Solving Systems of Equations Involving the j Function

Sebastian Eterović (joint with Sebastián Herrero (PUCV))

University of Oxford

University of Manchester, June 2019

Find conditions that ensure that an algebraic variety $V \subseteq \mathbb{C}^{2n}$ has a (generic) point of the form $(z_1, \ldots, z_n, j(z_1), \ldots, j(z_n))$.

Given $\tau \in \mathbb{H}$, it defines the elliptic curve $E_{\tau} := \mathbb{C}/\langle 1, \tau \rangle_{\mathbb{Z}}$.

 \textit{E}_{τ} can be realised as an algebraic curve by a polynomial of the form

$$\mathcal{E}_{ au}=\left\{ Y^2=4X^3-aX-b
ight\} ,\,\, ext{where}\,\,a^3-27b^2
eq0.$$

The *j*-invariant of this elliptic curve is defined as:

$$j(E_{\tau}) := 1728 \frac{a^3}{a^3 - 27b^2}.$$

We define the *j* function $j : \mathbb{H} \to \mathbb{C}$ by $j(\tau) = j(E_{\tau})$, which is a surjective holomorphic map that classifies isomorphism classes of elliptic curves.

 $\operatorname{GL}_2({\mathbb Q})^+$ acts on ${\mathbb H}$ through Möbius transformations.

 $\{\Phi_N(X, Y)\}_{N \in \mathbb{N}^+} \subset \mathbb{Z}[X, Y]$ denotes the family of *modular polynomials*.

 $\Phi_1(X, Y) = X - Y$ and $\Phi_N(X, Y)$ is symmetric for $N \ge 2$.

For every $x, y \in \mathbb{H}$ the following statements are equivalent (M1): $\Phi_N(j(x), j(y)) = 0$,

(M2): gx = y for some $g \in GL_2(\mathbb{Q})^+$ such that, if \tilde{g} is obtained by re-scaling g so that the entries of \tilde{g} are all integers and relatively coprime, then det $(\tilde{g}) = N$.

In particular, j(z) = j(gz) if and only if $\widetilde{g} \in \mathrm{SL}_2(\mathbb{Z})$.

イロト イポト イヨト イヨト 二日

Let $E_j^n := \{(z_1, \ldots, z_n, j(z_1), \ldots, j(z_n))\} \subseteq \mathbb{H}^n \times \mathbb{C}^n$. We will always think of varieties $V \subseteq \mathbb{C}^{2n}$ as being defined over the ring of polynomials $\mathbb{C}[X_1, \ldots, X_n, Y_1, \ldots, Y_n]$.

Example

Let us look at some examples in which $E_i^n \cap V = \emptyset$.

- Let V ⊆ C² be the plane curve defined by the equation {X = r}, for some r ∈ ℝ. As j is not defined over the real line, then E_iⁿ ∩ V = Ø.
- Choose g ∈ G, and let N = det(ğ). Let V ⊂ C⁴ be defined by {X₁ = gX₂; Φ_N(Y₁, Y₂) + 1 = 0}. By the equivalence of (M1) and (M2), V cannot intersect E_iⁿ.

(日) (周) (日) (日)

Definition

An algebraic variety $V \subseteq \mathbb{C}^{2n}$ is *j*-generic if it is **not** contained in any hypersurface of one of the following forms:

- (a) $X_i = c$ for some $c \in \mathbb{C}$.
- (b) $Y_i = c$, for some $c \in \mathbb{C}$.
- (c) $X_i = gX_j$ for some $g \in GL_2(\mathbb{Q})^+$, with $i \neq j$.
- (d) $\Phi_N(Y_i, Y_j) = 0$ for some positive integer N, with $i \neq j$.

Let $\pi : \mathbb{C}^{2n} \to \mathbb{C}^n$ be the projection onto the first *n* coordinates.

Conjecture (Existence of Solutions (ES))

For each variety $V \subseteq \mathbb{C}^{2n}$ with $\pi(V)$ Zariski dense in \mathbb{C}^n , $E_i^n \cap V \neq \emptyset$.

Conjecture (Existence of Generic Solutions (EGS))

For each *j*-generic variety $V \subseteq \mathbb{C}^{2n}$ with $\pi(V)$ Zariski dense in \mathbb{C}^n , and every finitely generated subfield K of \mathbb{C} , there exists $(\overline{z}, j(\overline{z})) \in E_j^n \cap V$ such that $\operatorname{tr.deg.}_{K}(\overline{z}) = \dim V$.

