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Abstract. We introduce the notion of an algebraically-δ-closed field, namely, a differential
field of characteristic 0 whose algebraic closure is differentially closed. We prove some basic

results around which linear differential equations can be solved in these fields. Furthermore,
we show that, by adding the assumption that Kalg has a K-basis of constants, these fields

are PV-closed.

1. Introduction

There have been many important recent results in the model theory of differential fields.
Several authors have realised that algebraic conditions on differential fields, such as being
differentially large (cf. [LST20]) or being bounded and PAC-differential (cf. [HLS21]) offer tools
to extend the model-theoretic properties of the underlying fields to properties of the differential
fields involved. In this way, important properties, such as model-completeness, simplicity, and
elimination of imaginaries, have been established for some of these classes of differential fields.

Interestingly, these fields satisfy the following algebraic property: their algebraic closure is
differentially closed. Intuitively, this means that all the elements needed to solve the differential
equations defined over the field are already algebraic, i.e., they solve an algebraic equation over
the field. Thus, the aim of this note is to isolate the class of fields satisfying this property, and
study some of its basic algebraic and differential properties, with the hope of providing a basis
for further study of their model-theoretic properties.

In order to do this, in Section §2, we define algebraically-δ-closed fields and prove some basic
results about the solvability of differential equations in these fields. Then, in Section §3, we
introduce a further hypothesis, and prove that algebraically-δ-closed fields with this property
are PV-closed.

2. General properties

In this section, we introduce the notion of an algebraically-δ-closed field and we prove several
basic results concerning the solvability of some linear differential equations. We assume some
basic knowledge of differential algebra; all of the relevant notions can be found in [Kol73, ch.
1]. Throughout, we assume all fields are of characteristic 0.

Definition 2.1. A differential field (K, δ) is algebraically-δ-closed if (Kalg, δ)1 is differen-
tially closed.

Example 2.2. (i) All PAC-differential fields are algebraically-δ-closed (cf. [HLS21, Remark
4.7(ii), p. 10]).
(ii) More generally, all differentially large fields are algebraically-δ-closed ([LST20, Corollary
5.12, p. 23]).

Date: September 2, 2021.
1Since there is a unique extension of δ to Kalg, we use the same notation for both derivations.
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Theorem 2.3. Let (K, δ) be an algebraically-δ-closed field, and let b ∈ K. Then there exists
some c ∈ K such that δ(c) = b. In other words, the derivation δ : K → K is surjective.

Proof. Since (K, δ) is algebraically-δ-closed, (Kalg, δ) is differentially closed. Thus, there is
c ∈ Kalg such that δ(c) = b. Since c is algebraic over K, it has a minimal polynomial over K,
say, f(x) = xk + ak−1x

k−1 + · · ·+ a1x+ a0. By applying δ to f(c) = 0 and solving for δ(c), we
have

δ(c) = b = −δ(ak−1)ck−1 + · · ·+ δ(a1)c+ δ(a0)

kck−1 + · · ·+ 2a2c+ a1
.

Rearranging, we get

(2.1) (bk + δ(ak−1))ck−1 + · · ·+ (2ba2 + δ(a1))c+ (ba1 + δ(a0)) = 0.

Note that the coefficients in (2.1) are all in K. Thus, if not all coefficients are zero, we obtain
a polynomial in K with degree less than that of f(x) which vanishes at c. But this contradicts
our choice of f . So the coefficients must all vanish. But then we get δ(ak−1) = −kb. Hence, if
we let d = −ak−1/k, then clearly d ∈ K and δ(d) = b, as required. �

Corollary 2.4. Let (K, δ) be an algebraically-δ-closed field, and let b ∈ K and n ∈ N0. Then
there exists some c ∈ K such that δn(c) = b.

Proof. Use induction and Theorem 2.3. �

Theorem 2.5. Let (K, δ) be an algebraically-δ-closed field, and let a, b ∈ K. Then there exists
some c ∈ K such that δ(c) = ac+ b.

