Solving Systems of Equations Involving the j Function

Sebastian Eterović
(joint with Sebastián Herrero (PUCV))

University of Oxford

University of Manchester, June 2019

Motivation

Find conditions that ensure that an algebraic variety $V \subseteq \mathbb{C}^{2 n}$ has a (generic) point of the form $\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right)$.

The j function

Definition

Given $\tau \in \mathbb{H}$, it defines the elliptic curve $E_{\tau}:=\mathbb{C} /\langle 1, \tau\rangle_{\mathbb{Z}}$.
E_{τ} can be realised as an algebraic curve by a polynomial of the form

$$
E_{\tau}=\left\{Y^{2}=4 X^{3}-a X-b\right\}, \text { where } a^{3}-27 b^{2} \neq 0
$$

The j-invariant of this elliptic curve is defined as:

$$
j\left(E_{\tau}\right):=1728 \frac{a^{3}}{a^{3}-27 b^{2}} .
$$

We define the j function $j: \mathbb{H} \rightarrow \mathbb{C}$ by $j(\tau)=j\left(E_{\tau}\right)$, which is a surjective holomorphic map that classifies isomorphism classes of elliptic curves.

The j function

Modular polynomials

$\mathrm{GL}_{2}(\mathbb{Q})^{+}$acts on \mathbb{H} through Möbius transformations.
$\left\{\Phi_{N}(X, Y)\right\}_{N \in \mathbb{N}^{+}} \subset \mathbb{Z}[X, Y]$ denotes the family of modular polynomials.
$\Phi_{1}(X, Y)=X-Y$ and $\Phi_{N}(X, Y)$ is symmetric for $N \geq 2$.
For every $x, y \in \mathbb{H}$ the following statements are equivalent
(M1): $\Phi_{N}(j(x), j(y))=0$,
(M2): $g x=y$ for some $g \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$such that, if \widetilde{g} is obtained by re-scaling g so that the entries of \widetilde{g} are all integers and relatively coprime, then $\operatorname{det}(\widetilde{g})=N$.
In particular, $j(z)=j(g z)$ if and only if $\widetilde{g} \in \mathrm{SL}_{2}(\mathbb{Z})$.

Some important examples

Let $E_{j}^{n}:=\left\{\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right)\right\} \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$. We will always think of varieties $V \subseteq \mathbb{C}^{2 n}$ as being defined over the ring of polynomials $\mathbb{C}\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$.

Example

Let us look at some examples in which $E_{j}^{n} \cap V=\emptyset$.
(1) Let $V \subseteq \mathbb{C}^{2}$ be the plane curve defined by the equation $\{X=r\}$, for some $r \in \mathbb{R}$. As j is not defined over the real line, then $E_{j}^{n} \cap V=\emptyset$.
(2) Choose $g \in G$, and let $N=\operatorname{det}(\widetilde{g})$. Let $V \subset \mathbb{C}^{4}$ be defined by $\left\{X_{1}=g X_{2} ; \Phi_{N}\left(Y_{1}, Y_{2}\right)+1=0\right\}$. By the equivalence of (M1) and $(\mathrm{M} 2), V$ cannot intersect E_{j}^{n}.

j-generic varieties

Definition

An algebraic variety $V \subseteq \mathbb{C}^{2 n}$ is j-generic if it is not contained in any hypersurface of one of the following forms:
(a) $X_{i}=c$ for some $c \in \mathbb{C}$.
(b) $Y_{i}=c$, for some $c \in \mathbb{C}$.
(c) $X_{i}=g X_{j}$ for some $g \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$, with $i \neq j$.
(d) $\Phi_{N}\left(Y_{i}, Y_{j}\right)=0$ for some positive integer N, with $i \neq j$.

Motivating Questions

Let $\pi: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the first n coordinates.
Conjecture (Existence of Solutions (ES))
For each variety $V \subseteq \mathbb{C}^{2 n}$ with $\pi(V)$ Zariski dense in $\mathbb{C}^{n}, E_{j}^{n} \cap V \neq \emptyset$.

Conjecture (Existence of Generic Solutions (EGS))

For each j-generic variety $V \subseteq \mathbb{C}^{2 n}$ with $\pi(V)$ Zariski dense in \mathbb{C}^{n}, and every finitely generated subfield K of \mathbb{C}, there exists $(\bar{z}, j(\bar{z})) \in E_{j}^{n} \cap V$ such that $\operatorname{tr} \cdot \operatorname{deg} \cdot K(\bar{z})=\operatorname{dim} V$.

