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⊲Motivation

⊲ Classic NNs: weights

⊲ Probabilistic NNs: random weights

⊲ Highlights of experiments

⊲ Conclusions



What motivated this project
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Blundell et al. (2015)
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• Variational Bayes : minθ KL(qθ(w)‖p(w|D))

• Objective : f (θ) = Eqθ(w)[log(1/p(D|w))] + KL(qθ(w)‖p(w)) (ELBO)

• Algorithm : ‘Bayes by Backprop’



Thiemann et al. (2017)
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• PAC-Bayes-lambda :

Eqθ(w)[L(w)] ≤
Eqθ(w)[L̂n(w,D)]

1 − λ/2
+

KL(qθ(w)‖p(w)) +Cn

nλ(1 − λ/2)
λ ∈ (0, 2)

• Algorithm : f (θ, λ) = RHS, alternated optimization over θ and λ



Dziugaite & Roy (2017)
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• Optimized a classic PAC-Bayes bound

• Experiments on ‘binary MNIST’ ([0-4] vs. [5-9])

• Demonstrated non-vacuous risk bound values



Classic Neural Nets
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Use the available data to:

(1) learn a weight vector ŵ

(2) certify ŵ’s performance

• split the data, part for (1) and part for (2)?

• the whole of the data for (1) and (2) simultaneously?

⊲ self-certified learning!
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✞
✝

☎
✆ALG : Zn →W

✞
✝

☎
✆W→ H

• Z = X × Y
X = set of inputs

Y = set of labels

• W ⊂ Rp

weight space

ŵ = ALG(data)

• H function class

predictors

hŵ : X→ Y

data set: D = (Z1, . . . ,Zn) ∈ Zn (e.g. training set)

a finite sequence of input-label examples Zi = (Xi,Yi).
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Empirical risk: L̂n(w) = L̂n(w,D) =
1

n

n
∑

i=1

ℓ(w,Zi)

(in-sample error)

Tied to the choice of a loss function ℓ(w, z)

• the square loss (regression)

• the 0-1 loss (classification)

• the cross-entropy loss (NN classification)

⊲ surrogate loss, nice properties
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Training set error: L̂trn(w) = 1
n trn

∑

Zi∈Dtrn

ℓ(w, Zi)

ERM: ŵ ∈ arg min
w

L̂trn(w)

Penalized ERM: ŵ ∈ arg min
w

L̂trn(w) + Reg(w)
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If learned weight ŵ does well on the train set examples...

...will it still do well on unseen examples?
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data set: D = (Z1, . . . ,Zn) ∈ Zn

a finite sequence of input-label examples Zi = (Xi,Yi).

Assumptions:

• A data-generating distribution P ∈ M1(Z).

• P is unknown, only the training set is given.

• The input-label examples are i.i.d. ∼ P.

Population risk: L(w) = E
[

ℓ(w,Z)
]

=
∫

Z
ℓ(w, z) dP(z)

(out-of-sample)
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Test set error: L̂tst(ŵ) = 1
n tst

∑

Zi∈Dtst

ℓ(ŵ, Zi)

⊲ ŵ obtained from the training set

⊲ test set not used for training

⊲ L̂tst(ŵ) serves as estimate of L(ŵ)

⊲ Note: L(ŵ) remains unknown!
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Risk upper bound: For any given δ ∈ (0, 1),

with probability at least 1 − δ over random datasets

of size n, simultaneous for all w :✞
✝

☎
✆L(w) ≤ L̂n(w) + ǫ(n, δ)

For ŵ = ALG(train set) this gives: L(ŵ) ≤ L̂tst(ŵ) + ǫ(n tst, δ)

Recommendable practice:

⊲ report confidence bound

together with your test set error estimate
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Risk upper bound: For any given δ ∈ (0, 1),

with probability at least 1 − δ over random datasets

of size n, simultaneous for all w :✞
✝

☎
✆L(w) ≤ L̂n(w) + ǫ(n, δ)

Alternative practice: Find ŵ by minimizing the risk bound

⊲ A form of regularized ERM

⊲ the learned ŵ comes with its own risk certificate

⊲ best if the risk bound is non-vacuous, ideally tight!

⊲ may avoid the need of data-splitting

⊲ may lead to self-certified learning!



Probabilistic Neural Nets
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� Based on data D, learn a distribution over weights:

QD ∈ M1(W), QD = ALG(train set).

