Primitive Element Theorem for fields with commuting derivations and automorphisms

Gleb Pogudin

New York University and City University of New York

The classical Primitive Element Theorem (PET)

All fields in the talk are of characteristic zero.

The classical Primitive Element Theorem (PET)

All fields in the talk are of characteristic zero.
Artin's Primitive Element Theorem
Let $F \subset E$ be a

- finitely generated
- and algebraic
extension of fields.

The classical Primitive Element Theorem (PET)

All fields in the talk are of characteristic zero.
Artin's Primitive Element Theorem
Let $F \subset E$ be a

- finitely generated
$\Longrightarrow \quad$ Then there exists $\alpha \in E$
- and algebraic
extension of fields. such that $E=F(\alpha)$.

The classical Primitive Element Theorem (PET)

All fields in the talk are of characteristic zero.
Artin's Primitive Element Theorem
Let $F \subset E$ be a

- finitely generated $\quad \Longrightarrow \quad$ Then there exists $\alpha \in E$
- and algebraic
extension of fields.
Example
Let $F=\mathbb{Q}$ and $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

The classical Primitive Element Theorem (PET)

All fields in the talk are of characteristic zero.
Artin's Primitive Element Theorem
Let $F \subset E$ be a

- finitely generated
$\Longrightarrow \quad$ Then there exists $\alpha \in E$
- and algebraic such that $E=F(\alpha)$.
extension of fields.

Example

Let $F=\mathbb{Q}$ and $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

$$
\sqrt{2}=\frac{\alpha^{3}-9 \alpha}{2} \quad \text { and } \quad \sqrt{3}=\frac{11 \alpha-\alpha^{3}}{2}, \text { where } \alpha:=\sqrt{2}+\sqrt{3}
$$

The classical Primitive Element Theorem (PET)

All fields in the talk are of characteristic zero.
Artin's Primitive Element Theorem
Let $F \subset E$ be a

- finitely generated
$\Longrightarrow \quad$ Then there exists $\alpha \in E$
- and algebraic such that $E=F(\alpha)$.
extension of fields.

Example

Let $F=\mathbb{Q}$ and $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

$$
\sqrt{2}=\frac{\alpha^{3}-9 \alpha}{2} \quad \text { and } \quad \sqrt{3}=\frac{11 \alpha-\alpha^{3}}{2} \text {, where } \alpha:=\sqrt{2}+\sqrt{3} .
$$

Thus, $E=F(\sqrt{2}+\sqrt{3})$.

Motivating examples: derivative

Consider $\begin{aligned} & F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}\right) . \\ & \operatorname{trdeg}_{F} E=2 \Longrightarrow \text { no primitive element. }\end{aligned}$

Motivating examples: derivative

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}\right)$.
$\operatorname{trdeg}_{F} E=2 \Longrightarrow$ no primitive element.

Idea: allow not only + and . but also $\frac{d}{d x}$

Motivating examples: derivative

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}\right)$. $\operatorname{trdeg}_{F} E=2 \Longrightarrow$ no primitive element.

Idea: allow not only + and \cdot but also $\frac{d}{d x}$

$$
\alpha:=x+e^{x}
$$

Motivating examples: derivative

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}\right)$. $\operatorname{trdeg}_{F} E=2 \Longrightarrow$ no primitive element.

Idea: allow not only + and . but also $\frac{d}{d x}$

$$
\alpha:=x+e^{x} \quad \Longrightarrow \quad e^{x}=\alpha^{\prime \prime} \text { and } x=\alpha-\alpha^{\prime \prime}
$$

Motivating examples: derivative

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}\right)$.

$$
\operatorname{trdeg}_{F} E=2 \Longrightarrow \text { no primitive element. }
$$

Idea: allow not only + and \cdot but also $\frac{d}{d x}$

$$
\alpha:=x+e^{x} \quad \Longrightarrow \quad e^{x}=\alpha^{\prime \prime} \text { and } x=\alpha-\alpha^{\prime \prime}
$$

Thus, E is generated over F by $x+e^{x}$ and its derivatives.

Motivating examples: derivative

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}\right)$.

$$
\operatorname{trdeg}_{F} E=2 \Longrightarrow \text { no primitive element. }
$$

Idea: allow not only + and but also $\frac{d}{d x}$

$$
\alpha:=x+e^{x} \quad \Longrightarrow \quad e^{x}=\alpha^{\prime \prime} \text { and } x=\alpha-\alpha^{\prime \prime}
$$

Thus, E is generated over F by $x+e^{x}$ and its derivatives.
Moral: allow derivatives \Longrightarrow get a primitive element

Motivating examples: shift

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}(x, \Gamma(x))$.
$\operatorname{trdeg}_{F} E=2 \Longrightarrow$ no primitive element.

