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The classical Primitive Element Theorem (PET)

All fields in the talk are of characteristic zero.

Artin’s Primitive Element Theorem

Let F ⊂ E be a

• finitely generated

• and algebraic

extension of fields.

=⇒ Then there exists α ∈ E

such that E = F (α).

Example

Let F = Q and E = Q(
√

2,
√

3).

√
2 =

α3 − 9α

2
and

√
3 =

11α− α3

2
, where α :=

√
2 +
√

3.

Thus, E = F (
√

2 +
√

3).
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Motivating examples: derivative

Consider F := C ⊂ E := C(x , ex).

trdegF E = 2 =⇒ no primitive element.

Idea: allow not only + and · but also d
dx

α := x + ex

=⇒ ex = α′′ and x = α− α′′

Thus, E is generated over F by x + ex and its derivatives.

Moral: allow derivatives =⇒ get a primitive element

2



Motivating examples: derivative

Consider F := C ⊂ E := C(x , ex).

trdegF E = 2 =⇒ no primitive element.

Idea: allow not only + and · but also d
dx

α := x + ex

=⇒ ex = α′′ and x = α− α′′

Thus, E is generated over F by x + ex and its derivatives.

Moral: allow derivatives =⇒ get a primitive element

2



Motivating examples: derivative

Consider F := C ⊂ E := C(x , ex).

trdegF E = 2 =⇒ no primitive element.

Idea: allow not only + and · but also d
dx

α := x + ex

=⇒ ex = α′′ and x = α− α′′

Thus, E is generated over F by x + ex and its derivatives.

Moral: allow derivatives =⇒ get a primitive element

2



Motivating examples: derivative

Consider F := C ⊂ E := C(x , ex).

trdegF E = 2 =⇒ no primitive element.

Idea: allow not only + and · but also d
dx

α := x + ex =⇒ ex = α′′ and x = α− α′′

Thus, E is generated over F by x + ex and its derivatives.

Moral: allow derivatives =⇒ get a primitive element

2



Motivating examples: derivative

Consider F := C ⊂ E := C(x , ex).

trdegF E = 2 =⇒ no primitive element.

Idea: allow not only + and · but also d
dx

α := x + ex =⇒ ex = α′′ and x = α− α′′

Thus, E is generated over F by x + ex and its derivatives.

Moral: allow derivatives =⇒ get a primitive element

2



Motivating examples: derivative

Consider F := C ⊂ E := C(x , ex).

trdegF E = 2 =⇒ no primitive element.

Idea: allow not only + and · but also d
dx

α := x + ex =⇒ ex = α′′ and x = α− α′′

Thus, E is generated over F by x + ex and its derivatives.

Moral: allow derivatives =⇒ get a primitive element

2



Motivating examples: shift

Consider F := C ⊂ E := C(x , Γ(x)).

trdegF E = 2 =⇒ no primitive element.

Idea: allow not only + and · but also shift σ : f (x) 7→ f (x + 1).

α := Γ(x) =⇒ x =
σ(α)

α

Thus, E is generated over F by Γ(x) and its shifts.

Moral: allow shifts =⇒ get a primitive element
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Motivating examples: come together

Consider F := C ⊂ E := C(x , ex , Γ(x), Γ′(x), Γ′′(x), . . .).

In this case, trdegF E =∞!

Idea: allow shift σ : f (x) 7→ f (x + 1) and d
dx .

α := Γ(x) + ex =⇒ σ(α)− eα = Γ(x)(x − e)

=⇒ σ2(α)− eσ(α)

σ(α)− eα
=

(x + 1− e)x

x − e
.

Thus, E is generated over F by Γ(x) + ex and its shifts and derivatives.

Moral: allow shifts and derivatives =⇒ get a primitive element
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What do we want?

Prove PETs for field extensions that

• might involve transcendental functions

• but have extra structure

(derivatives and/or shifts).

