Transserial solutions of Abel's equation

Jean-Philippe Rolin

University of Burgundy - Dijon

Manchester - June 2019

Transseries

Informal definition.

A **transseries** is a formal series whose monomials involve *exponentials* and *logarithms*.

M. Aschenbrenner, L. van den Dries, J. van der Hoeven (2017): Asymptotic Differential Algebra and Model theory of transseries, Ann. Math. Studies (ADH).

Example of transseries

$$\begin{split} \varphi\left(x\right) &= -3\mathrm{e}^{\mathrm{e}^{x}} + \mathrm{e}^{\frac{\mathrm{e}^{x}}{\log x} + \frac{\mathrm{e}^{x}}{\log^{2}x} + \frac{\mathrm{e}^{x}}{\log^{3}x} + \cdots} - x^{11} + 7 \\ &+ \frac{\pi}{x} + \frac{1}{x\log x} + \frac{1}{x\log^{2}x} + \frac{1}{x\log^{3}x} + \cdots \\ &+ \frac{2}{x^{2}} + \frac{6}{x^{3}} + \frac{24}{x^{4}} + \frac{120}{x^{5}} + \frac{720}{x^{6}} + \cdots \\ &+ \mathrm{e}^{-x} + 2\mathrm{e}^{-x^{2}} + 3\mathrm{e}^{-x^{3}} + \mathrm{e}^{-x^{4}} + \cdots, \end{split}$$

where $x > \mathbb{R}$.

Construction 1 (S. Kuhlmann, 2000). exponential-logarithmic (EL) series : \mathbb{S} Construction 2 (Ecalle, 1992; van den Dries, Macintyre, Marker, 2001). logarithmic-exponential (LE) series : \mathbb{T} Kuhlmann, Tressl 2012. \mathbb{T} embeds in \mathbb{S} , and \mathbb{S} doesn't embed in \mathbb{T} . Hence the two constructions produce non isomorphic models of Th ($\mathbb{R}_{an,exp}$). Roughly : with $\ell_n = \log_n x := (\log \circ \cdots \circ \log)(x)$,

$$\sum_{n\geq 0}\ell_n$$

belongs to S but not to T. Remark.

1. ADH considers $\mathbb T,$ as an ordered differential valued field.

2. Question. Does
$$\boldsymbol{\omega} = \frac{1}{\ell_0^2} + \frac{1}{\ell_0^2 \ell_1^2} + \frac{1}{\ell_0^2 \ell_1^2 \ell_2^2} + \cdots$$
 belong to \mathbb{S} ?

Transseries in "real life"

Example 1, oscillatory integrals.

$$\mathbb{R} \ni x \longmapsto \mathcal{I}(x) = \int_{y \in \mathbb{R}^n} e^{ix\varphi(y)} f(y) \, \mathrm{d}y,$$

1. Amplitude $f: \mathcal{C}^{\infty}$ with compact support K

2. *Phase* φ : analytic, $\varphi(0) = 0$, 0 unique singularity of φ in \check{K} . Asymptotics of $\mathcal{I}(x)$ when $x \to +\infty$, via resolution of singularities of φ :

$$\exists r \in \mathbb{N}^*, \qquad \mathcal{I}(x) \underset{x \to +\infty}{\sim} \sum_{p \in \mathbb{N}^*} x^{-p/r} \sum_{k=0}^{n-1} a_{p,k} \log^k x$$

 $a_{p,k} \in \mathbb{R}.$

Transseries in "real life"

Example 2, Computing observables in QFT, via perturbation theory. The observable $F, z \gg 1$, leads to a the "transserial expansion with 1-parameter σ ":

$$\mathcal{F}(z,\sigma) = \sum_{n=0}^{\infty} \frac{F_n}{z^{n+1}} + \sum_{\ell=0}^{\infty} \sigma^{\ell} \mathrm{e}^{-\ell A z} z^{\beta_{\ell}} \sum_{k=0}^{+\infty} \frac{F_k^{(\ell)}}{z^k} \in \mathbb{C}\left[\left[z^{-1}, \sigma \mathrm{e}^{-A z}\right]\right]$$