Motivating examples: shift

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}(x, \Gamma(x))$.

$$
\operatorname{trdeg}_{F} E=2 \Longrightarrow \text { no primitive element. }
$$

Idea: allow not only + and but also shift $\sigma: f(x) \mapsto f(x+1)$.

Motivating examples: shift

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}(x, \Gamma(x))$.

$$
\operatorname{trdeg}_{F} E=2 \Longrightarrow \text { no primitive element. }
$$

Idea: allow not only + and but also shift $\sigma: f(x) \mapsto f(x+1)$.

$$
\alpha:=\Gamma(x) \quad \Longrightarrow \quad x=\frac{\sigma(\alpha)}{\alpha}
$$

Motivating examples: shift

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}(x, \Gamma(x))$.

$$
\operatorname{trdeg}_{F} E=2 \Longrightarrow \text { no primitive element. }
$$

Idea: allow not only + and but also shift $\sigma: f(x) \mapsto f(x+1)$.

$$
\alpha:=\Gamma(x) \quad \Longrightarrow \quad x=\frac{\sigma(\alpha)}{\alpha}
$$

Thus, E is generated over F by $\Gamma(x)$ and its shifts.

Motivating examples: shift

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}(x, \Gamma(x))$.

$$
\operatorname{trdeg}_{F} E=2 \Longrightarrow \text { no primitive element. }
$$

Idea: allow not only + and but also shift $\sigma: f(x) \mapsto f(x+1)$.

$$
\alpha:=\Gamma(x) \quad \Longrightarrow \quad x=\frac{\sigma(\alpha)}{\alpha}
$$

Thus, E is generated over F by $\Gamma(x)$ and its shifts.
Moral: allow shifts \Longrightarrow get a primitive element

Motivating examples: come together

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}, \Gamma(x), \Gamma^{\prime}(x), \Gamma^{\prime \prime}(x), \ldots\right)$.

Motivating examples: come together

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}, \Gamma(x), \Gamma^{\prime}(x), \Gamma^{\prime \prime}(x), \ldots\right)$.
In this case, $\operatorname{trdeg}_{F} E=\infty$!

Motivating examples: come together

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}, \Gamma(x), \Gamma^{\prime}(x), \Gamma^{\prime \prime}(x), \ldots\right)$.
In this case, $\operatorname{trdeg}_{F} E=\infty$!
Idea: allow shift $\sigma: f(x) \mapsto f(x+1)$ and $\frac{\mathrm{d}}{\mathrm{dx}}$.

Motivating examples: come together

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}, \Gamma(x), \Gamma^{\prime}(x), \Gamma^{\prime \prime}(x), \ldots\right)$.
In this case, $\operatorname{trdeg}_{F} E=\infty$!
Idea: allow shift $\sigma: f(x) \mapsto f(x+1)$ and $\frac{\mathrm{d}}{\mathrm{dx}}$.

$$
\begin{aligned}
\alpha:=\Gamma(x)+e^{x} & \Longrightarrow \sigma(\alpha)-e \alpha=\Gamma(x)(x-e) \\
& \Longrightarrow \frac{\sigma^{2}(\alpha)-e \sigma(\alpha)}{\sigma(\alpha)-e \alpha}=\frac{(x+1-e) x}{x-e} .
\end{aligned}
$$

Motivating examples: come together

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}, \Gamma(x), \Gamma^{\prime}(x), \Gamma^{\prime \prime}(x), \ldots\right)$.
In this case, $\operatorname{trdeg}_{F} E=\infty$!
Idea: allow shift $\sigma: f(x) \mapsto f(x+1)$ and $\frac{\mathrm{d}}{\mathrm{dx}}$.

$$
\begin{aligned}
\alpha:=\Gamma(x)+e^{x} & \Longrightarrow \sigma(\alpha)-e \alpha=\Gamma(x)(x-e) \\
& \Longrightarrow \frac{\sigma^{2}(\alpha)-e \sigma(\alpha)}{\sigma(\alpha)-e \alpha}=\frac{(x+1-e) x}{x-e} .
\end{aligned}
$$

Thus, E is generated over F by $\Gamma(x)+e^{x}$ and its shifts and derivatives.