Finding Solutions

The crucial step

Proposition

Let $U \subseteq \mathbb{C}^{n}$ be a (connected) domain such that $U \cap \mathbb{R}^{n} \neq \emptyset$, and let $p_{1}, \ldots, p_{n}: U \rightarrow \mathbb{C}$ be holomorphic functions. Then, the system of equations

$$
\begin{aligned}
j\left(z_{1}\right) & =p_{1}\left(z_{1}, \ldots, z_{n}\right) \\
& \vdots \\
j\left(z_{n}\right) & =p_{n}\left(z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

has infinitely many solutions in $U \cap \mathbb{H}^{n}$.
In fact, this proposition still hold if we replace j by any meromorphic automorphic functions.

Finding Solutions
 Proof of (ES)

Using the implicit function theorem, one can use the previous Proposition to eventually get:

Proposition

Let $W \subseteq \mathbb{C}^{2 n}$ be an algebraic variety and let $\pi: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the first n coordinates. If $\pi(W)$ is Zariski dense in \mathbb{C}^{n}, then the set $\pi\left(E_{j}^{n} \cap W\right)$ is Zariski dense in \mathbb{C}^{n}.

Special Points

$z \in \mathbb{H}$ is special if there is $g \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$such that z is the unique fixed point of g in $\mathbb{H} . \bar{z} \in \mathbb{H}^{n}$ is special if every coordinate is special.

A theorem of Schneider says: tr.deg. $(z, j(z))=0 \Longleftrightarrow z$ is special.
$\bar{z} \in \mathbb{H}^{n}$ is ordinary, if no coordinate of \bar{z} is special.
Given $x, y \in \mathbb{H}$ and $g \in G$ be such that $g x=y$, we denote by $g_{x, y}$ any element in G satisfying:

$$
\operatorname{det}\left(\widetilde{g}_{x, y}\right)=\min _{g \in G}\{\operatorname{det}(\widetilde{g}): g x=y\}
$$

Varieties of Triangular Form

Definition

An affine algebraic variety $V \subseteq \mathbb{C}^{2 n}$ of dimension $d \geq n$ will be called of triangular form if it can be defined by polynomials

$$
p_{1}, \ldots, p_{2 n-d} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]
$$

such that each p_{i} depends (in a non-trivial way) only on Y_{1}, \ldots, Y_{i} among the variables Y_{1}, \ldots, Y_{n}, so that

$$
p_{i}=p_{i}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{i}\right)
$$

and also depends (non-trivially) on some X_{k}.

The Space of Solutions

Avoiding special solutions

Proposition

Let $V \subseteq \mathbb{C}^{2 n}$ be a variety of triangular form of dimension n. Then there is a Zariski open subset $V_{0} \subseteq V$ and a finite set $S \subset \mathbb{H}$ of special points, such that for any special tuple $\bar{z} \in \mathbb{H}^{n}$ satisfying $(\bar{z}, j(\bar{z})) \in V_{0}$, the coordinates of \bar{z} are in $\mathrm{SL}_{2}(\mathbb{Z}) \cdot S$.

Corollary ((EGS) over $\overline{\mathbb{Q}}$ for planar curves)

Let $V \subseteq \mathbb{C}^{2}$ be an irreducible curve defined over $\overline{\mathbb{Q}}$. Assume that V is not a vertical line nor a horizontal line. Then V has infinitely many points of the form $(z, j(z))$ that are generic over $\overline{\mathbb{Q}}$.

The Space of Solutions

New solutions in the geodesic closure

Using known results on isogeny estimates and gonality of modular curves, we can obtain:

Proposition

Let $V \subseteq \mathbb{C}^{2 n}$ be a variety of triangular form of dimension n. There exists a Zariski open subset V_{0} of V such that for every $\bar{z} \in \mathbb{H}^{n}$ satisfying $(\bar{z}, j(\bar{z})) \in V_{0}$, there is a positive integer M such that for every $g_{1}, \ldots, g_{n} \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$satisfying

$$
\left(g_{1} z_{1}, \ldots, g_{n} z_{n}, j\left(g_{1} z_{1}\right), \ldots, j\left(g_{n} z_{n}\right)\right) \in V_{0}
$$

we have $\operatorname{det}\left(\widetilde{g}_{z_{\ell}, g_{\ell} z_{\ell}}\right)<M$ for every $\ell \in\{1, \ldots, n\}$.

