
Model Theory of Adele Rings over Number Fields

Joint work with Jamshid Derakhshan.
Issues of Axiomatization joint with Paola D’Aquino

June 2019 AJM



Basic Notions and Notation Concerning Number Fields

Our basic first-order language is that of ring theory with +, -, ., 0
and 1.
A number field K is a finite-dimensional extension of Q.
OK is the ring of integers of K.
Absolute values of K are of basic importance (See Cassels and
Frohlich, Algebraic Number Theory, for all one needs to know).
On Q these (after a natural normalization) correspond to nonzero
prime ideals of Z and to the standard absolute
value given by the embedding of Q in R. For the prime p the
corresponding absolute value is the map sending x
p−vp(x) where vp is the standard p-adic valuation.
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General K

For general K we replace the prime numbers p by prime ideals P
of OK , and the real embedding of Q by complex (including real)
embeddings of K , with suitably normalized absolute values. To P
there corresponds a (suitably normalized) valuation vP , extending
vp,
where (p) is the restriction of P to Z. Moreover, any (p) extends
to finitely many P. These give the nonarchimedean absolute
values. In
addition, the real absolute value of Q extends to at most finitely
many (generally complex) absolute values. This behaviour under
extension persists for all extensions of
number fields. Note that in the nonarchimedean cases the
extension/restriction corresponds to extension and restriction of
valuations.
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Residue Fields, Value Groups, Completions for
Nonarchimedean Valuations

Let (p) and P be as on previous page. Clearly vp is the standard
p-adic valuation on Q , with residue field Fp and value group Z
with vp(p) = 1. vP has residue field a finite extension of Fp and
value group a finitely ramified extension of Z.
All valuations occurring as above have completions, which are
henselian and immediate extensions of the valuations on the OK .
We write these as KP .
In the archimedean case the completions are either R or C (and
the absolute values are suitably normalized).
We write VK for the set of normalized absolute values of K , and
note the restriction/extension phenomenon for extensions of
number fields.
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Basic Structure on VK

VQ is the union of the set of p-adic absolute values and the
singleton containing the real absolute value. We write ∞ for the
real absolute value, and have the decomposition of VQ as the
union of the set of nonarchimedean absolute values
nonarchimedeanQ and the set of archimedean absolute values
archimedeanQ, whose only member is ∞.

We naturally index nonarchimedeanQ by the primes p.

For general K one defines nonarchimedeanK and archimedeanQK
in the same way. The latter is always finite.

Each inclusion K→ L of number fields induces a ring inclusion
from OK to OL, and a surjective restriction maps from
nonarchimedeanL to nonarchimedeanK and from archimedeanL to
archimedeanK . Moreover, each map is finite to one.

Finally, these restrictions are functorial.
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The adele rings AK . 1

It will simplify notation if we use vP for an arbitrary element of VK

and KP for the corresponding completion.
Note that the latter are exactly the locally compact fields of
characteristic 0.
To K we first associate a relatively uninteresting von Neumann
regular topological ring, namely the product of the family
(KP : vP ∈ VK ).
This is not locally compact, but well understood model-
theoretically by Ax and Feferman-Vaught.
A more interesting subring is the corresponding product of the
valuation rings OKP

of the KP .
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The adele rings AK 2

This is compact, and has a well-understood model theory by
Derakhshan-Macintyre using Ax, Feferman-Vaught , and joint work
with Cluckers and Leenknecht on a (nearly existential) uniform ring
definition of the valuation rings used.
But the right ring for number theory is the intermediate AK , the
ring of all f in the full product , such that f (vP) is in the valuation
ring for all but finitely many many elements of VK . This is locally
compact. It is called the adele ring over K
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The adele rings AK 3

These have, for each K a very well-understood model theory in the
language of rings. The basic results
(not in the simple ring formalism) were obtained around 1978 by
Weisspfenning, but much generalized and clarified in the work of
D-M over the last ten years.
The work uses the notion of restricted product from the work of
Feferman-Vaught (1959).
The analyses are uniform in K , modulo the index sets. Each
individual AK is decidable, and with well-understood definability
theory, but the work does not yield
decidability of the class of all AK because of very difficult problems
about unbounded ramification.
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Decoding K from AK