Motivating examples: come together

Consider $F:=\mathbb{C} \subset E:=\mathbb{C}\left(x, e^{x}, \Gamma(x), \Gamma^{\prime}(x), \Gamma^{\prime \prime}(x), \ldots\right)$.
In this case, $\operatorname{trdeg}_{F} E=\infty$!
Idea: allow shift $\sigma: f(x) \mapsto f(x+1)$ and $\frac{\mathrm{d}}{\mathrm{dx}}$.

$$
\begin{aligned}
\alpha:=\Gamma(x)+e^{x} & \Longrightarrow \sigma(\alpha)-e \alpha=\Gamma(x)(x-e) \\
& \Longrightarrow \frac{\sigma^{2}(\alpha)-e \sigma(\alpha)}{\sigma(\alpha)-e \alpha}=\frac{(x+1-e) x}{x-e} .
\end{aligned}
$$

Thus, E is generated over F by $\Gamma(x)+e^{x}$ and its shifts and derivatives.
Moral: allow shifts and derivatives \Longrightarrow get a primitive element

What do we want?

Prove PETs for field extensions that

- might involve transcendental functions
- but have extra structure
(derivatives and/or shifts).

Formal setup: one derivation

Definitions

- A field F is called differential field if it is equipped with an additive map ${ }^{\prime}: F \rightarrow F$ such that

$$
(a b)^{\prime}=a^{\prime} b+a b^{\prime} \text { for every } a, b \in F
$$

Formal setup: one derivation

Definitions

- A field F is called differential field if it is equipped with an additive map ${ }^{\prime}: F \rightarrow F$ such that

$$
(a b)^{\prime}=a^{\prime} b+a b^{\prime} \text { for every } a, b \in F
$$

- Let $F \subset E$ be an extension of differential fields. Then $a \in E$ is differentially algebraic over F if it satisfies a polynomial differential equation (DE) over F.

Formal setup: one derivation

Definitions

- A field F is called differential field if it is equipped with an additive map ${ }^{\prime}: F \rightarrow F$ such that

$$
(a b)^{\prime}=a^{\prime} b+a b^{\prime} \text { for every } a, b \in F
$$

- Let $F \subset E$ be an extension of differential fields. Then $a \in E$ is differentially algebraic over F if it satisfies a polynomial differential equation (DE) over F.
For example, \sqrt{x}, e^{x}, and $\sin x$ are differentially algebraic over \mathbb{C}.

State of the art: one derivation

Theorem (Kolchin, 1942)
Let $F \subset E$ be an extension of differential fields such that

- E is generated over F by finitely many elements and their derivatives;
- every $a \in E$ is differentially algebraic over F;
- there is $b \in F$ such that $b^{\prime} \neq 0$.

Then there exists $\alpha \in E$ such that E is generated over F by α and its derivatives.

State of the art: one derivation

Theorem (Kolchin, 1942)
Let $F \subset E$ be an extension of differential fields such that

- E is generated over F by finitely many elements and their derivatives;
- every $a \in E$ is differentially algebraic over F;
- there is $b \in F$ such that $b^{\prime} \neq 0$.

Then there exists $\alpha \in E$ such that E is generated over F by α and its derivatives.

However: Kolchin's theorem is not applicable to $\mathbb{C} \subset \mathbb{C}\left(x, e^{x}\right)$.

State of the art: one derivation

Theorem (Kolchin, 1942)
Let $F \subset E$ be an extension of differential fields such that

- E is generated over F by finitely many elements and their derivatives;
- every $a \in E$ is differentially algebraic over F;
- there is $b \in F$ such that $b^{\prime} \neq 0$.

Then there exists $\alpha \in E$ such that E is generated over F by α and its derivatives.

However: Kolchin's theorem is not applicable to $\mathbb{C} \subset \mathbb{C}\left(x, e^{x}\right)$.
Theorem (P., 2015)
In Kolchin's theorem, $F \rightarrow E$.

State of the art: PDEs

Definitions

- A field F is called partial differential field if it is equipped with several commuting derivations.

State of the art: PDEs

Definitions

- A field F is called partial differential field if it is equipped with several commuting derivations.
- Let $F \subset E$ be an extension of partial differential fields. Then $a \in E$ is partial differentially algebraic over F if it satisfies a polynomial PDE over F.