Proof. Since (K, δ) is algebraically-δ-closed, (Kalg, δ) is differentially closed. Thus, there is
c ∈ Kalg such that δ(c) = ac+ b. Since c is algebraic over K, it has a minimal polynomial over
K, say, f(x) = xk + ak−1x

k−1 + · · ·+ a1x+ a0. By applying δ to f(c) = 0, we get

ac+ b = −δ(ak−1)ck−1 + · · ·+ δ(a1)c+ δ(a0)

kck−1 + · · ·+ 2a2c+ a1
.

Thus, rearranging, we obtain

(2.2) g(c) := kack + (a(k − 1)ak−1 + kb+ δ(ak−1))ck−1 + · · ·+ ba1 = 0.

Note that all the coefficients in (2.2) are in K. Thus, we obtain a polynomial in K of degree k
that vanishes at c. This can happen iff all coefficients vanish, or g(x) = kaf(x). If the latter
holds, then, comparing the coefficients of ck−1, we obtain

a(k − 1)ak−1 + kb+ δ(ak−1) = kaak−1

=⇒ δ(ak−1) = aak−1 − kb.
Thus, if we let d := −ak−1/k, then we get

δ(d) = −1

k
δ(ak−1) = −1

k
(aak−1 − kb) = ad+ b.

Since d ∈ K, this gives us our result. On the other hand, if all coefficients of g(x) vanish, then
we get ka = 0, and thus, a = 0. So the original equation is δ(x) = b, which has a solution in K
by Theorem 2.3. Thus, either way, solutions in K to δ(x) = ax+ b exist, as required. �

General results about the solvability of higher order linear differential equations have not
been obtained yet. Nonetheless, we conjecture the following:

Conjecture 2.6. Let (K, δ) be an algebraically-δ-closed field. For any a0, . . . , an−1, b ∈ K,
there exists some c ∈ K such that δn(c) + an−1δ

n−1(c) + · · ·+ a1δ(c) + a0c = b.

In the following section, we give a positive solution to the conjecture in the case when Kalg

admits a K-basis of constants.
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3. Assuming Kalg has a K-basis of constants

In this section, viewing Kalg as a vector space over K, we add an extra assumption to
our algebraically-δ-closed fields, namely, that Kalg has a K-basis of constants, i.e., a basis
{1, α1, α2, . . . } with αi ∈ Kalg \K and δ(αi) = 0 for all i ≥ 1. We then show that these fields
solve every linear differential equation defined over them, and we conclude by proving that
these fields are PV-closed, i.e., any algebraically-δ-closed field K is already a PV-extension for
any linear homogeneous system over K. All the relevant notions from differential Galois theory
employed in this section can be found in [Mag94, ch. 2 & 3].

Theorem 3.1. Let (K, δ) be an algebraically-δ-closed field, and let a0, . . . , an−1, b ∈ K, with
n ∈ N0. Suppose further that Kalg has a K-basis of constants. Then there exists some c ∈ K
such that δn(c) + an−1δ

n−1(c) + · · ·+ a1δ(c) + a0c = b.

Proof. Since Kalg is differentially closed, there is d ∈ Kalg such that

(3.1) δn(d) + an−1δ
n−1(d) + · · ·+ a1δ(d) + a0d = b.

Since Kalg has a K-basis of constants, there are d0, d1, . . . , dk ∈ K such that

(3.2) d = d0 + d1α1 + · · ·+ dkαk.

Thus, substituting this into (3.1), we get (setting an = α0 = 1)

n∑
i=0

k∑
j=0

aiδ
i(dj)αj = b.

Since b = b+ 0α1 + 0α2 + . . . , comparing the coefficients of α0 = 1 on both sides we get

δn(d0) + an−1δ
n−1(d0) + · · ·+ a1δ(d0) + a0d0 = b,

and so d0 is a solution to (3.1) in K. �

Our next goal is to show that algebraically-δ-closed fields K with Kalg having a K-basis
of constants are PV-closed (compare to the result from [HLS21, Lemma 5.8, p. 21]). More
precisely, we want to show the following stronger result:

Theorem 3.2 (cf. [HLS21, Proposition 5.9, p. 22]). Let (K, δ) be an algebraically-δ-closed field,
and let a0, . . . , an−1 ∈ K, with n ∈ N. Suppose further that Kalg has a K-basis of constants.
Let g ∈ K{x} \ {0} be such that ord(g) < n. Then there exists some d ∈ K which solves the
following system: {

δn(x) + an−1δ
n−1(x) + · · ·+ a1δ(x) + a0x = 0,

g(x) 6= 0.

