Transserial solutions of Abel's equation

Jean-Philippe Rolin
University of Burgundy - Dijon
Manchester - June 2019

Transseries

Informal definition.
A transseries is a formal series whose monomials involve exponentials and logarithms.

M. Aschenbrenner, L. van den Dries, J. van der Hoeven

(2017):Asymptotic Differential Algebra and Model theory of transseries, Ann. Math. Studies (ADH).

Example of transseries

$$
\begin{aligned}
\varphi(x)= & -3 \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\frac{\mathrm{e}^{x}}{\log x}+\frac{\mathrm{e}^{x}}{\log ^{2} x}+\frac{\mathrm{e}^{x}}{\log ^{3} x}+\cdots}-x^{11}+7 \\
& +\frac{\pi}{x}+\frac{1}{x \log x}+\frac{1}{x \log ^{2} x}+\frac{1}{x \log ^{3} x}+\cdots \\
& +\frac{2}{x^{2}}+\frac{6}{x^{3}}+\frac{24}{x^{4}}+\frac{120}{x^{5}}+\frac{720}{x^{6}}+\cdots \\
& +\mathrm{e}^{-x}+2 \mathrm{e}^{-x^{2}}+3 \mathrm{e}^{-x^{3}}+\mathrm{e}^{-x^{4}}+\cdots
\end{aligned}
$$

where $x>\mathbb{R}$.

Various constructions of fields of transseries

Construction 1 (S. Kuhlmann, 2000). exponential-logarithmic (EL) series: \mathbb{S}
Construction 2 (Ecalle, 1992; van den Dries, Macintyre, Marker, 2001). logarithmic-exponential (LE) series: \mathbb{T}

Kuhlmann, Tressl 2012. \mathbb{T} embeds in \mathbb{S}, and \mathbb{S} doesn't embed in \mathbb{T}.
Hence the two constructions produce non isomorphic models of $\operatorname{Th}\left(\mathbb{R}_{\mathrm{an}, \exp }\right)$. Roughly : with $\ell_{n}=\log _{n} x:=(\log \circ \cdots \circ \log)(x)$,

$$
\sum_{n \geq 0} \ell_{n}
$$

belongs to \mathbb{S} but not to \mathbb{T}.
Remark.

1. ADH considers \mathbb{T}, as an ordered differential valued field.
2. Question. Does $\boldsymbol{\omega}=\frac{1}{\ell_{0}^{2}}+\frac{1}{\ell_{0}^{2} \ell_{1}^{2}}+\frac{1}{\ell_{0}^{2} \ell_{1}^{2} \ell_{2}^{2}}+\cdots$ belong to \mathbb{S} ?

Transseries in "real life"

Example 1, oscillatory integrals.

$$
\mathbb{R} \ni x \longmapsto \mathcal{I}(x)=\int_{y \in \mathbb{R}^{n}} \mathrm{e}^{\mathrm{i} x \varphi(y)} f(y) \mathrm{d} y,
$$

1. Amplitude $f: \mathcal{C}^{\infty}$ with compact support K
2. Phase φ : analytic, $\varphi(0)=0,0$ unique singularity of φ in $\stackrel{\circ}{K}$.

Asymptotics of $\mathcal{I}(x)$ when $x \rightarrow+\infty$, via resolution of singularities of φ :

$$
\exists r \in \mathbb{N}^{*}, \quad \mathcal{I}(x) \underset{x \rightarrow+\infty}{\sim} \sum_{p \in \mathbb{N}^{*}} x^{-p / r} \sum_{k=0}^{n-1} a_{p, k} \log ^{k} x,
$$

$a_{p, k} \in \mathbb{R}$.