� Predictions:

• draw w ∼ QD and predict with the chosen w.

• each prediction with a fresh random draw.

The risk measures L(w) and L̂n(w)

are extended to Q by averaging:

Q[L] ≡
∫

W
L(w) dQ(w) = Ew∼Q[L(w)]

Q[L̂n] ≡
∫

W
L̂n(w) dQ(w) = Ew∼Q[L̂n(w)]



Two usual PAC-Bayes bounds
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‘prior’ ‘posterior’

Fix a distribution Q0.

For any sample size n,

for any confidence parameter δ ∈ (0, 1),

with probability at least 1 − δ
over random samples (of size n)

simultaneously for all distributions Q

✓

✒

✏

✑Q[L] ≤ Q[L̂n] +

√

KL(Q‖Q0) + log
( 2
√

n

δ

)

2n
(PB-classic)

✎

✍

☞

✌kl(Q[L̂n]‖Q[L]) ≤
KL(Q‖Q0) + log

(2
√

n

δ

)

n
(PB-kl)



Two more PAC-Bayes bounds
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Fix a distribution Q0. For any size n, for any confidence δ ∈ (0, 1),

with probability at least 1 − δ over random samples (of size n)

PB-quad: simultaneously for all distributions Q✛

✚

✘

✙
Q[L] ≤























√

Q[L̂n] +
KL(Q‖Q0) + log(

2
√

n

δ
)

2n
+

√

KL(Q‖Q0) + log(
2
√

n

δ
)

2n























2

PB-lambda: simultaneously for all distributions Q and λ ∈ (0, 2)✓

✒

✏

✑Q[L] ≤
Q[L̂n]

1 − λ/2
+

KL(Q‖Q0) + log(
2
√

n

δ
)

nλ(1 − λ/2)
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Donsker & Varadhan (1975), Csiszár (1975)

KL(Q‖Q0) = sup
f :W→R

{

Q[ f ] − log Q0[e f ]

}

� Let f : Zn ×W→ R. For a given Q0 :

Q[ f (D,w)] ≤ KL(Q‖Q0) + log Q0[e f (D,w)].

� Apply Markov’s inequality to Q0[e f (D,w)].

� w.p. ≥ 1 − δ over the random draw of D ∼ Pn,

simultaneously for all distributions Q :

Q[ f (D,w)] ≤ KL(Q‖Q0) + log Pn[Q0[e f (D,w)]] + log(1/δ).

� Use with suitable f ,

upper-bound the exponential moment Pn[Q0[e f (D,w)]].
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� Use your favourite ALG to find QD = ALG(train set), and

plug QD into the PAC-Bayes bound to certify its risk:✓

✒

✏

✑QD[L] ≤ QD[L̂n] +

√

KL(QD‖Q0) + log
(2
√

n

δ

)

2n

� Use the PAC-Bayes bound itself as a training objective:✓

✒

✏

✑
QD ∈ arg min

Q

Q[L̂n] +

√

KL(Q‖Q0) + log
( 2
√

n

δ

)

2n

Note: both uses illustrated here with PB-classic, but the same

can be done with PB-quad or PB-lambda (or any other)



Training objectives
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fclassic(Q) = Q[L̂ce
n ] +

√

KL(Q‖Q0) + log(
2
√

n

δ
)

2n

fquad(Q) =























√

Q[L̂ce
n ] +

KL(Q‖Q0) + log(
2
√

n

δ
)

2n
+

√

KL(Q‖Q0) + log(
2
√

n

δ
)

2n























2

flambda(Q, λ) =
Q[L̂ce

n ]

1 − λ/2
+

KL(Q‖Q0) + log(
2
√

n

δ
)

nλ(1 − λ/2)



Experiments
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• (PAC-Bayes) prior Q0 = Gauss(w0,Σ0)

Σ0 = λ0I (λ0 is hyperparameter)

w0 = randomly initialized weights

• (PAC-Bayes) posterior QD = Gauss(w,Σ)

w, Σ learned by PAC-Bayes with Backprop

Experiments (ours) on MNIST

fquad

Test acc. = 86.36

Test error = 0.1364

RUB value = 0.24107

fclassic (cf. D & R (2017))

Test acc. = 84.22

Test error = 0.1578

RUB value = 0.24375
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• (PAC-Bayes) prior Q0 = Gauss(w0,Σ0)

