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ABSTRACT: This paper discusses issues related to the efficiency of silicon 
implementations of cellular processor arrays executing basic grey-level image 
processing operations - linear convolutions with 3×3 kernels. Speed, accuracy, power 
consumption and circuit area are considered. It is demonstrated, that the sequential 
execution, characteristic of SIMD machines, may offer certain advantages over the 
parallel one, characteristic of CNN-based processors. The discussion is illustrated 
using processing results from an analogue cellular processor array chip. 

1. Introduction 
The cellular neural networks (CNNs) were proposed not only as a paradigm for complexity, but also 
as an architecture suitable for the design of VLSI processing arrays [1]. The concept of the CNN-
Univeral Machine (CNN-UM), which combined a CNN core with an algorithmically programmable 
cellular computer, lead to the development of a number of silicon implementations of general-
purpose visual microprocessors [2,3]. Other sensor/processor arrays have been developed [4,5], 
which use general-purpose analogue processor arrays in SIMD (single instruction multiple data) 
configuration, and are not based on continuous-time spatio-temporal processing associated with 
CNNs.  

Since the CNN paradigm is very general, it is important to clarify here that when we are referring to 
a “CNN-based processor” we mean an architecture, which is largely based on the original Chua-
Yang CNN model [1]. At present many VLSI circuits are being built which implement this general 
architecture (though usually with some modifications) [2,3], and many image processing algorithms 
are being published for these type of machines, e.g. [6-8]. Here we consider CNNs with nodes on a 
rectangular grid, and a 3×3 neighbourhood. Our discussion can be easily extended to other 
topologies. Furthermore, most of the discussion applies not only to CNNs, but generally to all 
analogue processor arrays, where the convolution operation is executed in parallel. 

1.1. Image Processing on CNN chips 

It is often said, that the present-generation CNN-UM chips are providing the TeraOPS (1015 
operations per second) computing power [3,9]. However, when it comes to practical 
implementations of image processing algorithms using the CNN-UM, it is apparent that the effective 
computing power (i.e. the amount of operations required to achieve the equivalent image processing 
result) is much smaller. This is because of the fact, that the TeraOPS figure is calculated as “the 
number of operations that would be required to solve numerically the kind of partial differential 
equations (PDEs) which are solved by a CNN”. There is a small number of image processing 
algorithms, that are indeed expressed in terms of PDEs [10], there are also interesting modelling 
problems [11] where a solution of PDEs is explicitly required. However, a great majority of image 
processing algorithms proposed for the CNN-UM systems in the literature, such as the ones in [6-
8], do not require solving PDEs. They can be efficiently executed by a combination of arithmetic 
and logic operations. Two particular, and arguably most often required operations, are linear 
convolutions with 3×3 kernels and binary image processing via “propagating” templates. Virtually 
every image processing problem is being solved as a combination (i.e. sequential execution) of a 
number of these. Furthermore, since it is difficult to provide the required amount of hardware 
(requirement of multi-layer CNNs, and more complex operations) in general-purpose CNN-UM 



implementations, the more complex algorithms that actually solve PDEs are still executed on a 
CNN-UM by a combination of more primitive tasks executed in an iterative fashion [10-12]. 
Obviously, any “universal machine” type of cellular array can implement (at least in principle) any 
algorithm. The choice of a set of primitive tasks does not impair the functionality of the network – 
but it will affect the parameters of the implementation: speed, silicon area, accuracy and power 
consumption. As these are of prime importance when it comes to engineering practical vision 
systems, it is important to consider how the trade-offs between these parameters, and the choice of a 
specific cell circuitry, can be efficiently made. In this paper we will limit our discussion to pixel-
parallel visual microprocessors performing convolutions with 3×3 kernels, as defined in the 
following section. In another paper [13] we discuss other fundamental image processing operations 
often performed on cellular processor arrays: binary “propagation” algorithms.  