Transseries in "real life"

Example 2, Computing observables in QFT, via perturbation theory. The observable $F, z \gg 1$, leads to a the "transserial expansion with 1-parameter σ " :

$$
\mathcal{F}(z, \sigma)=\sum_{n=0}^{\infty} \frac{F_{n}}{z^{n+1}}+\sum_{\ell=0}^{\infty} \sigma^{\ell} \mathrm{e}^{-\ell A z} z^{\beta_{\ell}} \sum_{k=0}^{+\infty} \frac{F_{k}^{(\ell)}}{z^{k}} \in \mathbb{C}\left[\left[z^{-1}, \sigma \mathrm{e}^{-A z}\right]\right] .
$$

Chapter 12 of ADH: Triangular automorphisms: a piece of "iteration theory"
Consider $f(x)=x+a_{m+1} x^{m+1}+\cdots \in x+x^{m+1} \mathbb{R}[[x]], a_{m+1} \neq 0$. Theorem (Jabotinski, 1947 ; Baker, 1960). For any $t \in \mathbb{R}$, there exists a unique:

$$
f^{[t]}(x)=x+t a_{m+1} x^{m+1}+\sum_{n=m+2}^{\infty} b_{n}(t) x^{n},
$$

$b_{n}(t)$ polynomials of degree at most $n-m$, and $f \circ f^{[t]}=f^{[t]} \circ f$. Moreover:

1. if $t \in \mathbb{N}$, then $f^{[t]}=f \circ \cdots \circ f, t$ times ; in particular, $f^{[1]}=f$ and $f^{[0]}=\mathrm{id} ;$
2. $f^{[t]} \circ f^{[s]}=f^{[s]} \circ f^{[t]}=f^{[t+s]}: f$ embeds in the flow $\left\{f^{[t]}, t \in \mathbb{R}\right\}, f$ is the time 1 of the flow $f^{[t]}$.
BONUS. $\left\{f^{[t]}\right\}$ is the flow of a vector field $X=h(x) \frac{\mathrm{d}}{\mathrm{d} x}, h(x) \in x^{2} \mathbb{R}[[x]]$:

$$
\text { for } g \in \mathbb{R}[[x]], \quad X(g)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(g \circ f^{[t]}\right) .
$$

f determines h, and h detemines f.

Chapter 12 of ADH: Triangular automorphisms: a piece of "iteration theory"

$$
f \in x+x^{2} \mathbb{R}[[x]] \longrightarrow \text { Flow }\left\{f^{[t]}\right\}, t \in \mathbb{R} \longrightarrow \text { Vector field } X=h \frac{\mathrm{~d}}{\mathrm{~d} x}
$$

Notation. $h=\operatorname{itlog}(f)$ (following Ecalle).
Proposition. for $f, g \in x+x \mathbb{R}[[x]]$,
itlog $(f \circ g)=\mathrm{itlog}(f)+\mathrm{itlog}(g)$, hence itlog $\left(f^{[n]}\right)=n \cdot \operatorname{itlog}(f), n \in \mathbb{N}$.
Exercise. $f(x)=x+x^{2}$. Compute $f^{[t]}$ and itlog (f), find $f^{[1 / 2]}$ such that $f^{[1 / 2]} \circ f^{[1 / 2]}=f$.
Exercise. $f(x)=\exp (x)-1=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \cdots$ or
$f^{-1}(x)=\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots$. See Chapter 12 in ADH.

Problems of convergence

Question. If the series f has a nonzero radius of convergence, what about $f^{[t]}$ and $h=i t \log (f)$?
Example. $f_{a}(x)=\frac{x}{1+a x}, a \in \mathbb{R} . \quad f_{a}^{[t]}(x)=\frac{x}{1+\operatorname{tax}}$,
itlog $\left(f_{a}\right)(x)=-a x^{2}$.
In general (Baker, 1962) : Given a series $f \in x+x^{2} \mathbb{R}[[x]]$, the set \mathcal{T} of t for which $f^{[t]}$ has a nonzero radius of convergence is $\{0\}$, or a lattice generated by one or two generators, or \mathbb{R}.
Example. $f(x)=\mathrm{e}^{x}-1.1 \in \mathcal{T} . f^{[t]}$ is convergent $\Longleftrightarrow t \in \mathbb{Z}$. No examples with two generators are known.
Theorem (Aschenbrenner, 2015). The power series itlog $\left(\mathrm{e}^{z}-1\right)=\frac{z^{2}}{2}-\frac{z^{3}}{12}+\frac{z^{4}}{48}-\frac{z^{5}}{180}+\cdots$ is differentially transcendental over the ring $\mathbb{C}\{z\}$ of convergent series at the origin. Theorem (Ecalle, 1976). $f \in \mathbb{C}\{z\} \Rightarrow \mathrm{itlog}(f)$ is Borel-summable.

