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Motivation

Écalle conjectured the existence of a class E of all germs at +∞
of “analysable functions” such that:

1 E is a Hardy field closed under taking antiderivatives;
2 the subset of all infinitely increasing germs in E is a group

under composition;
3 E contains all tame functions needed to study problems

with analytic data, such as multisummable functions and
Dulac functions (see Rolin’s talk), as well as exp and log.
In particular, E should contain the Hardy field Han,exp of
Ran,exp;

4 each function in E has a unique transseries asymptotic
expansion (quasianalyticity );

5 there is an explicit summation procedure to recover the
germs from their transseries expansion.
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The formal side

Ecalle introduced the field of transseries T and provided strong
evidence that it has (the formal equivalent of) properties
(1)–(3).

Aschenbrenner, van den Dries and van der Hoeven [ADH] give
an axiomatization T of the first-order theory of T as an ordered,
differential, valued field and find a language extension in which
this theory has quantifier elimination.

This axiomatization formulates additional closure properties of
T, which guarantee that T is closed under exponentiation and
taking antiderviatives and has the Intermediate Value Property
for differential polynomials over T.
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Rephrasing Écalle’s conjecture

Disregarding the search for an explicit summation procedure
from now on, we want to find a Hardy field E of germs at +∞
such that

1 E |= T ;
2 E contains all tame functions needed to study problems

with analytic data, such as multisummable functions and
Dulac functions;

3 each function in E has a unique transseries asymptotic
expansion (quasianalyticity ).

Finding a Hardy field model of T is proposed as an open
problem in [ADH].

ADH are working on proving that every maximal Hardy field is a
model of T .
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ADH’s strategy

1 (Boshernitzan 1981) Every Hardy field admits a Hardy field
extension closed under exp and under taking
antiderivatives (Liouville extension).

2 (Conjectured by ADH) Every Hardy field admits a Hardy
field extension with the IVP.

A partial result towards (2) is available on the arXiv.

Working with Caulfield and Thomas, we propose to proceed
similarly while keeping track of asymptotic transseries
expansions, as discussed next.
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the series

C = ring of germs at +∞ of real continuous functions
M a multiplicative ordered R-vector space (monomials), often
a set of positive elements of C

Example: M = 〈x , log x〉, the mult. R-vector subspace of C
generated by x and log x

R ((M)) = set of generalized series F =
∑

amm such that each
am ∈ R and supp(F ) is anti-well ordered

Example: F =
∑
α,β∈N x−α(log x)−β has support of order type

ω2

Remark: ifM⊂ C, we also consider F ((M)), where F is a
subfield of C such that every germ in F grows or decays more
slowly than any germ inM.

Patrick Speissegger Searching for Écalle’s analysable functions



asymptotic expansions: special case

FixM⊂ C and F ⊂ C as on the previous slide.

Let f ∈ C and F =
∑

amm ∈ F ((M)); we want to define what it
means for f to have asymptotic expansion F at +∞.

Aa set S ⊆M is natural if S ∩ (a,+∞)M is finite for every
a ∈M.

If F has natural support, then f has asymptotic expansion F
at +∞ if, for every n ∈M,

f (x)−
∑
m≥n

am(x)m(x) = o(n(x)) as x → +∞.

Example: if F =
∑

n∈N X−n, then F (x) converges to f (x) = x
x−1

for x > 1. In particular, there are A,B > 0 such that for n ∈ N,∣∣∣∣∣∣f (x)−
∑
m≤n

x−m

∣∣∣∣∣∣ ≤ ABn|x |−n−1 as x → +∞.
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asymptotic expansions: general case

What makes it work in the special case is that every truncation
Fn :=

∑
m≥n amm of F has finite support, so represents the

germ of a function.
In general, we call a set S ⊆ F ((M)) truncation closed if, for
every F ∈ S and every n ∈M, the truncation Fn also belongs
to S.

Definition
A triple (K,M,T ) is a quasianalytic asymptotic (qaa)
algebra if K is a subalgebra of C such that

T : K −→ R ((M)) is an injective algebra homomorphism
(quasianalyticity);
T (K) is truncation closed;
for f ∈ K and n ∈M, we have

f (x)− T−1((Tf )n)(x) = o(n(x)) as x → +∞.
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Example: the Hardy field of Ran,exp

The set T of transseries [Ecalle, ADH] is a set of generalized
series in some R ((M)) closed under exp and log. The setM of
transmonomials is constructed in parallel with T and has the
property that every Archimedean class of T has a unique
representative inM.

We identify Han,exp with the subset of T consisting of all
convergent transseries and let

L := Han,exp ∩M
be the set of all convergent transmonomials.

Proposition (van den Dries, Macintyre, Marker; Galal, Kaiser, S)
Under this identification,

1 every h ∈ Han,exp is the sum of a convergent transseries
S(h) ∈ R ((L));

2 the triple (Han,exp,L,S) is a qaa field.
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Rephrasing Écalle’s conjecture, again

Find a qaa field (E ,M,T ), withM the set of transmonomials,
such that

1 E |= T ;
2 E contains all tame functions needed to study problems

with analytic data, such as multisummable functions and
Dulac functions.