State of the art: PDEs

Definitions

- A field F is called partial differential field if it is equipped with several commuting derivations.
- Let $F \subset E$ be an extension of partial differential fields. Then $a \in E$ is partial differentially algebraic over F if it satisfies a polynomial PDE over F.

Theorem (Kolchin, 1942)
Let $F \subset E$ be an extension of partial differential fields such that

- E is finitely generated over F using the derivatives;
- every $a \in E$ is partial differentially algebraic over F;
- the restrictions of the derivations on F are F-linearly independent

Then there exists $\alpha \in E$ such that E is over F by α using the derivatives.

Formal setup: one shift

Definitions

- A field F is called difference field if it is equipped with an automorphism σ.

Formal setup: one shift

Definitions

- A field F is called difference field if it is equipped with an automorphism σ.
- Let $F \subset E$ be an extension of difference fields. Then $a \in E$ is difference algebraic over F if the elements of its orbit satisfy an algebraic equation over F

Formal setup: one shift

Definitions

- A field F is called difference field if it is equipped with an automorphism σ.
- Let $F \subset E$ be an extension of difference fields. Then $a \in E$ is difference algebraic over F if the elements of its orbit satisfy an algebraic equation over F For example, if σ is a shift $\sigma(f(x))=f(x+1)$, then \sqrt{x} and $\Gamma(x)$ are difference algebraic over \mathbb{C}.

State of the art: one shift

Theorem (Cohn, 1965)

Let $F \subset E$ be an extension of difference fields such that

- E is generated over F by finitely many elements and their orbits;
- every $a \in E$ is difference algebraic over F;
- the automorphism has infinite order on F.

Then there exists $\alpha \in E$ such that $E=F\left(\sigma^{i}(\alpha) \mid i \in \mathbb{Z}\right)$.

State of the art: one shift

Theorem (Cohn, 1965)

Let $F \subset E$ be an extension of difference fields such that

- E is generated over F by finitely many elements and their orbits;
- every $a \in E$ is difference algebraic over F;
- the automorphism has infinite order on F.

Then there exists $\alpha \in E$ such that $E=F\left(\sigma^{i}(\alpha) \mid i \in \mathbb{Z}\right)$.
However: Cohn's theorem is not applicable to $\mathbb{C} \subset \mathbb{C}(x, \Gamma(x))$.

Applications of prior results

- Fundamental theoretical tools in differential/difference algebra (e.g., Galois theory of differential and difference equations, model theory of differential/difference fields);
- Representation of solution sets of differential-algebraic equations (Cluzeau-Hubert);
- Effective bounds in for differential/difference equations;
- Used to construct normal forms of systems in control theory (Fliess).

Motivating examples: coverage

Example	Status
$\mathbb{C} \subset \mathbb{C}\left(x, e^{x}\right)$	covered by the 2015 result

Motivating examples: coverage

Example	Status
$\mathbb{C} \subset \mathbb{C}\left(x, e^{x}\right)$	covered by the 2015 result
$\mathbb{C} \subset \mathbb{C}(x, \Gamma(x))$	not covered by Cohn's theorem

Motivating examples: coverage

Example	Status
$\mathbb{C} \subset \mathbb{C}\left(x, e^{x}\right)$	covered by the 2015 result
$\mathbb{C} \subset \mathbb{C}(x, \Gamma(x))$	not covered by Cohn's theorem
$\mathbb{C} \subset \mathbb{C}\left(x, e^{x}, \Gamma(x), \Gamma^{\prime}(x), \Gamma^{\prime \prime}(x) \ldots\right)$	not covered at all

What exactly do we want

- Remove conditions on F.

Why?

- Applicable to $\mathbb{C} \subset \mathbb{C}($ some functions $)$.
- Applicable to extensions coming from affine varieties equipped with a vector field or an automorphism.
- Allow several automorphisms and derivations.

Why? Partial difference and difference-differential equations.

Main result: definitions

Definitions

- Let $\Delta=\left\{\delta_{1}, \ldots, \delta_{s}\right\}$ and $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{t}\right\}$.

Main result: definitions

Definitions

- Let $\Delta=\left\{\delta_{1}, \ldots, \delta_{s}\right\}$ and $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{t}\right\}$.
- A field F is called a $\Delta \Sigma$-field if
- $\delta_{1}, \ldots, \delta_{s}$ act as derivations;
- $\sigma_{1}, \ldots, \sigma_{t}$ act as automorphisms;
- they all commute.

