Tighter risk certificates for (probabilistic) neural networks

Omar Rivasplata o.rivasplata@cs.ucl.ac.uk

01 July 2020

UCL Centre for AI

The crew

- María Pérez-Ortiz (UCL)
- Yours truly (UCL / DeepMind)
- Csaba Szepesvári (DeepMind)
- John Shawe-Taylor (UCL)

Overview of this talk

- ▷ Motivation
 - Classic NNs: weights
 - Probabilistic NNs: random weights
 - Highlights of experiments
 - Conclusions

What motivated this project

Blundell et al. (2015)

Weight Uncertainty in Neural Networks

Charles Blundell Julien Cornebise Koray Kavukcuoglu Daan Wierstra Google DeepMind CBLUNDELL @ GOOGLE.COM JUCOR @ GOOGLE.COM KORAYK @ GOOGLE.COM WIERSTRA @ GOOGLE.COM

- Variational Bayes : $\min_{\theta} KL(q_{\theta}(w) || p(w|D))$
- Objective : $f(\theta) = \mathbb{E}_{q_{\theta}(w)}[\log(1/p(D|w))] + KL(q_{\theta}(w)||p(w))$ (ELBO)
- Algorithm : 'Bayes by Backprop'

Thiemann et al. (2017)

A Strongly Quasiconvex PAC-Bayesian Bound	
Niklas Thiemann Department of Computer Science, University of Copenhagen	NIKLASTHIEMANN@GMAIL.COM
Christian Igel Department of Computer Science, University of Copenhagen	IGEL@DI.KU.DK
Olivier Wintenberger LSTA, Sorbonne Universités, UPMC Université Paris 06	OLIVIER.WINTENBERGER@UPMC.FR
Yevgeny Seldin Department of Computer Science, University of Copenhagen	SELDIN@DI.KU.DK

• PAC-Bayes-lambda :

$$\mathbb{E}_{q_{\theta}(w)}[L(w)] \leq \frac{\mathbb{E}_{q_{\theta}(w)}[\hat{L}_{n}(w,D)]}{1-\lambda/2} + \frac{KL(q_{\theta}(w)\|p(w)) + C_{n}}{n\lambda(1-\lambda/2)} \qquad \lambda \in (0,2)$$

• Algorithm : $f(\theta, \lambda) = RHS$, alternated optimization over θ and λ

Dziugaite & Roy (2017)

Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data

> Gintare Karolina Dziugaite Department of Engineering University of Cambridge

Daniel M. Roy Department of Statistical Sciences University of Toronto

- Optimized a classic PAC-Bayes bound
- Experiments on 'binary MNIST' ([0-4] vs. [5-9])
- Demonstrated non-vacuous risk bound values

Classic Neural Nets

What to achieve from data?

WIOUVation
Classic weights
Random weights
Experiments
Conclusions

Mativation

Use the available data to:

(1) learn a weight vector \hat{w} (2) certify \hat{w} 's performance

- split the data, part for (1) and part for (2)?
- the whole of the data for (1) and (2) simultaneously?
 > self-certified learning!

Learning framework

data set: $D = (Z_1, ..., Z_n) \in \mathbb{Z}^n$ (e.g. training set) a finite sequence of input-label examples $Z_i = (X_i, Y_i)$.

A measure of performance

Motivation

Classic weights

Random weights

Experiments

Conclusions

Empirical risk: $\hat{L}_n(w) = \hat{L}_n(w, D) = \frac{1}{n} \sum_{i=1}^n \ell(w, Z_i)$ (in-sample error)

Tied to the choice of a loss function $\ell(w, z)$

- the square loss (regression)
- the 0-1 loss (classification)
- the cross-entropy loss (NN classification)
 surrogate loss, nice properties

Empirical Risk Minimization

Generalization

Motivation	:
	•
Classic weights	:
	•
Random weights	•
	- •
Experiments	
	•
Conclusions	•
	- :
	•
	•

If learned weight \hat{w} does well on the train set examples...

...will it still do well on unseen examples?

PAC Learning

Motivation
Classic weights
Random weights
Experiments
Conclusions

data set: $D = (Z_1, ..., Z_n) \in \mathbb{Z}^n$ a finite sequence of input-label examples $Z_i = (X_i, Y_i)$.

Assumptions:

- A data-generating distribution $P \in M_1(\mathbb{Z})$.
- *P* is unknown, only the training set is given.
- The input-label examples are *i.i.d.* $\sim P$.

Population risk: (out-of-sample)

$$L(w) = \mathbb{E}[\ell(w, Z)] = \int_{\mathcal{Z}} \ell(w, z) \, dP(z)$$

Certifying performance: test set error

Motivation	
Classic weights Random weights Experiments	Test set error: $\hat{L}_{tst}(\hat{w}) = \frac{1}{n_tst} \sum_{Z_i \in D_{tst}} \ell(\hat{w}, Z_i)$
Conclusions	• \hat{w} obtained from the training set
	test set not used for training
	▷ $\hat{L}_{tst}(\hat{w})$ serves as estimate of $L(\hat{w})$
	Note: $L(\hat{w})$ remains unknown!