K is diagonally embedded in AK . In the idelic situation where the
group of units of the adeles gets the idelic topology, the
multiplicative group of
K is discretely embedded embedded in the group of ideles of norm
1, and the quotient is compact, a fact deeply connected to
Finiteness of Class Number.
Early on one asked if K is determined up to isomorphism by its
adele ring (which subtly encoded the local structure of K )
In this talk we look at logical aspects of this issue, and relate them
to the main discoveries of number theorists like Iwasawa, Perlis, et
al.
We point out at the outset that K is undecidable, whereas AK is
decidable, so there is no definition of the number field in its adele
ring.But this has no
implications for the decoding problem.
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Refined Undecidability

In many cases K has undecidable universal-existential theory by the
deep work of Koenigsmann and Park. This is known for all K
under the assumption of part of Tate-Shafarevich Conjecture (by
Mazur and Rubin).
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Coding V by idempotents in AK

The key point is that the ring AK has enough idempotents to code
the elements of the index set VK, namely the f which take value 1
at a single
element of the index set, and take value 0 elsewhere. These are in
fact the minimal idempotents of the index set. Moreover, once one
makes this identiication, one can easily interpret,
ring- theoretically , the notion of the fibre at an element of the
index set , and the notion of the residue field of that fibre, and the
notion of the valuation ring at that fibre (appealing to
DMCL). All details can be found in DM. In particular, for each
standard prime p , the following notion is definable:
The residue field at vP has characteristic p.
In each adele ring AK the preceding set is finite , for each p.
It will be crucial for us to understand the finer structure of such
sets.
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Relating Definability to Extension and Restriction of
Absolute Values 1

Fix K and p as above. Continuing the identification of minimal
idempotents and fibres, we write p − Fib for the finite set of
minimal idempotents where the fibre has characteristic p. This set
is definable, for fixed p, uniformly in K. If we take an elementary
property of valued fields, we get a corresponding elementary
property of K by considering the elements of p − Fib whose fibres
satisfy that property. Another way to get an elementary property is
to say that there are exactly m elements of p − Fib whose fibre
satisfies the elementary property.
We should not forget the archimedean absolute values and their
fibres, which can be either R or C (and it is an elementary
condition on a minimal idempotent which kind of fibre it has. We
cannot dispense with considering these, but the p case is much
more important, and we concentrate on it.
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Relating Definability to Extension and Restriction of
Absolute Values 2

We approach the notion of a p-pattern.
Again fix K. Consider the ideal pOKP

in the ring of integers of K.
It factors, essentially uniquely, into a product of powers of distinct
prime ideals Pe1

1 · · ·P
eg
g . Each such prime extends (p), and every

extension of (p) occurs. This gives us the right way to look at
p − Fib. For each extension vP we have its residue field kvP of
dimension fvP over Fp. We have also the ramification degree evP .
which is the same as the exponent to which the corresponding
prime divides p . Note first that for each m it is an elementary
condition on (the idempotent corresponding to ) vP that the
corresponding f is ≤ m, and similarly for the ramification exponent.
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p-patterns

It is also an elementary condition, for each g , that there are
exactly g primes extending p . The main obstruction to progress is
to understand how the f , e and g introduced above depend on K.

We attach to p and K a so-called p-pattern Σp,K as follows.
Suppose p has g distinct extensions , and enumerate the
corresponding f in order (perhaps with repetitions) as
< f1, . . . , fg >. This sequence is the p-pattern. Note that for now
we have no reference to the ramification (though there is no
obstruction to bringing it in now).
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Basic Equality

Let n = [K : Q]. Fix p, and let (P)1, ......(P)g be the distinct
extensions of (p) to OK. Let
f1, .....fg and e1, .....eg be the corresponding inertia and
ramification degrees as above. Then (See Cassels-Frohlich) we
have the fundamental

g∑
j=1

fjej = n.

Immediate consequences for our analysis are

1. g ≤ n

2. fj ≤ n

3. ej ≤ n

This makes it clear that it would be of basic importance to show
that the condition on AK that the dimension of K is n , is IN
SOME NATURAL SENSE elementary , for fixed n, uniformly in AK
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Using Cebotarev’s Theorem

Fix K, of dimension n , and let L be the normal closure of K. By
Cebotarev there are infinitely many p which are unramified in L
and split completely ( i.e have residue field dimension 1). Pick
such a p and consider p − Fib in the adeles of K. That set has
cardinality n.
Now, for any p, it is an elementary condition on AK (depending on
p! ) that p− Fib satisfies the above Cebotarev condition. Thus, we
have our first theorem (well-known to number-theorists in a
different formulation).

