execution of the convolution kernel.

It has to be said, that the improvements in terfn&RN are achieved at a cost of increased
processing time. This trade-off certainly existowéver, given that usually not that many33
grey-scale convolutions are required per image é;dior a majority of applications the sequential
solution seems to be the more optimal one. Espgcialnen we consider that the parallel
multiplication offered by the circuit in Fig.1a do@&ot provide as great speed-up as it might be
expected. This issue will be briefly exposed innle&t section.

2.2 Efficiency

Let's assume, that the effective number of elentgraethmetic operations performed by the CNN
based processor to calculate33convolution is equal to 17 (9 multiplications a®@dditions) per
cell. Note that this corresponds to a processowsha Fig.1a, rather than a PDE-solving CNN. If
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Figure 3. Edge detection on the analogue proceas@y [3]: (a) original image, (b) result wi
2.3% division error (trasistor mismatch limit), (c) result with 0.2% diais error (sequentic
error compensation applied)




we were to use the TeraOPS figures sometimes quotethe CNN-UM chips the number of
“operations” would be much higher. We also ignotikeo CNN-specific arguments, such as bias
term. We consider here 8 additions, as opposed samimation operation, because the power
consumption will usually depend on the number gliarents of the arithmetic operation.

While the 17 operations are in general requiresnjglement any 83 kernel, the CNN solution is
still inherently inefficient, as compared with aggential SIMD machine. This is because in many
cases the minimum number of operations requirathpbement convolutions is smaller, due to the
possible decomposition of the convolution kernbkt itan be exploited when implementing them
in a sequential way. As an example, consider théceé Sobel edge detection kerneland the
smoothing kernetl, shown in (2). Possible sequential implementatiohthese convolutions are
shown in Table 1. From these implementations it lmarseen, that the total number of operations
(additions, subtractions and multiplications) isi@do 5 for the edge detection kernel and 8 fer th
smoothing kernel. The CNN core, however, will alewg@erform 17 operations

The inherent inefficiency of the CNN core is evearenprominent if we consider, that a number of
templates used for typical CNN image processingstasre sparse, with only a few non-zero
elements. Consider an extreme case of a B-tempisg€, for example in [6]:

000
B=(0 0 0 3)
010

A 3x3 kernel-based processor will still perform 17 @pens to implement this template in case
when only one neighbour transfer operation is ladit tis required. It shall be pointed out, that
multiplication by zero still consumes power on #tate-of-the-art CNN-UM chips! Indeed, the
peculiarities of analogue VLSI design often lendntiselves to the situation where arithmetic zero
is represented by some non-zero biasing currenblbage level (for example, the one-transistor
synapse strategy [16], which is the key to the cachmircuit implementation of the CNN-UM
architecture [2] requires zero to be represented tixyed current).

It should be stated, that a particular SIMD prooesmplementation may require more elementary
operations per arithmetic operation, due to thdtéitions of its instruction set (e.g. neighbour
transfers may be allowed only via a particular &) or constraints imposed by the accuracy of
processing (e.g. error cancellation schemes onognal microprocessors). For example, on the
SCAMP-2 chip [14] the kernelg andd are implemented with 19 and 32 elementary instost
respectively. On the other hand, practical CNN-Uiwliementations require additional calibration
steps to achieve reasonable accuracy levels [@]trese should be also considered.

In the end, as it was the case when we considdned atcuracy, the particulars of the
implementation will have a great effect on the alleefficiency of the system and imaginative
circuit solutions may be deployed to improve ouMenabwer consumption of CNN chips.
Nevertheless, it can be said that the CNN procgs=ines are inherently inefficient when executing
grey-scale convolutions. They will usually perfomore operations than it is needed, and these

Table 1. SIMD programs for the implementation af examples of convolution kernels (2)

*v - SOBEL VERTICAL.: *d - SMOOTHING:
A=l/4 A=1/4

C = A + A(north) C = A + A(north)

C =C + A + A(south) C =C + A + A(south)
C = C(east) — C(west) A=Cl4

C = A + A(east)
C=C+ A+ A(west)




operations will consume power and also take ugailispace (since hardware to perform these
operations must be provided).

3. Conclusions

Although detailed comparisons between specific @nm@ntations of the two architectures can be
made (if complete performance data are available)have not compared particular chip designs in
this paper. Instead, we tried to emphasise how danmagamental features of the two architectures
affect the parameters of the implementation. Weeh@asoned that the parallel execution 3 3
convolutions, as performed on CNN-based process®mpt optimal, in terms of accuracy and
efficiency. The sequential execution, as perforrnadSIMD machines, does increase processing
time, but allows the optimisation of the power aamgtion by performing fewer elementary
operations. At the same time, it leads to the ridiidn circuit area, while enabling accuracy
improvements. Since the reduction of feature sidlemake it even easier to achieve high speeds of
processing in future generation of analogue prarssdor reasons of accuracy and efficiency
outlined above, it might be expected that the teples that use sequential rather than parallel
execution of convolution kernels will be of greatise in the design of analogue cellular processors.
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