Chapter 12 of ADH: Triangular automorphisms: a piece of "iteration theory"

Consider $f(x) = x + a_{m+1}x^{m+1} + \cdots \in x + x^{m+1}\mathbb{R}[[x]], a_{m+1} \neq 0$. **Theorem (Jabotinski, 1947 ; Baker, 1960).** For any $t \in \mathbb{R}$, there exists a *unique*:

$$f^{[t]}(x) = x + ta_{m+1}x^{m+1} + \sum_{n=m+2}^{\infty} b_n(t) x^n,$$

 $b_n(t)$ polynomials of degree at most n - m, and $f \circ f^{[t]} = f^{[t]} \circ f$. Moreover:

- 1. if $t \in \mathbb{N}$, then $f^{[t]} = f \circ \cdots \circ f$, t times ; in particular, $f^{[1]} = f$ and $f^{[0]} = \text{id}$;
- 2. $f^{[t]} \circ f^{[s]} = f^{[s]} \circ f^{[t]} = f^{[t+s]}$: f embeds in the flow $\{f^{[t]}, t \in \mathbb{R}\}, f$ is the time 1 of the flow $f^{[t]}$.

BONUS. $\left\{f^{[t]}\right\}$ is the flow of a vector field $X = h(x) \frac{\mathrm{d}}{\mathrm{d}x}, h(x) \in x^2 \mathbb{R}[[x]]$:

for
$$g \in \mathbb{R}[[x]]$$
, $X(g) = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} \left(g \circ f^{[t]}\right)$.

f determines h, and h determines f.

Chapter 12 of ADH: Triangular automorphisms: a piece of "iteration theory"

$$f \in x + x^2 \mathbb{R}[[x]] \longrightarrow \text{Flow } \left\{ f^{[t]} \right\}, t \in \mathbb{R} \longrightarrow \text{Vector field } X = h \frac{\mathrm{d}}{\mathrm{d}x}$$

Notation. h = itlog(f) (following Ecalle). **Proposition.** for $f, g \in x + x\mathbb{R}[[x]]$,

 $\mathrm{itlog}\,(f\circ g)=\mathrm{itlog}\,(f)+\mathrm{itlog}\,(g)\,,\ \ \mathrm{hence}\ \mathrm{itlog}\,\Big(f^{[n]}\Big)=n\cdot\mathrm{itlog}\,(f)\,,\ n\in\mathbb{N}.$

Exercise. $f(x) = x + x^2$. Compute $f^{[t]}$ and itlog (f), find $f^{[1/2]}$ such that $f^{[1/2]} \circ f^{[1/2]} = f$. **Exercise.** $f(x) = \exp(x) - 1 = x + \frac{x^2}{2!} + \frac{x^3}{3!} \cdots$ or $f^{-1}(x) = \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$. See Chapter 12 in ADH. Question. If the series f has a nonzero radius of convergence, what about $f^{[t]}$ and h = itlog(f)? **Example.** $f_a(x) = \frac{x}{1+ax}, a \in \mathbb{R}.$ $f_a^{[t]}(x) = \frac{x}{1+tax},$ $\operatorname{itlog}\left(f_{a}\right)\left(x\right) = -ax^{2}.$ In general (Baker, 1962) : Given a series $f \in x + x^2 \mathbb{R}[[x]]$, the set \mathcal{T} of t for which $f^{[t]}$ has a nonzero radius of convergence is $\{0\}$, or a lattice generated by one or two generators, or \mathbb{R} . **Example.** $f(x) = e^x - 1$. $1 \in \mathcal{T}$. $f^{[t]}$ is convergent $\iff t \in \mathbb{Z}$. No examples with two generators are known. Theorem (Aschenbrenner, 2015). The power series itlog $(e^z - 1) = \frac{z^2}{2} - \frac{z^3}{12} + \frac{z^4}{48} - \frac{z^5}{180} + \cdots$ is differentially transcendental over the ring $\mathbb{C}\{z\}$ of convergent series at the origin. **Theorem (Ecalle, 1976)**. $f \in \mathbb{C}\{z\} \Rightarrow itlog(f)$ is Borel-summable.