Theorem
If AK1 ≡ AK2 then

[K1 : Q] = [K2 : Q]

IMPORTANT NOTE: We have not shown the existence of a single
sentence of ring theory detecting fixed dimension n.
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Normal K

Cebotarev’s Theorem gives

Theorem
If K is normal, then if L has adele ring elementarily equivalent to
that of K , then L = K.

What is not properly understood is the nature of the sets of primes
splitting completely in K, as K varies.
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The Perlis Formalism

Recall the definition of Σp,K, the p-pattern of K. It is a sequence
of numbers (with monotonicity constraint) not mentioning p and
K, and one must eventually try to figure out which such sequences
can occur as p and K vary.
For now we just work abstractly with a sequence < f1, ....fg >
subject only to the monotonicity constraint, and call such a thing a
splitting type.
Following Perlis, we write A for a splitting type., and then define:

PK(A) = {p : Σp,K = A}

.
Note that by the Basic Lemma there are, for fixed K only finitely
many Σp,K, and so PK(A) is empty for all but finitely many A.
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Arithmetic Equivalence of Number Fields, and Elementary
Equivalence of their Adele Rings

It is clear that if If AK1 ≡ AK2 then, for each A, PK1(A) = PK2(A).
This latter condition is called here Decomposition Equivalence of
the fields.

Perlis calls it ” Arithmetic Equivalence”, but we find this unnatural,
due to its failure to incorporate consideration of ramification.
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A Big Theorem of Perlis

Theorem
K1 and K2 are Decomposition equivalent if and only if they have
the same zeta function.
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Another

Theorem
Suppose AK1 is Decomposiion equivalent to AK2 .
Then

1. K1 and K2 have the same discriminant.

2. K1 and K2 have the same number of real(respectively
complex) absolute values.

3. K1 and K2 have the same normal closure.

4. K1 and K2 have isomorphic unit groups.

The proof is quite nontrivial.
Corollary For fixed K there are only finitely many L such that K
and L have elementarily equivalent (indeed, Decomposition
equivalent ) adele rings.
Proof. By (1) and Hermite- Minkowski Finiteness Theorem for
Discriminants. Alternatively, one can use 3.
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The Role of Ramification. Enriched p-Patterns

Note that we have not yet used the ramification exponents in our
proofs. But we have observed that significant things about local
ramification can be expressed in the ring language for adeles. Thus
we now pass from p-patterns to Enrichedp − Patterns. The setting
is that where we first defined p-patterns.
p and K are given. We attach to p and K first a so-called
p-pattern Σp,K as follows. Suppose p has g distinct extensions ,
and enumerate the correspondingf in order (perhaps with
repetitions) as < f1, . . . , fg >. We get the enriched p-pattern as a
2g tuple < f1, e1, ....., fg , eg >, but the fj may not be exactly the fj
of the original pattern. We look at all pairs , f , e occurring, where
the e is the ramification corresponding to the inertia f . We now
lexicographically order the set of pairs , as < fj , ej > ,and the
sequence < f1, e1, ....., fg , eg > is defined as the enriched p-pattern.
The basic equality bounds the enriched p-patterns uniformly in
terms of the dimension of K , uniformly in K and p.
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Elementary Equivalence and Isomorphism 1

We define enriched splitting types completely analogously to
splitting types. We denote by EnrichedΣp,K the enriched p-pattern
(i.e enriched splitting type). We now use A for enriched splitting
types, and define
EnrichedPK(A) as the set of p whose enriched p-pattern in K is A.
We define (Decomposion+ Ramification) Equivalence for K and L
to mean that

EnrichedPK = EnrichedPL

.
We observe that just as elementary equivalence of adele rings
implies inertial equivalence of the fields, so does it imply
inertial-ramification equivalence.
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Elementary Equivalence and Isomorphism 2

Suppose that K and L are Decomposition-Ramification equivalent
(for example, that they have elementarily equivalent adele rings).
Let p be prime, and choose some vP in VK extending p. By
IR-equivalence there is a vP′ in VL with the same decomposition
and ramification. This does not quite determine that the
completions at vP and vP′ are the same, and to go further we now
assume that the adele rings are elementarily equivalent. The
completion at vP′ needs, beyond the inertia and ramification, the
data of which one variable monic polynomials over Q are solvable
and it is well-known that that there are finitely many such
polynomials whose solvability determine the completion uniquely.
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Elementary Equivalence and Isomorphism 3