Generic Solutions

Given $A \subseteq \mathbb{H}$, let $\operatorname{dim}^{g}(A)$ denote the number of distinct $\mathrm{GL}_{2}(\mathbb{Q})^{+}$-orbits generated by the elements of A.

Conjecture (Modular Schanuel Conjecture (MSC))

If $z_{1}, \ldots, z_{n} \in \mathbb{H}$ are non-special points, then:

$$
\operatorname{tr} . \operatorname{deg} \cdot \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq \operatorname{dim}^{g}\left(z_{1}, \ldots, z_{n}\right)
$$

The results that follow, which speak of the existence of generic solutions, will be conditional upon this conjecture.

Generic Solutions

Counting solutions over finitely generated fields

Lemma

Let $V \subseteq \mathbb{C}^{2 n}$ be a variety of simple form of dimension n, let K be a finitely generated subfield of \mathbb{C}, and let B the set of coordinates of ordinary points $\bar{z} \in \mathbb{H}^{n} \cap \bar{K}^{n}$ such that $(\bar{z}, j(\bar{z})) \in V$. Then MSC implies that $\operatorname{dim}^{g}(B)$ is finite.

Corollary (MSC implies (EGS) for plane curves)

Let $p(X, Y) \in \mathbb{C}[X, Y]$ be irreducible and depending on both X and Y.
Then MSC implies that for every finitely generated subfield $K \subset \mathbb{C}$, there is $z \in \mathbb{H}$ such that $p(z, j(z))=0$ and tr.deg. $\cdot(z, j(z))=1$.

Generic Solutions
 j-finite fields

Definition

A subfield $K \subset \mathbb{C}$ will be called a j-finite field if there exist $\tau_{1}, \ldots, \tau_{m} \in \mathbb{H}$ (m is allowed to be zero) satisfying the following conditions:
(1) $\bar{K} \subseteq \overline{\mathbb{Q}}\left(\tau_{1}, \ldots, \tau_{m}, j\left(\tau_{1}\right), \ldots, j\left(\tau_{m}\right)\right)$, and
(2) Equality for MSC: $\operatorname{tr} \cdot \operatorname{deg} \cdot \mathbb{Q}(\bar{\tau}, j(\bar{\tau}))=\operatorname{dim}^{g}(\bar{\tau})$.

Example

(1) Finitely generated subfields of $\overline{\mathbb{Q}}$.
(2) Set $M_{0}=\overline{\mathbb{Q}}$. For $n \geq 1$ define inductively

Finitely generated subfields of M are j-finite.

Generic Solutions

First main result

Theorem

Let K be a j-finite field, and let $V \subseteq \mathbb{C}^{2 n}$ be a j-generic variety of triangular form defined over \bar{K}. Then MSC implies that V has a point of the form $(\bar{z}, j(\bar{z}))$ which is generic over \bar{K}.

Remark

Most finitely generated fields are not j-finite.

Generic Solutions

Fields finitely generated by j

Let $C \subset \mathbb{C}$ be the closure of \emptyset under j-derivations.

Definition

We will say that a subfield $K \subset \mathbb{C}$ is finitely generated by j if there exist $\tau_{1}, \ldots, \tau_{k} \in \mathbb{H} \cap C$ and $t_{1}, \ldots, t_{m} \in \mathbb{H} \backslash C$ such that:
(1) $\bar{K} \subseteq \overline{\mathbb{Q}}(\bar{\tau}, \bar{t}, j(\bar{\tau}), j(\bar{t}))$,
(2) Equality for MSC: tr.deg. $\cdot \mathbb{Q}(\bar{\tau}, j(\bar{\tau}))=\operatorname{dim}^{g}(\bar{\tau})$,
(3) Equality for $A x$-Schanuel + something else:

$$
\operatorname{tr} \cdot \operatorname{deg} \cdot C(\bar{t}, j(\bar{t}))=\operatorname{tr} \cdot \operatorname{deg} \cdot \mathbb{Q}(\bar{\tau}, j(\bar{\tau}))(\bar{t}, j(\bar{t}))=\operatorname{dim}^{g}(\bar{t} / C)+\operatorname{dim}^{j}(\bar{t} / C)
$$

Generic Solutions

Second main result

Theorem

Let $V \subseteq \mathbb{C}^{2 n}$ be a j-generic variety of triangular form defined over a field K which is finitely generated by j. Then MSC implies that there exists $(\bar{z}, j(\bar{z})) \in V \cap E_{j}^{n}$ which is generic over K.