A generalization of analytic germs: "Dulac germs"

Now, $x \approx 0$ and x > 0.

Definition

- 1. A **Dulac series** is $\hat{f}(x) = \sum_{i=1}^{\infty} x^{\alpha_i} P_i(\log x)$, where P_i are polynomials, and the numbers $\alpha_i > 0$ are either finitely many, or belong to a finitely generated sub-semigroup of \mathbb{R}_+ and $\alpha_i \nearrow +\infty$.
- 2. A **Dulac germ** is the germ of an analytic map on an open interval (0, d), extended continuously by f(0) = 0, which admits a **Dulac** series asymptotic expansion $\hat{f}(x)$ at 0:

$$\forall n : f(x) - \sum_{i=1}^{n} P_i(\log x) x^{\alpha_i} = o(x^{\alpha_n}).$$

- 3. f admits an extension on a "big" complex domain, which guarantees *quasianalyticity* : if $f \neq x$ then the series $\hat{f} \neq x$.
- 4. The germ f is called *parabolic* if f is tangent to identity : $\hat{f} = x + \cdots$ The parabolic Dulac germs form a group for \circ .

The main result : embedding in a flow for Dulac germs

Joint work with P. Mardesic, M. Resman and V. Zupanovic, 2018 **Notation**: $\boldsymbol{\ell} := -\frac{1}{\log x}$, $\boldsymbol{\ell}_2 = \boldsymbol{\ell} \circ \boldsymbol{\ell}, \dots$ **Theorem.** Let $f(x) = x - ax^{\alpha} \ell^k + o(x^{\alpha} \ell^k)$, $\alpha > 1$, be a parabolic Dulac germ, with f(0) = 0. Then f embeds in a $flow\left\{f^{[t]}\right\}$ of analytic germs on (0, d), which admit at the origin an asymptotic logarithmic expansion $\hat{f}^{[t]}(x) = \sum_{\alpha} x^{\alpha} \sum_k a_{\alpha,k}(t) \boldsymbol{\ell}^k$, and $t \mapsto a_{\alpha,k}(t) \in \mathbb{R}$ is \mathcal{C}^1 . Moreover, the supports of the transseries $\hat{f}^{[t]}$ are contained in a common well-ordered subset of $\mathbb{R} \times \mathbb{Z}$.

$$f^{[1]} = f, \ f^{[t]} \circ f^{[s]} = f^{[t+s]}, \ f^{[0]} = \mathrm{id}.$$

Important remark. In each "block" $x^{\alpha}P_{\alpha}(\log x)$ of *Dulac series*, the monomial x^{α} is multiplied by a <u>polynomial</u> $P_{\alpha}(\log x)$. Now, in each "block" of the transseries $\hat{f}^{[t]}(x)$, the monomial x^{α} is multiplied by a (possibly divergent) <u>series</u> $\sum_{k} a_{\alpha,k}(t) \ell^{k}$.

Question. What does it mean for a transseries to be the (trans) asymptotic expansion of a germ of function?

Embedding in a flow and Abel's equation

 $f:(0,d) \to (0,d)$ embeds in $\{f^{[t]}\}, f(0) = 0$, unique fixed point in [0,d). Let $x_0 \in (0,d)$. Two natural systems of coordinates on (0,d):

1. The *x*-coordinate.

2. The time t s.t. $f^{[t]}(x_0) = x$. We put $\Psi(x) = t$: Fatou coordinate of x. **Example.** $f(x) = \frac{x}{1-x}$, $f^{[t]}(x) = \frac{x}{1-tx}$, $\Psi(x) = \frac{x-x_0}{x \cdot x_0}$. **Important property.** As $f^{[1]} = f$:

Abel's equation :
$$\Psi(f(x)) = \Psi(x) + 1$$
, $\begin{array}{c} x & \stackrel{f}{\longrightarrow} & f(x) \\ \downarrow \Psi & & \Psi \downarrow \\ y & \stackrel{T_1}{\longrightarrow} & y + 1 \end{array}$