We will use the following lemma:

Lemma 3.3 ([Lam21, Proof of Proposition 4.3, p. 15]). Let g ∈ K{x} be a non-zero differential
polynomial with ord(g) = k. If there exist d0, . . . , dk ∈ K linearly independent over CK (the
field of constants of K), then there exist c0, . . . , ck ∈ CK such that g(c0d0 + · · ·+ ckdk) 6= 0.

Proof of Theorem 3.2. We construct inductively solutions d0, d1, . . . , dn−1 ∈ K to the homo-
geneous linear equation 0 = l(x) := δn(x) + an−1δ

n−1(x) + · · · + a0x = 0 which are linearly
independent over CK .

For the base case, we need to find a solution d0 ∈ K of l(x) = 0 such that {c} is linearly
independent over CK , i.e., c 6= 0. Since Kalg is differentially closed, the system{

l(x) = 0,

x 6= 0
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has a solution, say β ∈ Kalg. SinceKalg has aK-basis of constants, there exist e0, e1, . . . , ek ∈ K
such that β = e0+e1α1+· · ·+ekαk. Substituting this into l(β) = 0, we can see, by homogeneity,
that each ei is a solution to l(x) = 0. Furthermore, since β 6= 0, there exists some 0 ≤ i ≤ k
such that ei 6= 0. Therefore, let d0 := ei.

For the inductive step, suppose we already have linearly independent solutions d0, d1, . . . , di ∈
K over CK of l(x) = 0, for some i < n− 1. Since Kalg is differentially closed, there exists some
β ∈ Kalg such that l(β) = 0 and (using the characterization of linear independence in terms of
the Wronskian) ∣∣∣∣∣∣∣∣∣∣

d0 d1 . . . di β

δ(d0) δ(d1) . . . δ(di) δ(β)

...
...

. . .
...

...

δi+1(d0) δi+1(d1) . . . δi+1(di) δi+1(β)

∣∣∣∣∣∣∣∣∣∣
6= 0.

Thus, we have

(3.3) M1,i+2β +M2,i+2δ(β) + · · ·+Mi+1,i+1δ
i+1(β) 6= 0,

where Mi,j denotes the minor of the above matrix obtained by removing the ith row and jth
column. Note that Mj,i+2 ∈ K for all 1 ≤ j ≤ i+ 2.

Now, since Kalg has a K-basis of constants, we can write β = e0 + e1α1 + · · · + ekαk,
where el ∈ K for all 0 ≤ l ≤ k. Note that l(el) = 0 for all l by the homogeneity of l.
Furthermore, substituting this into (3.3), it follows that there is j ∈ {0, . . . , k} such that
M1,i+2ej +M2,i+2δ(ej) + · · ·+Mi+1,i+1δ

i+1(ej) 6= 0, or equivalently,∣∣∣∣∣∣∣∣∣∣

d0 d1 . . . di ej

δ(d0) δ(d1) . . . δ(di) δ(ej)

...
...

. . .
...

...

δi+1(d0) δi+1(d1) . . . δi+1(di) δi+1(ej)

∣∣∣∣∣∣∣∣∣∣
6= 0.

Therefore, ej is linearly independent from d0, . . . , di over CK , so we set di+1 = ej .
Having d0, . . . , dn−1, we apply Lemma 3.3 to get c0, . . . , cn−1 ∈ CK such that g(c0d0 +

· · · + cn−1dn−1) 6= 0. Furthermore, by homogeneity, l(c0d0 + · · · + cn−1dn−1) = 0. Since
c0d0 + · · ·+ cn−1dn−1 ∈ K, we are done. �

Corollary 3.4. Let (K, δ) be an algebraically-δ-closed field such that Kalg has a K-basis of
constants. Then (K, δ) is PV-closed. In other words, K is already a PV-extension for any
linear homogeneous system over K.
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