5



Formal setup: one derivation

Definitions

• A field F is called differential field if it is equipped with an additive

map ′ : F → F such that

(ab)′ = a′b + ab′ for every a, b ∈ F .

• Let F ⊂ E be an extension of differential fields. Then a ∈ E is

differentially algebraic over F if it satisfies a polynomial differential

equation (DE) over F .

For example,
√
x , ex , and sin x are differentially algebraic over C.

6
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State of the art: one derivation

Theorem (Kolchin, 1942)

Let F ⊂ E be an extension of differential fields such that

• E is generated over F by finitely many elements and their

derivatives;

• every a ∈ E is differentially algebraic over F ;

• there is b ∈ F such that b′ 6= 0.

Then there exists α ∈ E such that E is generated over F by α and its

derivatives.

However: Kolchin’s theorem is not applicable to C ⊂ C(x , ex).

Theorem (P., 2015)

In Kolchin’s theorem, F → E .

7
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State of the art: PDEs

Definitions

• A field F is called partial differential field if it is equipped with

several commuting derivations.

• Let F ⊂ E be an extension of partial differential fields. Then a ∈ E

is partial differentially algebraic over F if it satisfies a polynomial

PDE over F .

Theorem (Kolchin, 1942)

Let F ⊂ E be an extension of partial differential fields such that

• E is finitely generated over F using the derivatives;

• every a ∈ E is partial differentially algebraic over F ;

• the restrictions of the derivations on F are F -linearly independent

Then there exists α ∈ E such that E is over F by α using the derivatives.
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Formal setup: one shift

Definitions

• A field F is called difference field if it is equipped with an

automorphism σ.

• Let F ⊂ E be an extension of difference fields. Then a ∈ E is

difference algebraic over F if the elements of its orbit satisfy an

algebraic equation over F

For example, if σ is a shift σ(f (x)) = f (x + 1), then
√
x and Γ(x)

are difference algebraic over C.
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State of the art: one shift

Theorem (Cohn, 1965)

Let F ⊂ E be an extension of difference fields such that

• E is generated over F by finitely many elements and their orbits;

• every a ∈ E is difference algebraic over F ;

• the automorphism has infinite order on F .

Then there exists α ∈ E such that E = F (σi (α) | i ∈ Z).

However: Cohn’s theorem is not applicable to C ⊂ C(x , Γ(x)).
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Applications of prior results

• Fundamental theoretical tools in differential/difference algebra

(e.g., Galois theory of differential and difference equations, model

theory of differential/difference fields);

• Representation of solution sets of differential-algebraic equations

(Cluzeau-Hubert);

• Effective bounds in for differential/difference equations;

• Used to construct normal forms of systems in control theory (Fliess).
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Motivating examples: coverage

Example Status

C ⊂ C(x , ex) covered by the 2015 result

C ⊂ C(x , Γ(x)) not covered by Cohn’s theorem

C ⊂ C(x , ex , Γ(x), Γ′(x), Γ′′(x) . . .) not covered at all
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What exactly do we want

• Remove conditions on F .

Why?

• Applicable to C ⊂ C(some functions).

• Applicable to extensions coming from affine varieties equipped with a

vector field or an automorphism.

• Allow several automorphisms and derivations.

Why? Partial difference and difference-differential equations.

13



Main result: definitions

Definitions

• Let ∆ = {δ1, . . . , δs} and Σ = {σ1, . . . , σt}.

• A field F is called a ∆Σ-field if

• δ1, . . . , δs act as derivations;

• σ1, . . . , σt act as automorphisms;

• they all commute.

• Let F ⊂ E be an extension of ∆Σ-fields. Then a ∈ E is

∆Σ-algebraic if there is an algebraic relation between its images

under δ1, . . . , δs , σ1, . . . , σt .