Conversely. From Ψ , $\downarrow \Psi$ $\psi \downarrow \psi$ $\psi \downarrow \psi$ produces a flow $\left\{ f^{[t]} \right\}$ in which $y \xrightarrow{T_t} y + t$

$$f^{[t]}(x) = \Psi^{-1}(\Psi(x) + t).$$

Solving Abel's equation for a Dulac germ

We start from $f(x) = x + x^{\alpha_1} P_1(\ell^{-1}) + x^{\alpha_2} P_2(\ell^{-1}) + o(x^{\alpha_2})$. We look for Ψ s.t. $\Psi(f(x)) = \Psi(x) + 1$, and, at the same time, for $\widehat{\Psi}$ s.t. $\widehat{\Psi}(\widehat{f}(x)) = \widehat{\Psi}(x) + 1$ (we use Q.A. !). Search $\widehat{\Psi}(x) = \widehat{\Psi}_1(x) + \widehat{R}_1(x)$, $\widehat{\Psi}_1(x) = x^{\beta_1} \sum_k b_{\beta_1,k} \ell^k$: first block. $\widehat{\Psi}(\widehat{f}(x)) = \widehat{\Psi}(x + \widehat{g}(x)) = \widehat{\Psi}(x) + \widehat{\Psi}'(x) \widehat{g}(x) + \cdots = \widehat{\Psi}(x) + 1$

$$\widehat{g}(x) = x^{\alpha_1} P_1\left(\ell^{-1}\right) + \dots \Longrightarrow \widehat{\Psi}'_1 \cdot x^{\alpha_1} P_1\left(\ell^{-1}\right) = 1 \Longrightarrow \widehat{\Psi}'_1\left(x\right) = \frac{1}{x^{\alpha_1} P_1\left(\ell^{-1}\right)}$$

$$\widehat{\Psi}_{1}(x) = \int^{x} t^{-\alpha_{1}} \frac{1}{P_{1}(\ell^{-1})} dt, usual \text{ asym. exp. of } \Psi_{1}(x) = \int_{d}^{x} t^{-\alpha_{1}} \frac{1}{P_{1}(\ell^{-1})} dt.$$

Then we continue with $\widehat{R}_{1}(x)$, which is solution of $\widehat{R}_{1}\left(\widehat{f}(x)\right) - \widehat{R}_{1}(x) = \widehat{\delta}_{1}(x)$, etc...

Solving Abel's equation for a Dulac germ

We put:

$$\Psi(x) = \Psi_1(x) + \Psi_2(x) + \cdots,$$

solution of Abel's equation $\Psi(f(x)) = \Psi(x) + 1$, with the "block by block transasymptotic expansion" $\widehat{\Psi}(x) = \widehat{\Psi}_1(x) + \widehat{\Psi}_2(x) + \cdots$. **Example.** $f(x) = x + x^2 \log x = x - x^2 \ell^{-1}$.

$$\widehat{\Psi}_{1}(x) = \int \frac{\mathrm{d}x}{x^{2}\log x} = x^{-1} \sum_{n=1}^{\infty} n! \ell^{n}, \text{ and } \Psi_{1}(x) = \int_{d}^{x} \frac{\mathrm{d}t}{t^{2}\log t}.$$

$$\widehat{R}_{1} = \widehat{\Psi}_{2} + \widehat{\Psi}_{3} + \cdots \text{ satisfies} \\ \widehat{R}_{1}\left(\widehat{f}\left(x\right)\right) - \widehat{R}_{1}\left(x\right) = 1 - \left(\widehat{\Psi}_{1}\left(\widehat{f}\left(x\right)\right) - \widehat{\Psi}_{1}\left(x\right)\right) = \widehat{\delta}_{1}\left(x\right), \text{ while} \\ \Psi\left(x\right) = \Psi_{1}\left(x\right) + R_{1}\left(x\right), \text{ we have }:$$

$$R_{1}(f(x)) - R_{1}(x) = 1 - \int_{x}^{f(x)} \frac{\mathrm{d}t}{x^{2}\ell^{-1}}.$$