A generalization of analytic germs: "Dulac germs"

Now, $x \approx 0$ and $x>0$.

Definition

1. A Dulac series is $\hat{f}(x)=\sum_{i=1}^{\infty} x^{\alpha_{i}} P_{i}(\log x)$, where P_{i} are polynomials, and the numbers $\alpha_{i}>0$ are either finitely many, or belong to a finitely generated sub-semigroup of \mathbb{R}_{+}and $\alpha_{i} \nearrow+\infty$.
2. A Dulac germ is the germ of an analytic map on an open interval $(0, d)$, extended continuously by $f(0)=0$, which admits a Dulac series asymptotic expansion $\hat{f}(x)$ at 0 :

$$
\forall n: f(x)-\sum_{i=1}^{n} P_{i}(\log x) x^{\alpha_{i}}=o\left(x^{\alpha_{n}}\right)
$$

3. f admits an extension on a "big" complex domain, which guarantees quasianalyticity : if $f \neq x$ then the series $\widehat{f} \neq x$.
4. The germ f is called parabolic if f is tangent to identity $: \hat{f}=x+\cdots$ The parabolic Dulac germs form a group for 0 .

The main result : embedding in a flow for Dulac germs

Joint work with P. Mardesic, M. Resman and V. Zupanovic, 2018
Notation: $\boldsymbol{\ell}:=-\frac{1}{\log x}, \boldsymbol{\ell}_{2}=\boldsymbol{\ell} \circ \boldsymbol{\ell}, \ldots$
Theorem. Let $f(x)=x-a x^{\alpha} \ell^{k}+o\left(x^{\alpha} \ell^{k}\right), \alpha>1$, be a parabolic Dulac germ, with $f(0)=0$. Then f embeds in a flow $\left\{f^{[t]}\right\}$ of analytic germs on $(0, d)$, which admit at the origin an asymptotic logarithmic expansion $\tilde{f}^{[t]}(x)=\sum_{\alpha} x^{\alpha} \sum_{k} a_{\alpha, k}(t) \ell^{k}$, and $t \mapsto a_{\alpha, k}(t) \in \mathbb{R}$ is \mathcal{C}^{1}. Moreover, the supports of the transseries $\widehat{f}^{[t]}$ are contained in a common well-ordered subset of $\mathbb{R} \times \mathbb{Z}$.

$$
f^{[1]}=f, \quad f^{[t]} \circ f^{[s]}=f^{[t+s]}, \quad f^{[0]}=\mathrm{id} .
$$

Important remark. In each "block" $x^{\alpha} P_{\alpha}(\log x)$ of Dulac series, the monomial x^{α} is multiplied by a polynomial $P_{\alpha}(\log x)$. Now, in each "block" of the transseries $\hat{f}^{[t]}(x)$, the monomial x^{α} is multiplied by a (possibly divergent) series $\sum_{k} a_{\alpha, k}(t) \ell^{k}$.
Question. What does it mean for a transseries to be the (trans) asymptotic expansion of a germ of function?

Embedding in a flow and Abel's equation

$f:(0, d) \rightarrow(0, d)$ embeds in $\left\{f^{[t]}\right\}, f(0)=0$, unique fixed point in $[0, d)$.
Let $x_{0} \in(0, d)$. Two natural systems of coordinates on $(0, d)$:

1. The x-coordinate.
2. The time t s.t. $f^{[t]}\left(x_{0}\right)=x$. We put $\Psi(x)=t$: Fatou coordinate of x.

Example. $f(x)=\frac{x}{1-x}, f^{[t]}(x)=\frac{x}{1-t x}, \Psi(x)=\frac{x-x_{0}}{x \cdot x_{0}}$.
Important property. As $f^{[1]}=f$:

$$
\text { Abel's equation : } \Psi(f(x))=\Psi(x)+1, \quad \begin{array}{cccc}
x & \xrightarrow{f} & f(x) \\
& \downarrow & \xrightarrow{T_{1}} & \Psi \downarrow \\
& y+1
\end{array}
$$