2. Convolutions on Cellular Processor Arrays 

A convolution with a 3×3 kernel is a basic component of a large number of grey-scale image 
processing algorithms. The operation can be expressed in terms of pixel-wise operations as follows: 
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where uxy are pixels in the input image, qxy are values of pixels in the output (result) image and cij  
are the nine coefficients of the convolution kernel. Two typical kernels, often used in image 
processing are shown below: 
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A CNN processor can execute the convolution operation in a single step (via B-template), since it 
contains 9 multiplier circuits working in parallel, as illustrated in Fig.1a. A simple SIMD processor, 
such as the one illustrated in Fig.1b, contains a single processing unit only (ALU) and will require a 
sequential execution of a number of instructions: neighbour transfers, additions and multiplications, 
to calculate the weighted sum of neighbours given by (1). 

2.1 Accuracy 

It is often said, that low-level image processing algorithms do not require great accuracy, and for 
many grey-scale operations the equivalent accuracy of perhaps 6-bits is sufficient. It has to be 
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Figure 1. Conceptual diagrams of two alternative cellular processor architectures used for 3×3 
convolutions: (a) kernel-based, like a CNN-UM (b) sequential, like a simple SIMD machine 



recognised, however, that analogue processors are prone to error accumulation effects, and so the 
overall error of processing is larger than that of a single operation error, or memory storage error. 
On the other hand, systematic error effects (e.g. offset and gain errors) can often be ignored or 
easily compensated for. Even relatively large offset and gain errors result in contrast/brightness 
adjustment only. It is the random errors (spatial and temporal noise) that are limiting the accuracy 
of analogue processors, since they corrupt the spatial information in the image. 

Of particular concern are spatially distributed errors, resulting in fixed-pattern-noise (FPN) effects. 
This is because they are correlated on pixel-wise basis, and thus the error accumulation results in 
error addition. The random noise errors, on the other hand, are uncorrelated, and so the 
accumulation follows a root-of-sum-of-squares law. Consider illustration in Fig.2, where a random 
noise σn=0.09% and fixed-pattern-noise σfpn=0.04% are applied iteratively to an image. After N 

iterations the total random noise is nNσ while the total FPN is fpnNσ ; for example after 100 

iterations we get random noise of 0.9% and fixed-pattern-noise of 4%. Furthermore, the averaging 
can be applied to reduce the noise, and the spatial noise seems to be more critical than the temporal 
noise, especially that it is usually preferable to increase the time of processing, rather than reduce 
the spatial resolution of the image. 

The fixed-pattern error in analogue processor arrays is due to mismatch between circuit components 
(mostly transistors). The mismatch is caused by local fluctuations of physical parameters, and can 
be minimised by using large-area devices. Thus a trade-off between circuit area and accuracy exists, 
and it becomes critical in cellular pixel-per-processor arrays, where one of the imperatives is to 
minimise the silicon area of a single cell (large-resolution arrays are required), and thus mismatch 
problems are severe. Typical size of the entire processing cell in a state-of-the art vision chip is 
below 250µm2, and it is desirable to decrease this area even further. This area has to contain 
photodetectors as well as local memories, arithmetic circuitry and all associated control circuits. 
Typical current mismatch for a saturated 10µm2 transistor is in the order of 2%. 

The solution shown in Fig.1a requires nine multiplier circuits in a single cell, while the solution in 
Fig.1b requires one multiplier only. Given equal silicon area used to implement the processing core, 
we can expect the circuit in Fig.1b to provide significant improvement in terms of accuracy. This is 
the basic, and most fundamental observation, but consideration of some more detailed issues 
provides further arguments in favour of using the circuit in Fig.1b. 

In some cases, for example in the case of the convolution kernel v in (2), which is used to detect 
vertical edges in the Sobel algorithm, it is more important to ensure that the positive and negative 
terms are of equal magnitude – the accuracy of their absolute values (even if it changes from pixel 
to pixel) is of lesser importance. The processor in Fig.1b allows all coefficients to be calculated by 
the same multiplier circuit, if required, thus ensuring perfect matching between the coefficients. 