To achieve (1), we (with Caulfield and Thomas) hope to adapt
ADH’s strategy to show that every qaa Hardy field has a qaa
field extension that is a model of T .

To achieve (2), we suggest using the recent construction of
Ilyashenko fields (done with Galal and Kaiser), a particular kind
of qaa Hardy field containing Dulac functions, as discussed
next.
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complex analysis needed to obtain quasianalyticity

A standard power domain is a complex domain

Uε
C := {z + C(1 + z)ε : re z > 0} ,

where C > 0 and 0 < ε < 1.

exp−1 = o(1) as |z| → ∞ uniformly on standard power domains
(but not on half-planes).

Uniqueness Principle (Ilyashenko)
Let U be a standard power domain and h : U −→ C be
bounded and holomorphic. If

h(x) = o
(
e−nx) as x → +∞, for all n ∈ N,

then h = 0.

This UP does not hold on sectors of opening strictly less than π.
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strong asymptotic expansions

L0 := 〈exp〉 is a scale on standard power domains, that is,
m ∈ L0 and m = o(1) imply m = o(1) on standard power
domains.

Definition
f : (a,+∞) −→ R has strong asymptotic expansion
F =

∑
amm ∈ R ((L0)) if supp(F ) is natural and there is a

standard power domain U such that
1 f has a holomorphic extension f : U −→ C;
2 for n ∈ L0 we have

f(z)−
∑
m≥n

amm(z) = o(n(z)) as |z| → ∞.
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Stage 0 of the construction

Let F0 be the set of all germs f at +∞ with a strong asymptotic
expansion T0f ∈ R ((L0)).

Proposition
F0 is a field and T0 : F0 −→ R ((L0)) is a field homomorphism.

Next, we right-shift F0 by log: set L′1 := L0 ◦ log, F ′1 := F0 ◦ log
and T ′1 := T0 ◦ log .

Corollary

F ′1 is a field and T ′1 : F ′1 −→ R
((

L′1
))

is a field homomorphism.
Every f ∈ F ′1 is polynomially bounded.

To iterate, we use F ′1 as coefficients in strong asymptotic
expansions.
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Stage 1 of the construction

Let F1 be the set of all germs f at +∞ with a strong asymptotic
expansion τ1f ∈ F ′1 ((L0)).

However, the series we want are in the monomials
L1 := 〈exp, x〉×, a scale on standard power domains. To get
there, let σ1 : F ′1 ((L0)) −→ R ((L1)) be the field homomorphism

σ1

(∑
amm

)
:=
∑

T ′1(am)m,

and set T1 := σ1 ◦ τ1.

Proposition
F1 is a field and τ1 and T1 are field homomorphisms.

Again set L′2 := L1 ◦ log, F ′2 := F1 ◦ log and T ′2 := T1 ◦ log.

Corollary

T ′2 : F ′2 −→ R
((

L′2
))

is a field homomorphism, and every germ
in F ′2 is polynomially bounded.

Patrick Speissegger Searching for Écalle’s analysable functions



Stage ω of the construction

Iterating this construction, we obtain fields F0 ⊆ F1 ⊆ · · · with
field homomorphisms Ti : Fi −→ R ((Li )) such that Ti+1 extends
Ti for each i , where Li := 〈exp, . . . , logi−1〉×.
So we set F :=

⋃
i∈NFi and let T : F −→ R ((L)) be the common

extension of all Ti , where L := 〈exp, x , log, . . . 〉×.

Theorem 1 (S)
1 (F ,L,T ) is a qaa field.
2 F is closed under differentiation and log-composition.

This qaa field was used by Belotto da Silva, Figalli, Parusinski
and Rifford in their recent solution of the strong Sard conjecture
in dimension 3.

Problem: (F ,L,T ) does not extend (Han,exp,L,S), so F is not
big enough for the construction of Écalle’s class of analysable
functions.
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The construction for convergent transmonomials

Let m ∈ Lk for some k ∈ N, and set Lm := 〈m〉.

Theorem 2 (Galal, Kaiser and S)
There exists a qaa field (Km,Lm,Tm). Moreover, if n is a
subtuple of m, then (Km,Lm,Tm) extends (Kn,Ln,Tn).

Let K and T be the direct limits of the Km and Tm.

Theorem 3 (Galal, Kaiser and S)
1 (K ,L,T ) is a qaa field that extends each (Km,Lm,Tm).
2 (K,L,T ) extends both (F ,L,T ) and (Han,exp,L,S), and K

is a Hardy field.

Theorem 3 is a possible starting point for the construction of
Écalle’s class of analysable functions, but it is still not enough,
as it does most likely not contain the multisummable functions.
Work in progress. . .
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