$$
\begin{array}{cccc}
x & \xrightarrow{f^{[t]}} & f(x) \\
\downarrow \Psi & & \Psi \downarrow
\end{array} \text { produces a flow }\left\{f^{[t]}\right\} \text { in which }
$$

f embeds:

$$
y \quad \xrightarrow{T_{t}} \quad y+t
$$

$$
f^{[t]}(x)=\Psi^{-1}(\Psi(x)+t) .
$$

Solving Abel's equation for a Dulac germ

We start from $f(x)=x+x^{\alpha_{1}} P_{1}\left(\ell^{-1}\right)+x^{\alpha_{2}} P_{2}\left(\ell^{-1}\right)+o\left(x^{\alpha_{2}}\right)$. We look for Ψ s.t. $\Psi(f(x))=\Psi(x)+1$, and, at the same time, for $\widehat{\Psi}$ s.t.
$\widehat{\Psi}(\widehat{f}(x))=\widehat{\Psi}(x)+1$ (we use Q.A. !).
Search $\widehat{\Psi}(x)=\widehat{\Psi}_{1}(x)+\widehat{R}_{1}(x), \widehat{\Psi}_{1}(x)=x^{\beta_{1}} \sum_{k} b_{\beta_{1}, k} \ell^{k}:$ first block.

$$
\widehat{\Psi}(\widehat{f}(x))=\widehat{\Psi}(x+\widehat{g}(x))=\widehat{\Psi}(x)+\widehat{\Psi}^{\prime}(x) \widehat{g}(x)+\cdots=\widehat{\Psi}(x)+1
$$

$\widehat{g}(x)=x^{\alpha_{1}} P_{1}\left(\ell^{-1}\right)+\cdots \Longrightarrow \widehat{\Psi}_{1}^{\prime} \cdot x^{\alpha_{1}} P_{1}\left(\ell^{-1}\right)=1 \Longrightarrow \widehat{\Psi}_{1}^{\prime}(x)=\frac{1}{x^{\alpha_{1}} P_{1}\left(\ell^{-1}\right)}$
$\widehat{\Psi}_{1}(x)=\int^{x} t^{-\alpha_{1}} \frac{1}{P_{1}\left(\ell^{-1}\right)} \mathrm{d} t$, usual asym. exp. of $\Psi_{1}(x)=\int_{d}^{x} t^{-\alpha_{1}} \frac{1}{P_{1}\left(\ell^{-1}\right)} \mathrm{d} t$.
Then we continue with $\widehat{R}_{1}(x)$, which is solution of $\widehat{R}_{1}(\widehat{f}(x))-\widehat{R}_{1}(x)=\widehat{\delta}_{1}(x)$, etc...

Solving Abel's equation for a Dulac germ

We put:

$$
\Psi(x)=\Psi_{1}(x)+\Psi_{2}(x)+\cdots
$$

solution of Abel's equation $\Psi(f(x))=\Psi(x)+1$, with the "block by block transasymptotic expansion" $\widehat{\Psi}(x)=\widehat{\Psi}_{1}(x)+\widehat{\Psi}_{2}(x)+\cdots$. Example. $f(x)=x+x^{2} \log x=x-x^{2} \ell^{-1}$.

$$
\widehat{\Psi}_{1}(x)=\int \frac{\mathrm{d} x}{x^{2} \log x}=x^{-1} \sum_{n=1}^{\infty} n!\ell^{n}, \text { and } \Psi_{1}(x)=\int_{d}^{x} \frac{\mathrm{~d} t}{t^{2} \log t}
$$

$\widehat{R}_{1}=\widehat{\Psi}_{2}+\widehat{\Psi}_{3}+\cdots$ satisfies
$\widehat{R}_{1}(\widehat{f}(x))-\widehat{R}_{1}(x)=1-\left(\widehat{\Psi}_{1}(\widehat{f}(x))-\widehat{\Psi}_{1}(x)\right)=\widehat{\delta}_{1}(x)$, while $\Psi(x)=\Psi_{1}(x)+R_{1}(x)$, we have :

$$
R_{1}(f(x))-R_{1}(x)=1-\int_{x}^{f(x)} \frac{\mathrm{d} t}{x^{2} \ell^{-1}}
$$