Certifying performance: confidence bound

Motivation

Classic	weights

Random weights

Experiments

Conclusions

Risk upper bound: For any given $\delta \in (0, 1)$, with probability at least $1 - \delta$ over random datasets of size *n*, simultaneous for all *w*:

 $L(w) \le \hat{L}_n(w) + \epsilon(n,\delta)$

For $\hat{w} = \mathsf{ALG}(\text{train_set})$ this gives: $L(\hat{w}) \leq \hat{L}_{\text{tst}}(\hat{w}) + \epsilon(n_\text{tst}, \delta)$

Recommendable practice:

 report confidence bound together with your test set error estimate

Self-certified learning?

Motivation
Classic weights
Random weights
Experiments

Conclusions

Risk upper bound: For any given $\delta \in (0, 1)$, with probability at least $1 - \delta$ over random datasets of size *n*, simultaneous for all *w*:

 $L(w) \le \hat{L}_n(w) + \epsilon(n,\delta)$

Alternative practice: Find \hat{w} by minimizing the risk bound

- A form of regularized ERM
- ▶ the learned \hat{w} comes with its own risk certificate
- best if the risk bound is non-vacuous, ideally tight!
- may avoid the need of data-splitting
- may lead to self-certified learning!

Probabilistic Neural Nets

O. Rivasplata

Slide 18 / 40

Randomized weights

Motivation
Classic weights
Random weights
Experiments

Conclusions

Based on data *D*, learn a distribution over weights:

 $Q_D \in M_1(\mathcal{W}), \qquad Q_D = \mathsf{ALG}(\text{train_set}).$

Predictions:

- draw $w \sim Q_D$ and predict with the chosen w.
- each prediction with a fresh random draw.

The risk measures L(w) and $\hat{L}_n(w)$ are extended to Q by averaging:

 $Q[L] \equiv \int_{\mathcal{W}} L(w) \, dQ(w) = \mathbb{E}_{w \sim Q}[L(w)]$ $Q[\hat{L}_n] \equiv \int_{\mathcal{W}} \hat{L}_n(w) \, dQ(w) = \mathbb{E}_{w \sim Q}[\hat{L}_n(w)]$

Two usual PAC-Bayes bounds

'prior'

Motivation Classic weights Random weights Experiments

Conclusions

For any sample size *n*, for any confidence parameter $\delta \in (0, 1)$, with probability at least $1 - \delta$ over random samples (of size *n*) simultaneously for all distributions *Q*

Fix a distribution Q_0

$$Q[L] \le Q[\hat{L}_n] + \sqrt{\frac{KL(Q||Q_0) + \log(\frac{2\sqrt{n}}{\delta})}{2n}}$$

$$\widehat{kl(Q[\hat{L}_n] \| Q[L])} \le \frac{KL(Q \| Q_0) + \log(\frac{2\sqrt{n}}{\delta})}{n}$$
(PB-kl)

(PB-classic)

'posterior'

Fix a distribution Q_0 . For any size *n*, for any confidence $\delta \in (0, 1)$, with probability at least $1 - \delta$ over random samples (of size *n*)

PB-quad: simultaneously for all distributions Q

$$Q[L] \le \left(\sqrt{Q[\hat{L}_n]} + \frac{KL(Q||Q^0) + \log(\frac{2\sqrt{n}}{\delta})}{2n} + \sqrt{\frac{KL(Q||Q^0) + \log(\frac{2\sqrt{n}}{\delta})}{2n}}\right)^2$$

PB-lambda: simultaneously for all distributions Q and $\lambda \in (0, 2)$

$$Q[L] \leq \frac{Q[\hat{L}_n]}{1 - \lambda/2} + \frac{KL(Q||Q^0) + \log(\frac{2\sqrt{n}}{\delta})}{n\lambda(1 - \lambda/2)}$$

Cornerstone: change of measure inequality

Motivation

Classic weights

Random weights

Experiments

Conclusions

Donsker & Varadhan (1975), Csiszár (1975)

 $KL(Q||Q_0) = \sup_{f:\mathcal{W}\to\mathbb{R}} \left\{ Q[f] - \log Q_0[e^f] \right\}$

- Let $f : \mathbb{Z}^n \times \mathcal{W} \to \mathbb{R}$. For a given Q_0 : $Q[f(D, w)] \le KL(Q||Q_0) + \log Q_0[e^{f(D,w)}].$
 - Apply Markov's inequality to $Q_0[e^{f(D,w)}]$.