Σ0 = λ0I (λ0 is hyperparameter)

w0 = ERM on a split of the data

• (PAC-Bayes) posterior QD = Gauss(w,Σ)

w, Σ learned by PAC-Bayes with Backprop

Experiments (ours) on MNIST

fquad

Test acc. = 97.89

Test error = 0.0211

RUB value = 0.04588

fclassic (cf. D & R (2018))

Test acc. = 97.21

Test error = 0.0279

RUB value = 0.06029
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posterior QD, density qD(w) prior Q0, density q0(w)

qD(w) = L(D|w) q0(w) /C

� Bayes rule update on prior to form posterior

⊲ likelihood factor L(D|w)

� principled approach, e.g. MAP learning

� derive learning algorithms

⊲ balance ‘fit to data’ and ‘fit to prior’
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A bit more general:

“temperature” λ > 0

qD(w) = L(D|w)λ q0(w) /C

Even more general:

data-dependent factor F

qD(w) = F(D,w) q0(w)

� P.G. Bissiri, C.C. Holmes, S.G. Walker (2016)

A general framework for updating belief distributions
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qD(w)
✞
✝

☎
✆no update factor q0(w)

� more general than generalized Bayes

� increased flexibility in choice of distributions

� balance qD[L̂n] and KL(qD‖q0)

⊲ ‘fit to data’ versus ‘fit to prior’
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⊲ choice of distributions

⊲ understand properties

⊲ scaling to larger problems?

⊲ architecture vs. PAC-Bayes bounds?

⊲ problem-specific PAC-Bayes bounds?
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Thank you!
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Wait...



some PAC-Bayes history
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� J. Shawe-Taylor & R.C. Williamson (1997)

A PAC analysis of a Bayesian estimator

� D.A. McAllester (1998)

Some PAC-Bayesian Theorems

� D.A. McAllester (1999)

PAC-Bayesian Model Averaging

� J. Langford & M. Seeger (2001)

Bounds for Averaging Classifiers

� J. Langford & R. Caruana (2002)

(Not) Bounding the True Error

� M. Seeger (2002)

PAC-Bayesian generalization bounds for gaussian processes



some more PAC-Bayes history
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� J. Langford & J. Shawe-Taylor (2002)

PAC-Bayes & Margins

� D.A. McAllester (2003)

Simplified PAC-Bayesian Margin Bounds

� A. Maurer (2004)

A note on the PAC Bayesian theorem

� J.-Y. Audibert (2004)

A better variance control for PAC-Bayesian classification

� O. Catoni (2007)

PAC-Bayesian supervised classification:

The thermodynamics of statistical learning

� P. Germain, A. Lacasse, F. Laviolette, M. Marchand (2009)

PAC-Bayesian learning of linear classifiers



some recent PAC-Bayes
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� J. Keshet, D.A. McAllester, T. Hazan (2011)

PAC-Bayesian approach for minimization of phoneme error rate

� A. Noy & K. Crammer (2014)

Robust forward algorithms via PAC-Bayes and Laplace distributions

� P. Germain, F. Bach, A. Lacoste, S. Lacoste-Julien (2016)

PAC-Bayesian theory meets Bayesian inference

� N. Thiemann, C. Igel, O. Wintenberger, Y. Seldin (2017)

A Strongly Quasiconvex PAC-Bayesian Bound

� G.K Dziugaite & D. Roy (2017)

Computing nonvacuous generalization bounds for deep (stochastic)

neural networks with many more parameters than training data

� G.K Dziugaite & D. Roy (2018)

Data-dependent PAC-Bayes priors via differential privacy



more recent PAC-Bayes
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� O. Rivasplata, E. Parrado-Hernández, J. Shawe-Taylor,

S. Sun, Cs. Szepevári (2018)

PAC-Bayes bounds for stable algorithms with instance-dependent priors

� P. Alquier & B. Guedj (2018)

Simpler PAC-Bayesian bounds for hostile data

� S.S. Lorenzen, C. Igel, Y. Seldin (2019)

On PAC-Bayesian Bounds for Random Forests

� G. Letarte, P. Germain, B. Guedj, F. Laviolette (2019)

Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep

Neural Networks

� O. Rivasplata, V.M. Tankasali, Cs. Szepevári (2019)

PAC-Bayes with Backprop (in arXiv)
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Thank you again!
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