It is an elementary ring condition on the fibre at vP which
polynomials single out the isomorphism type. By elementary
equivalence of the adeles there must be a vP′ satisfying the same
condition, and giving isomorphism of the completions. Moreover
the number of vP in K giving this completion must be the same as
the number of vP′ in L giving this condition. Thus, by a basic
theorem of Iwasawa, one has

Theorem
Elementary equivalence of adele rings implies isomorphism
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The Negative Results

It has been known for many years since Gassmann in the 1920’s
that isomorphism of AK and AL does not imply isomorphism of K
and L. By now one has found a variety of examples where the
nonisomorphism is manifested by K and L differing on some
significant number- theoretic property, e.g the cardinality of the
class number. A striking example was given by de Smit and Perlis,
with K = Q( 8

√
−33) and L = Q( 8

√
−33 · 16).

On the other hand, Cebotarev’s Theorem can easily be used to
show that elementary equivalence of the adele rings of normal K
and L implies isomorphism of K and L. Another recent positive
result is that of Linowitz, McReynolds and Miller showing that
elementary equivalence of adele rings implies isomorphism of
Brauer groups of the number fields.
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Gassmann’s Contribution

Gassmann’s achievement was to translate Decomposition
equivalence into a group-theoretic condition. It is relatively easy
(see Perlis Theorm) to show that inertial equivalence implies that
the fields have the same normal closure, and this then suggests the
notion (in which Cebotarev is hidden) of Gassmann equivalence of
finite groups.
Definition Finite groups H1 and H2 are Gassmann - equivalent
subgroups of the finite group G if they are subgroups of G and for
each conjugacy C of a single element c C ∩H1 and C ∩H2 have
the same cardinality.
Gassmann proved that K and L are inertia equivalent if and only if
Gal(N‖K) and Gal(N‖L) are Gassmann equivalent in Gal(N‖Q)
where N is the common normal closure of K and L .
This is involved in the proof of the Perlis Theorem. The basic idea
has been used in many publications on the topic. Quite a wide
variety of Gassmann situations is known.
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Adelic Elementary Equivalence

The de Smit - Perlis example shows that elementary equivalence of
adeles does not guarantee equality of class numbers. However, it
does guarantee isomorphism of Brauer groups.
Are there natural extensions of adelic equivalence, with tame
model theory, which can capture equality of class numbers ?
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Are there stronger positive results?

Let us take a closer look at the discussion of the dimension of K
over Q, and the discriminant of K.
Fix an integer n. What can one say, adelically, about the K with
dimension n , or discriminant n ?
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An example

In fact, dimension 1 can be characterized by a single sentence. Q
is of course the only example, and one readily gets a sentence of
ring theory that distinguishes
AQ from AK for any other K. That sentence just says that there is
only a single minimal idempotent which is archimedean.
We have not had time to look into more general issues of this kind.
The topic appears quite challenging.
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Bigger Issues Under Investigation

We want to understand definability and decidability in AK as K
varies. The preceding ”pattern analysis” gives a new and clearer
treatment of the decidability
of each individual AK , and uniformities in the Feferman-Vaught
analysis give us a strong hold on definability. Moreover, with he
kind assistance of Hrushovski, we are
able to get hold of exact consistency conditions for realization of
patterns in dimension n number fields, and thereby to get hold of
the basics of unltraproducts of adele rings of
adele rings AK of bounded dimension. One can show
Theorem. Fix n .The theory of all adele rings AK for K of
dimension ≤ n is decidable.
The biggest problem is to remove the restriction on dimension.
There is good reason to believe that decidability of the class of all
adele rings is equivalent to the decidability,
prime p , of the class of all finite algebraic extensions of Qp.
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A notion of pseuo-adelic ?

Techniques for generalizing Feferman-Vaught , developed by Paola
D’A and Macintyre, for solving a problem of Zilber on quotient
rings of models of arithmetic, allow one to get
at axioms for the theory of ultraproducts of adele rings, and there
is hopw of obtaining some adelic analogues of Ax’s pseuofinite field
results.
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