■ w.p. ≥ 1 − δ over the random draw of $D \sim P^n$, simultaneously for all distributions Q: $Q[f(D,w)] \leq KL(Q||Q_0) + \log P^n[Q_0[e^{f(D,w)}]] + \log(1/\delta).$

• Use with suitable f, upper-bound the exponential moment $P^n[Q_0[e^{f(D,w)}]]$.

Using a PAC-Bayes bound

 Motivation

 Classic weights

 Random weights

 Experiments

 Conclusions

Use your favourite ALG to find $Q_D = ALG(train_set)$, and plug Q_D into the PAC-Bayes bound to certify its risk:

$$Q_D[L] \le Q_D[\hat{L}_n] + \sqrt{\frac{KL(Q_D || Q_0) + \log(\frac{2\sqrt{n}}{\delta})}{2n}}$$

Use the PAC-Bayes bound itself as a training objective:

$$Q_D \in \underset{Q}{\operatorname{arg\,min}} Q[\hat{L}_n] + \sqrt{\frac{KL(Q||Q_0) + \log(\frac{2\sqrt{n}}{\delta})}{2n}}$$

Note: both uses illustrated here with PB-classic, but the same can be done with PB-quad or PB-lambda (or any other)

Training objectives

$$f_{\text{classic}}(Q) = Q[\hat{L}_n^{\text{ce}}] + \sqrt{\frac{KL(Q||Q^0) + \log(\frac{2\sqrt{n}}{\delta})}{2n}}$$

$$f_{\text{quad}}(Q) = \left(\sqrt{Q[\hat{L}_n^{\text{ce}}] + \frac{KL(Q||Q^0) + \log(\frac{2\sqrt{n}}{\delta})}{2n}} + \sqrt{\frac{KL(Q||Q^0) + \log(\frac{2\sqrt{n}}{\delta})}{2n}}\right)^2$$
$$f_{\text{lambda}}(Q, \lambda) = \frac{Q[\hat{L}_n^{\text{ce}}]}{1 - \lambda/2} + \frac{KL(Q||Q^0) + \log(\frac{2\sqrt{n}}{\delta})}{n\lambda(1 - \lambda/2)}$$

Experiments

PAC-Bayes with Backprop

Motivation Classic weights

Random weights

Experiments

Conclusions

Algor	thm 1 PAC-Bayes with Backprop (PBB)
Input	
μ_0	Prior center parameters (random init.)
$ ho_0$	Prior scale hyper-parameter
Z	raining examples (inputs + labels)
δ	$\in (0,1)$ \triangleright Confidence parameter
α	$\in (0,1), T$ \triangleright Learning rate; # of iterations
Outpu	t: Optimal μ, ρ \triangleright Centers, scales
1: p i	ocedure PB_QUAD_GAUSS
2:	$\mu \leftarrow \mu_0$ > Set posterior centers to init. of prior
3:	$\rho \leftarrow \rho_0$ \triangleright Set posterior scale to ρ_0 hyperparam
4:	for $t \leftarrow 1 : T$ do \triangleright Run SGD for T iterations
5:	Sample $V \sim \mathcal{N}(0, I)$
6:	$W = \mu + \log(1 + \exp(\rho)) \odot V$
7:	$f(\mu, \rho) = f_{\text{quad}}(Z_{1:n}, W, \mu, \rho, \mu_0, \rho_0, \delta)$
8:	SGD gradient step using $\begin{bmatrix} \nabla_{\mu} f \\ \nabla_{\rho} f \end{bmatrix}$
9:	return μ, ρ

Prior mean at the random initialization

Motivation Classic weights Random weights Experiments

Conclusions

(PAC-Bayes) prior $Q_0 = \text{Gauss}(w_0, \Sigma_0)$ $\Sigma_0 = \lambda_0 I$ (λ_0 is hyperparameter)

- w_0 = randomly initialized weights
- (PAC-Bayes) posterior $Q_D = \text{Gauss}(w, \Sigma)$ w, Σ learned by PAC-Bayes with Backprop

Experiments (ours) on MNIST

f_{quad}

Test acc. = 86.36 Test error = 0.1364 RUB value = 0.24107 f_{classic} (cf. D & R (2017))

Test acc. = 84.22Test error = 0.1578RUB value = 0.24375

Prior mean learned from data

Motivation Classic weights Random weights Experiments Conclusions

(PAC-Bayes) prior $Q_0 = \text{Gauss}(w_0, \Sigma_0)$ $\Sigma_0 = \lambda_0 I$ (λ_0 is hyperparameter)

- $w_0 = \text{ERM}$ on a split of the data
- (PAC-Bayes) posterior $Q_D = \text{Gauss}(w, \Sigma)$ w, Σ learned by PAC-Bayes with Backprop