14



Main result: definitions

Definitions

• Let ∆ = {δ1, . . . , δs} and Σ = {σ1, . . . , σt}.
• A field F is called a ∆Σ-field if

• δ1, . . . , δs act as derivations;

• σ1, . . . , σt act as automorphisms;

• they all commute.

• Let F ⊂ E be an extension of ∆Σ-fields. Then a ∈ E is

∆Σ-algebraic if there is an algebraic relation between its images

under δ1, . . . , δs , σ1, . . . , σt .

14



Main result: definitions

Definitions

• Let ∆ = {δ1, . . . , δs} and Σ = {σ1, . . . , σt}.
• A field F is called a ∆Σ-field if

• δ1, . . . , δs act as derivations;

• σ1, . . . , σt act as automorphisms;

• they all commute.

• Let F ⊂ E be an extension of ∆Σ-fields. Then a ∈ E is

∆Σ-algebraic if there is an algebraic relation between its images

under δ1, . . . , δs , σ1, . . . , σt .

14



Main result: statement

Theorem (P., 2019)

Let F ⊂ E be an extension of ∆Σ-fields such that

• E is generated over F by finitely many elements using ∆ and Σ;

• every a ∈ E is ∆Σ-algebraic over F ;

• δ1, . . . , δs are E -linearly independent on E ;

• σ1, . . . , σt are Z-linearly independent on E .

Then there is α ∈ E such that E is generated over F by α using ∆ and Σ.

Remarks

• Generalizes theorems of Kolchin and Cohn.

• All the examples are covered.
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What was an issue?

Strategy (Artin, Kolchin, Cohn)

• take a pair of generators a and b of E ;

• replace them with a + λb, where λ is a generic enough element of F .

However

Consider an extension of differential fields F := C ⊂ C(x , ln x , ln(1− x)).

E is generated over F by ln x , ln(1− x), and their derivatives. Let

α = ln x + λ ln(1− x) , where λ ∈ C

Then

α′ ∈ C(x) =⇒ C(α, α′, . . .) ⊂ C(α, x) =⇒ trdegC C(α, α′, . . .) 6 2.

But x , ln x , and ln(1− x) are algebraically independent, so trdegF E = 3.
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α = ln x + λ ln(1− x) , where λ ∈ C

Then

α′ ∈ C(x) =⇒ C(α, α′, . . .) ⊂ C(α, x) =⇒ trdegC C(α, α′, . . .) 6 2.

But x , ln x , and ln(1− x) are algebraically independent, so trdegF E = 3.
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What if not a linear combination?

Strategy (P., 2015)

• take a pair of generators a and b of E ;

• replace with a +
N∑
i=1

λib
i , where N is large enough λi ’s are generic

enough from F .

Strategy (P., 2019)

• take a pair of generators a and b of E ;
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Strategy (P., 2019)

• take a pair of generators a and b of E ;

• replace with a + f (b), where f is a function.
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Special case of the proof

Setup

• just one derivation;

• trdegF E = 1;

• E = F (a, b), a′ 6= 0, and b′ 6= 0.

Proof

1. Let c = a + λ0 + λ1b + λ2
b2

2 + λ3
b3

3! + λ4
b4

4! ,

where Λ = {λ0, λ1, . . . , λ4} are new transcendental constants.

2. Goal: b ∈ L := F (Λ, c , c ′, . . .).

3. c and c ′ are alg. dependent over F (Λ) =⇒ there are nonzero

v1, v2 ∈ L such that

(
v1 v2

)(1 b b2/2 b3/3! b4/4!

0 b′ (b2)′/2 (b3)′/3! (b4)′/4!

)
∈ L5
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Questions

• Fields with an action of a finite group?

I know about Z/nZ

• What if the operators do not commute?

e.g., Moosa-Scanlon fields with operators

• Order/degree bounds for a primitive element?
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Summary

• We extend the prior results to any number of commuting shifts and

derivations (e.g., delay-differential equations).

• We remove restrictions from the base field. This allows, for example,

to consider solutions of autonomous equations.
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