Furthermore, some simple and often required operations, such as neighbour transfers (which 
correspond to image translations), are implemented in the Fig.1a via the multipliers, and thus prone 
to FPN errors introduced by the multipliers. In contrast, neighbour transfers in Fig.1b do not 
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Figure 2. Error accumulation on the analogue processor array [3]: (a) original image, (b) image 
after 25 transfers between two analogue registers, (c) image after 100 transfers between two 
analogue registers. The majority of the visible noise has a fixed-pattern character. (The results 
come from different captures, they do not correspond to the same image frame). 



introduce these errors, and are only limited by the mismatch error of the analogue memory cell, 
which is typically very small (e.g. 0.09% in the chip reported in [14]). 

There is, however, another aspect of the sequential solution – the possibility of improving the 
accuracy beyond the limit set by the device mismatch – which sets the solutions of Fig.1a and 
Fig.1b much further apart in terms of the achievable accuracy. This aspect is exemplified by the 
design used on the SCAMP-2 chip, where an “ALU-free” philosophy has been adopted [14]. The 
current-mode processing is used to perform all arithmetic operations in the analogue memory/bus 
system, without the need for any extra ALU circuitry. The instruction set is reduced to summation, 
inversion, and division by 2. Using these primitives all arithmetic operations are performed. 
Although this somewhat restricts the practical values of coefficients in convolution kernels, 
nevertheless this is usually not a problem. The area-savings offered by the “ALU-free” approach 
can be used to improve the accuracy of the analogue memories, by using more cell area to 
implement memories. If these analogue memories have better matching, this improves the accuracy 
of arithmetic operations also. It also reduces random noise. But, most importantly, a sequential 
error-correction scheme described in [15] can be used to achieve accurate division operation, thus 
significantly reducing the overall FPN associated with mismatch of coefficients in convolution 
kernels and cell-to-cell mismatch. Figure 3 illustrates the results of the Sobel edge detection 
algorithm (based on two 3×3 convolution kernels) executed on the SCAMP-2 processor. In case 
illustrated in Fig.4b the accuracy of division is 2.3%, which corresponds to the limit set by the 
transistor mismatch. In Fig.4c the accuracy has been increased to 0.2%, significantly beyond the 
transistor mismatch accuracy, through the error correction algorithm.  

Of course, in each implementation of a cellular processor array the accuracy depends on a particular 
circuit design, and so it might be expected that even more optimal solutions than the one presented 
above exist. For example, using transistors in ohmic region should improve their matching 
properties [16]. Also, for each implementation, the absolute level of accuracy can be adjusted 
according to trade-offs between application requirements, total circuit area, speed and power 
consumption. What we hoped to illustrate, however, is that significant improvements in FPN, 
beyond transistor mismatch, are only possible through a sequential process, using the same device 
several times during the calculation, as opposed to a parallel execution of the convolution kernel. 

It has to be said, that the improvements in terms of FPN are achieved at a cost of increased 
processing time. This trade-off certainly exists. However, given that usually not that many 3×3 
grey-scale convolutions are required per image frame, for a majority of applications the sequential 
solution seems to be the more optimal one. Especially, when we consider that the parallel 
multiplication offered by the circuit in Fig.1a does not provide as great speed-up as it might be 
expected. This issue will be briefly exposed in the next section. 

2.2 Efficiency 

Let’s assume, that the effective number of elementary arithmetic operations performed by the CNN 
based processor to calculate 3×3 convolution is equal to 17 (9 multiplications and 8 additions) per 
cell. Note that this corresponds to a processor shown in Fig.1a, rather than a PDE-solving CNN. If 
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Figure 3. Edge detection on the analogue processor array [3]: (a) original image, (b) result with 
2.3% division error (transistor mismatch limit), (c) result with 0.2% division error (sequential 
error compensation applied) 



we were to use the TeraOPS figures sometimes quoted for the CNN-UM chips the number of 
“operations” would be much higher. We also ignore other CNN-specific arguments, such as bias 
term. We consider here 8 additions, as opposed to 1 summation operation, because the power 
consumption will usually depend on the number of arguments of the arithmetic operation.  