Proposition

Let $U \subseteq \mathbb{C}^n$ be a (connected) domain such that $U \cap \mathbb{R}^n \neq \emptyset$, and let $p_1, \ldots, p_n : U \to \mathbb{C}$ be holomorphic functions. Then, the system of equations

$$j(z_1) = p_1(z_1,...,z_n)$$

$$\vdots$$

$$j(z_n) = p_n(z_1,...,z_n)$$

has infinitely many solutions in $U \cap \mathbb{H}^n$.

In fact, this proposition still hold if we replace j by any meromorphic automorphic functions.

Using the implicit function theorem, one can use the previous Proposition to eventually get:

Proposition

Let $W \subseteq \mathbb{C}^{2n}$ be an algebraic variety and let $\pi : \mathbb{C}^{2n} \to \mathbb{C}^n$ be the projection onto the first n coordinates. If $\pi(W)$ is Zariski dense in \mathbb{C}^n , then the set $\pi\left(E_j^n \cap W\right)$ is Zariski dense in \mathbb{C}^n .

 $z \in \mathbb{H}$ is special if there is $g \in \mathrm{GL}_2(\mathbb{Q})^+$ such that z is the unique fixed point of g in \mathbb{H} . $\overline{z} \in \mathbb{H}^n$ is special if every coordinate is special.

A theorem of Schneider says: $\operatorname{tr.deg.}_{\mathbb{Q}}(z, j(z)) = 0 \iff z$ is special.

 $\overline{z} \in \mathbb{H}^n$ is *ordinary*, if no coordinate of \overline{z} is special.

Given $x, y \in \mathbb{H}$ and $g \in G$ be such that gx = y, we denote by $g_{x,y}$ any element in G satisfying:

$$\det\left(\widetilde{g}_{x,y}\right) = \min_{g \in G} \left\{ \det\left(\widetilde{g}\right) : gx = y \right\}.$$

Definition

An affine algebraic variety $V \subseteq \mathbb{C}^{2n}$ of dimension $d \ge n$ will be called *of triangular form* if it can be defined by polynomials

$$p_1,\ldots,p_{2n-d}\in\mathbb{C}[X_1,\ldots,X_n,Y_1,\ldots,Y_n]$$

such that each p_i depends (in a non-trivial way) only on Y_1, \ldots, Y_i among the variables Y_1, \ldots, Y_n , so that

$$p_i = p_i(X_1,\ldots,X_n,Y_1,\ldots,Y_i),$$

and also depends (non-trivially) on some X_k .

Proposition

Let $V \subseteq \mathbb{C}^{2n}$ be a variety of triangular form of dimension n. Then there is a Zariski open subset $V_0 \subseteq V$ and a finite set $S \subset \mathbb{H}$ of special points, such that for any special tuple $\overline{z} \in \mathbb{H}^n$ satisfying $(\overline{z}, j(\overline{z})) \in V_0$, the coordinates of \overline{z} are in $\mathrm{SL}_2(\mathbb{Z}) \cdot S$.

Corollary ((EGS) over $\overline{\mathbb{Q}}$ for planar curves)

Let $V \subseteq \mathbb{C}^2$ be an irreducible curve defined over $\overline{\mathbb{Q}}$. Assume that V is not a vertical line nor a horizontal line. Then V has infinitely many points of the form (z, j(z)) that are generic over $\overline{\mathbb{Q}}$.

イロト イポト イヨト イヨト

Using known results on isogeny estimates and gonality of modular curves, we can obtain:

Proposition

Let $V \subseteq \mathbb{C}^{2n}$ be a variety of triangular form of dimension n. There exists a Zariski open subset V_0 of V such that for every $\overline{z} \in \mathbb{H}^n$ satisfying $(\overline{z}, j(\overline{z})) \in V_0$, there is a positive integer M such that for every $g_1, \ldots, g_n \in \mathrm{GL}_2(\mathbb{Q})^+$ satisfying

$$(g_1z_1,\ldots,g_nz_n,j(g_1z_1),\ldots,j(g_nz_n))\in V_0$$

we have $\det\left(\widetilde{g}_{z_{\ell},g_{\ell}z_{\ell}}\right) < M$ for every $\ell \in \{1,\ldots,n\}$.