Main result: definitions

Definitions

- Let $\Delta=\left\{\delta_{1}, \ldots, \delta_{s}\right\}$ and $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{t}\right\}$.
- A field F is called a $\Delta \Sigma$-field if
- $\delta_{1}, \ldots, \delta_{s}$ act as derivations;
- $\sigma_{1}, \ldots, \sigma_{t}$ act as automorphisms;
- they all commute.
- Let $F \subset E$ be an extension of $\Delta \Sigma$-fields. Then $a \in E$ is $\Delta \Sigma$-algebraic if there is an algebraic relation between its images under $\delta_{1}, \ldots, \delta_{s}, \sigma_{1}, \ldots, \sigma_{t}$.

Main result: statement

Theorem (P., 2019)

Let $F \subset E$ be an extension of $\Delta \Sigma$-fields such that

- E is generated over F by finitely many elements using Δ and Σ;
- every $a \in E$ is $\Delta \Sigma$-algebraic over F;
- $\delta_{1}, \ldots, \delta_{s}$ are E-linearly independent on E;
- $\sigma_{1}, \ldots, \sigma_{t}$ are \mathbb{Z}-linearly independent on E.

Then there is $\alpha \in E$ such that E is generated over F by α using Δ and Σ.

Main result: statement

Theorem (P., 2019)

Let $F \subset E$ be an extension of $\Delta \Sigma$-fields such that

- E is generated over F by finitely many elements using Δ and Σ;
- every $a \in E$ is $\Delta \Sigma$-algebraic over F;
- $\delta_{1}, \ldots, \delta_{s}$ are E-linearly independent on E;
- $\sigma_{1}, \ldots, \sigma_{t}$ are \mathbb{Z}-linearly independent on E.

Then there is $\alpha \in E$ such that E is generated over F by α using Δ and Σ.

Remarks

- Generalizes theorems of Kolchin and Cohn.

Main result: statement

Theorem (P., 2019)

Let $F \subset E$ be an extension of $\Delta \Sigma$-fields such that

- E is generated over F by finitely many elements using Δ and Σ;
- every $a \in E$ is $\Delta \Sigma$-algebraic over F;
- $\delta_{1}, \ldots, \delta_{s}$ are E-linearly independent on E;
- $\sigma_{1}, \ldots, \sigma_{t}$ are \mathbb{Z}-linearly independent on E.

Then there is $\alpha \in E$ such that E is generated over F by α using Δ and Σ.

Remarks

- Generalizes theorems of Kolchin and Cohn.
- All the examples are covered.

What was an issue?

Strategy (Artin, Kolchin, Cohn)

- take a pair of generators a and b of E;
- replace them with $a+\lambda b$, where λ is a generic enough element of F.

What was an issue?

Strategy (Artin, Kolchin, Cohn)

- take a pair of generators a and b of E;
- replace them with $a+\lambda b$, where λ is a generic enough element of F.

However
Consider an extension of differential fields $F:=\mathbb{C} \subset \mathbb{C}(x, \ln x, \ln (1-x))$.

What was an issue?

Strategy (Artin, Kolchin, Cohn)

- take a pair of generators a and b of E;
- replace them with $a+\lambda b$, where λ is a generic enough element of F.

However

Consider an extension of differential fields $F:=\mathbb{C} \subset \mathbb{C}(x, \ln x, \ln (1-x))$. E is generated over F by $\ln x, \ln (1-x)$, and their derivatives.

What was an issue?

Strategy (Artin, Kolchin, Cohn)

- take a pair of generators a and b of E;
- replace them with $a+\lambda b$, where λ is a generic enough element of F.

However

Consider an extension of differential fields $F:=\mathbb{C} \subset \mathbb{C}(x, \ln x, \ln (1-x))$. E is generated over F by $\ln x, \ln (1-x)$, and their derivatives. Let

$$
\alpha=\ln x+\lambda \ln (1-x) \quad, \text { where } \quad \lambda \in \mathbb{C}
$$

What was an issue?

Strategy (Artin, Kolchin, Cohn)

- take a pair of generators a and b of E;
- replace them with $a+\lambda b$, where λ is a generic enough element of F.