While the 17 operations are in general required to implement any 3×3 kernel, the CNN solution is 
still inherently inefficient, as compared with a sequential SIMD machine. This is because in many 
cases the minimum number of operations required to implement convolutions is smaller, due to the 
possible decomposition of the convolution kernels that can be exploited when implementing them 
in a sequential way. As an example, consider the vertical Sobel edge detection kernel v and the 
smoothing kernel d, shown in (2). Possible sequential implementations of these convolutions are 
shown in Table 1. From these implementations it can be seen, that the total number of operations 
(additions, subtractions and multiplications) is equal to 5 for the edge detection kernel and 8 for the 
smoothing kernel. The CNN core, however, will always perform 17 operations 

The inherent inefficiency of the CNN core is even more prominent if we consider, that a number of 
templates used for typical CNN image processing tasks are sparse, with only a few non-zero 
elements. Consider an extreme case of a B-template, used for example in [6]: 
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A 3×3 kernel-based processor will still perform 17 operations to implement this template in case 
when only one neighbour transfer operation is all that is required. It shall be pointed out, that 
multiplication by zero still consumes power on the state-of-the-art CNN-UM chips! Indeed, the 
peculiarities of analogue VLSI design often lend themselves to the situation where arithmetic zero 
is represented by some non-zero biasing current or voltage level (for example, the one-transistor 
synapse strategy [16], which is the key to the compact circuit implementation of the CNN-UM 
architecture [2] requires zero to be represented by a fixed current). 

It should be stated, that a particular SIMD processor implementation may require more elementary 
operations per arithmetic operation, due to the limitations of its instruction set (e.g. neighbour 
transfers may be allowed only via a particular register) or constraints imposed by the accuracy of 
processing (e.g. error cancellation schemes on analogue microprocessors). For example, on the 
SCAMP-2 chip [14] the kernels v and d are implemented with 19 and 32 elementary instructions 
respectively. On the other hand, practical CNN-UM implementations require additional calibration 
steps to achieve reasonable accuracy levels [2], and these should be also considered.  

In the end, as it was the case when we considered the accuracy, the particulars of the 
implementation will have a great effect on the overall efficiency of the system and imaginative 
circuit solutions may be deployed to improve overall power consumption of CNN chips. 
Nevertheless, it can be said that the CNN processing cores are inherently inefficient when executing 
grey-scale convolutions. They will usually perform more operations than it is needed, and these 

Table 1. SIMD programs for the implementation of two examples of convolution kernels (2) 

* v -  SOBEL VERTICAL:  
A = I/4 
C = A + A(north) 
C = C + A + A(south) 
C = C(east) – C(west)  

* d – SMOOTHING: 
A = I/4 
C = A + A(north)  
C = C + A + A(south) 
A = C/4 
C = A + A(east)  
C = C + A + A(west)  

 

 



operations will consume power and also take up silicon space (since hardware to perform these 
operations must be provided). 

3. Conclusions 
Although detailed comparisons between specific implementations of the two architectures can be 
made (if complete performance data are available), we have not compared particular chip designs in 
this paper. Instead, we tried to emphasise how some fundamental features of the two architectures 
affect the parameters of the implementation. We have reasoned that the parallel execution of 3×3 
convolutions, as performed on CNN-based processors, is not optimal, in terms of accuracy and 
efficiency. The sequential execution, as performed on SIMD machines, does increase processing 
time, but allows the optimisation of the power consumption by performing fewer elementary 
operations. At the same time, it leads to the reduction in circuit area, while enabling accuracy 
improvements. Since the reduction of feature size will make it even easier to achieve high speeds of 
processing in future generation of analogue processors, for reasons of accuracy and efficiency 
outlined above, it might be expected that the techniques that use sequential rather than parallel 
execution of convolution kernels will be of greater use in the design of analogue cellular processors. 
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