Given $A \subseteq \mathbb{H}$, let dim^g(A) denote the number of distinct $\mathrm{GL}_2(\mathbb{Q})^+$ -orbits generated by the elements of A.

Conjecture (Modular Schanuel Conjecture (MSC))

If $z_1, \ldots, z_n \in \mathbb{H}$ are non-special points, then:

 $\operatorname{tr.deg.}_{\mathbb{Q}}(z_1,\ldots,z_n,j(z_1),\ldots,j(z_n)) \geq \dim^g(z_1,\ldots,z_n).$

The results that follow, which speak of the existence of generic solutions, will be conditional upon this conjecture.

Lemma

Let $V \subseteq \mathbb{C}^{2n}$ be a variety of simple form of dimension n, let K be a finitely generated subfield of \mathbb{C} , and let B the set of coordinates of ordinary points $\overline{z} \in \mathbb{H}^n \cap \overline{K}^n$ such that $(\overline{z}, j(\overline{z})) \in V$. Then MSC implies that dim^g(B) is finite.

Corollary (MSC implies (EGS) for plane curves)

Let $p(X, Y) \in \mathbb{C}[X, Y]$ be irreducible and depending on both X and Y. Then MSC implies that for every finitely generated subfield $K \subset \mathbb{C}$, there is $z \in \mathbb{H}$ such that p(z, j(z)) = 0 and $\operatorname{tr.deg.}_{\overline{K}}(z, j(z)) = 1$.

Image: A matrix

Definition

A subfield $K \subset \mathbb{C}$ will be called a *j*-finite field if there exist $\tau_1, \ldots, \tau_m \in \mathbb{H}$ (*m* is allowed to be zero) satisfying the following conditions:

•
$$\overline{K} \subseteq \overline{\mathbb{Q}(\tau_1, \ldots, \tau_m, j(\tau_1), \ldots, j(\tau_m))}$$
, and

2 Equality for MSC: tr.deg._Q(
$$\overline{\tau}$$
, $j(\overline{\tau})$) = dim^g($\overline{\tau}$).

Example

• Finitely generated subfields of $\overline{\mathbb{Q}}$.

② Set $M_0 = \overline{\mathbb{Q}}$. For $n \ge 1$ define inductively $M_n := \overline{M_{n-1}(j(\tau) : \tau \in M_{n-1} \cap \mathbb{H})}$. Finally, let $M = \bigcup_{n \in \mathbb{N}} M_n$. Finitely generated subfields of M are *j*-finite.

First main result

Theorem

Let K be a j-finite field, and let $V \subseteq \mathbb{C}^{2n}$ be a j-generic variety of triangular form defined over \overline{K} . Then MSC implies that V has a point of the form $(\overline{z}, j(\overline{z}))$ which is generic over \overline{K} .

Remark

Most finitely generated fields are not *j*-finite.

Let $C \subset \mathbb{C}$ be the closure of \emptyset under *j*-derivations.

Definition

We will say that a subfield $K \subset \mathbb{C}$ is *finitely generated by j* if there exist $\tau_1, \ldots, \tau_k \in \mathbb{H} \cap C$ and $t_1, \ldots, t_m \in \mathbb{H} \setminus C$ such that:

- $\ \mathbf{\overline{K}} \subseteq \overline{\mathbb{Q}\left(\overline{\tau}, \overline{t}, j\left(\overline{\tau}\right), j\left(\overline{t}\right)\right)},$
- **2** Equality for MSC: tr.deg._Q $(\overline{\tau}, j(\overline{\tau})) = \dim^{g} (\overline{\tau})$,
- Sequality for Ax-Schanuel + something else:

 $\operatorname{tr.deg.}_{C}(\overline{t}, j(\overline{t})) = \operatorname{tr.deg.}_{\mathbb{Q}(\overline{\tau}, j(\overline{\tau}))}(\overline{t}, j(\overline{t})) = \dim^{g}(\overline{t}/C) + \dim^{j}(\overline{t}/C)$

Second main result

Theorem

Let $V \subseteq \mathbb{C}^{2n}$ be a *j*-generic variety of triangular form defined over a field K which is finitely generated by *j*. Then MSC implies that there exists $(\overline{z}, j(\overline{z})) \in V \cap E_i^n$ which is generic over K.