However

Consider an extension of differential fields $F:=\mathbb{C} \subset \mathbb{C}(x, \ln x, \ln (1-x))$. E is generated over F by $\ln x, \ln (1-x)$, and their derivatives. Let

$$
\alpha=\ln x+\lambda \ln (1-x) \quad, \text { where } \quad \lambda \in \mathbb{C}
$$

Then

$$
\alpha^{\prime} \in \mathbb{C}(x)
$$

What was an issue?

Strategy (Artin, Kolchin, Cohn)

- take a pair of generators a and b of E;
- replace them with $a+\lambda b$, where λ is a generic enough element of F.

However

Consider an extension of differential fields $F:=\mathbb{C} \subset \mathbb{C}(x, \ln x, \ln (1-x))$. E is generated over F by $\ln x, \ln (1-x)$, and their derivatives. Let

$$
\alpha=\ln x+\lambda \ln (1-x) \quad, \text { where } \quad \lambda \in \mathbb{C}
$$

Then

$$
\alpha^{\prime} \in \mathbb{C}(x) \Longrightarrow \mathbb{C}\left(\alpha, \alpha^{\prime}, \ldots\right) \subset \mathbb{C}(\alpha, x)
$$

What was an issue?

Strategy (Artin, Kolchin, Cohn)

- take a pair of generators a and b of E;
- replace them with $a+\lambda b$, where λ is a generic enough element of F.

However

Consider an extension of differential fields $F:=\mathbb{C} \subset \mathbb{C}(x, \ln x, \ln (1-x))$. E is generated over F by $\ln x, \ln (1-x)$, and their derivatives. Let

$$
\alpha=\ln x+\lambda \ln (1-x) \quad, \text { where } \quad \lambda \in \mathbb{C}
$$

Then

$$
\alpha^{\prime} \in \mathbb{C}(x) \Longrightarrow \mathbb{C}\left(\alpha, \alpha^{\prime}, \ldots\right) \subset \mathbb{C}(\alpha, x) \Longrightarrow \operatorname{trdeg}_{\mathbb{C}} \mathbb{C}\left(\alpha, \alpha^{\prime}, \ldots\right) \leqslant 2
$$

What was an issue?

Strategy (Artin, Kolchin, Cohn)

- take a pair of generators a and b of E;
- replace them with $a+\lambda b$, where λ is a generic enough element of F.

However

Consider an extension of differential fields $F:=\mathbb{C} \subset \mathbb{C}(x, \ln x, \ln (1-x))$. E is generated over F by $\ln x, \ln (1-x)$, and their derivatives. Let

$$
\alpha=\ln x+\lambda \ln (1-x) \quad, \text { where } \quad \lambda \in \mathbb{C}
$$

Then

$$
\alpha^{\prime} \in \mathbb{C}(x) \Longrightarrow \mathbb{C}\left(\alpha, \alpha^{\prime}, \ldots\right) \subset \mathbb{C}(\alpha, x) \Longrightarrow \operatorname{trdeg}_{\mathbb{C}} \mathbb{C}\left(\alpha, \alpha^{\prime}, \ldots\right) \leqslant 2
$$

But $x, \ln x$, and $\ln (1-x)$ are algebraically independent, so $\operatorname{trdeg}_{F} E=3$.

What if not a linear combination?

Strategy (P., 2015)

- take a pair of generators a and b of E;
- replace with $a+\sum_{i=1}^{N} \lambda_{i} b^{i}$, where N is large enough λ_{i} 's are generic enough from F.

What if not a linear combination?

Strategy (P., 2015)

- take a pair of generators a and b of E;
- replace with $a+\sum_{i=1}^{N} \lambda_{i} b^{i}$, where N is large enough λ_{i} 's are generic enough from F.

Strategy (P., 2019)

- take a pair of generators a and b of E;
- replace with $a+f(b)$, where f is a function.

What if not a linear combination?

Strategy (P., 2015)

- take a pair of generators a and b of E;
- replace with $a+\sum_{i=1}^{N} \lambda_{i} b^{i}$, where N is large enough λ_{i} 's are generic enough from F.

Strategy (P., 2019)

- take a pair of generators a and b of E;
- replace with $a+\sum_{i=0}^{\infty} \lambda_{i} \frac{b^{i}}{i!}$, where λ_{i} 's are generic enough from F.

What if not a linear combination?

Strategy (P., 2015)

- take a pair of generators a and b of E;
- replace with $a+\sum_{i=1}^{N} \lambda_{i} b^{i}$, where N is large enough λ_{i} 's are generic enough from F.