Experiments (ours) on MNIST

f_{quad}

Test acc. = 97.89 Test error = 0.0211 RUB value = 0.04588 f_{classic} (cf. D & R (2018))

Test acc. = 97.21Test error = 0.0279RUB value = 0.06029

Closing remarks

O. Rivasplata

Bayesian Learning

Motivation
Classic weights
Random weights

Experiments

Conclusions

posterior Q_D , density $q_D(w)$

prior Q_0 , density $q_0(w)$

 $q_D(w) = \mathcal{L}(D|w) \; q_0(w) \; / C$

Bayes rule update on prior to form posterior
 ▷ likelihood factor L(D|w)

principled approach, e.g. MAP learning

- derive learning algorithms
 - balance 'fit to data' and 'fit to prior'

Generalized Bayes

Motivation Classic weights Random weights Experiments

Conclusions

A bit more general: "temperature" $\lambda > 0$

 $q_D(w) = \mathcal{L}(D|w)^{\lambda} q_0(w) / C$

Even more general: data-dependent factor \mathcal{F}

 $q_D(w) = \mathcal{F}(D, w) q_0(w)$

P.G. Bissiri, C.C. Holmes, S.G. Walker (2016)
 A general framework for updating belief distributions

PAC-Bayes

Motivation
Classic weights
Random weights
Experiments

Conclusions

 $q_D(w)$ (no update factor) $q_0(w)$

more general than generalized Bayes

increased flexibility in choice of distributions

- balance $q_D[\hat{L}_n]$ and $KL(q_D||q_0)$
 - 'fit to data' versus 'fit to prior'

Future

Motivation
Classic weights
Random weights
Experiments
Conclusions

- choice of distributions
- understand properties
- scaling to larger problems?
- architecture vs. PAC-Bayes bounds?
- problem-specific PAC-Bayes bounds?

Wouvation

	Class	sic w	veights
--	-------	-------	---------

Random weights

Experiments

Conclusions

Thank you!

Motivation	

C11 ·	· · · · ·
1 20010	Weighte
Classic	weights
	U

Random weights

Experiments

Conclusions

Wait...

O. Rivasplata

some PAC-Bayes history

- J. Shawe-Taylor & R.C. Williamson (1997)
 A PAC analysis of a Bayesian estimator
- D.A. McAllester (1998)Some PAC-Bayesian Theorems
- D.A. McAllester (1999)
 PAC-Bayesian Model Averaging
- J. Langford & M. Seeger (2001)
 Bounds for Averaging Classifiers
- J. Langford & R. Caruana (2002) (Not) Bounding the True Error
- M. Seeger (2002)
 PAC-Bayesian generalization bounds for gaussian processes

some more PAC-Bayes history

- J. Langford & J. Shawe-Taylor (2002)
 PAC-Bayes & Margins
- D.A. McAllester (2003)
 Simplified PAC-Bayesian Margin Bounds
- A. Maurer (2004)A note on the PAC Bayesian theorem
- J.-Y. Audibert (2004)
 A better variance control for PAC-Bayesian classification
- O. Catoni (2007)
 PAC-Bayesian supervised classification: The thermodynamics of statistical learning
- P. Germain, A. Lacasse, F. Laviolette, M. Marchand (2009)
 PAC-Bayesian learning of linear classifiers

- J. Keshet, D.A. McAllester, T. Hazan (2011)
 PAC-Bayesian approach for minimization of phoneme error rate
- A. Noy & K. Crammer (2014)
 Robust forward algorithms via PAC-Bayes and Laplace distributions
- P. Germain, F. Bach, A. Lacoste, S. Lacoste-Julien (2016)
 PAC-Bayesian theory meets Bayesian inference
- N. Thiemann, C. Igel, O. Wintenberger, Y. Seldin (2017) A Strongly Quasiconvex PAC-Bayesian Bound
- G.K Dziugaite & D. Roy (2017)
 Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data
- G.K Dziugaite & D. Roy (2018)
 Data-dependent PAC-Bayes priors via differential privacy

- O. Rivasplata, E. Parrado-Hernández, J. Shawe-Taylor,
 S. Sun, Cs. Szepevári (2018)
 PAC-Bayes bounds for stable algorithms with instance-dependent priors
- P. Alquier & B. Guedj (2018)
 Simpler PAC-Bayesian bounds for hostile data
- S.S. Lorenzen, C. Igel, Y. Seldin (2019)
 On PAC-Bayesian Bounds for Random Forests
- G. Letarte, P. Germain, B. Guedj, F. Laviolette (2019)
 Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
- O. Rivasplata, V.M. Tankasali, Cs. Szepevári (2019)
 PAC-Bayes with Backprop (in arXiv)

wouvation

	Cl	assic	wei	ght
--	----	-------	-----	-----

Random weights

Experiments

Conclusions

Thank you again!