Strategy (P., 2019)

- take a pair of generators a and b of E;
- replace with $a+\sum_{i=0}^{N} \lambda_{i} \frac{b^{i}}{i!}$, where N is large enough and λ_{i} 's are generic enough from F.

Special case of the proof

Setup

- just one derivation;
- $\operatorname{trdeg}_{F} E=1$;
- $E=F(a, b), a^{\prime} \neq 0$, and $b^{\prime} \neq 0$.

Special case of the proof

Setup

- just one derivation;
- $\operatorname{trdeg}_{F} E=1$;
- $E=F(a, b), a^{\prime} \neq 0$, and $b^{\prime} \neq 0$.

Proof

1. Let $c=a+\lambda_{0}+\lambda_{1} b+\lambda_{2} \frac{b^{2}}{2}+\lambda_{3} \frac{b^{3}}{3!}+\lambda_{4} \frac{b^{4}}{4!}$, where $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{4}\right\}$ are new transcendental constants.

Special case of the proof

Setup

- just one derivation;
- $\operatorname{trdeg}_{F} E=1$;
- $E=F(a, b), a^{\prime} \neq 0$, and $b^{\prime} \neq 0$.

Proof

1. Let $c=a+\lambda_{0}+\lambda_{1} b+\lambda_{2} \frac{b^{2}}{2}+\lambda_{3} \frac{b^{3}}{3!}+\lambda_{4} \frac{b^{4}}{4!}$, where $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{4}\right\}$ are new transcendental constants.
2. Goal: $b \in L:=F\left(\Lambda, c, c^{\prime}, \ldots\right)$.

Special case of the proof

Setup

- just one derivation;
- $\operatorname{trdeg}_{F} E=1$;
- $E=F(a, b), a^{\prime} \neq 0$, and $b^{\prime} \neq 0$.

Proof

1. Let $c=a+\lambda_{0}+\lambda_{1} b+\lambda_{2} \frac{b^{2}}{2}+\lambda_{3} \frac{b^{3}}{3!}+\lambda_{4} \frac{b^{4}}{4!}$, where $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{4}\right\}$ are new transcendental constants.
2. Goal: $b \in L:=F\left(\Lambda, c, c^{\prime}, \ldots\right)$.
3. c and c^{\prime} are alg. dependent over $F(\Lambda)$

Special case of the proof

Setup

- just one derivation;
- $\operatorname{trdeg}_{F} E=1$;
- $E=F(a, b), a^{\prime} \neq 0$, and $b^{\prime} \neq 0$.

Proof

1. Let $c=a+\lambda_{0}+\lambda_{1} b+\lambda_{2} \frac{b^{2}}{2}+\lambda_{3} \frac{b^{3}}{3!}+\lambda_{4} \frac{b^{4}}{4!}$, where $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{4}\right\}$ are new transcendental constants.
2. Goal: $b \in L:=F\left(\Lambda, c, c^{\prime}, \ldots\right)$.
3. c and c^{\prime} are alg. dependent over $F(\Lambda) \Longrightarrow$ there are nonzero $v_{1}, v_{2} \in L$ such that

$$
\left(\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right)\left(\begin{array}{ccccc}
1 & b & b^{2} / 2 & b^{3} / 3! & b^{4} / 4! \\
0 & b^{\prime} & \left(b^{2}\right)^{\prime} / 2 & \left(b^{3}\right)^{\prime} / 3! & \left(b^{4}\right)^{\prime} / 4!
\end{array}\right) \in L^{5}
$$

Questions

- Fields with an action of a finite group?

I know about $\mathbb{Z} / n \mathbb{Z}$

Questions

- Fields with an action of a finite group?

I know about $\mathbb{Z} / n \mathbb{Z}$

- What if the operators do not commute?
e.g., Moosa-Scanlon fields with operators

Questions

- Fields with an action of a finite group?

I know about $\mathbb{Z} / n \mathbb{Z}$

- What if the operators do not commute?
e.g., Moosa-Scanlon fields with operators
- Order/degree bounds for a primitive element?

Summary

- We extend the prior results to any number of commuting shifts and derivations (e.g., delay-differential equations).

Summary

- We extend the prior results to any number of commuting shifts and derivations (e.g., delay-differential equations).
- We remove restrictions from the base field. This allows, for example, to consider solutions of autonomous equations.

Support

Many thanks to the organizers.
The work was supported by

- National Science Foundation
- City University of New York

The City University
of
New York

