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Abstract

We focus on a stochastic learning model where the learner observes a finite set
of training examples and the output of the learning process is a data-dependent
distribution over a space of hypotheses. The learned data-dependent distribution
is then used to make randomized predictions, and the high-level theme addressed
here is guaranteeing the learner’s performance on examples that were not seen
during training, i.e. generalization. In this setting the unknown quantity of interest
is the expected risk of the data-dependent randomized predictor, for which upper
bounds can be derived via a PAC-Bayes analysis, leading to PAC-Bayes bounds.
Specifically, we present a general form of the PAC-Bayes inequality, from which
one may derive extensions of various known PAC-Bayes bounds as well as novel
bounds. We clarify the role of the requirement of fixed ‘data-free’ priors and
discuss the use of data-dependent priors. We also discuss a simple PAC-Bayes
bound that is valid for loss functions with unbounded range. Our analysis clarifies
that those two requirements are used to bound an exponential moment, while the
general PAC-Bayes inequality remains valid with those restrictions removed.

1 Introduction

The context of this paper is the statistical learning model where the learner observes training data
S = (Z1, Z2, . . . , Zn) randomly drawn from a space of size-n samples S = Zn (e.g. Z = Rd×Y)
according to some unknown probability distribution1 Pn ∈ M1(S). Typically Z1, . . . , Zn are
independent and share a common distribution P1 ∈ M1(Z). Upon observing the training data S,
the learner outputs a data-dependent probability distribution QS over a hypothesis spaceH. Notice
that this learning scenario involves randomness in the data and the hypothesis. In this stochastic
learning model, the randomized predictions are carried out by randomly drawing a fresh hypothesis
for each prediction. Therefore, we consider the performance of a probability distribution Q over
the hypothesis space: the expected population loss is Q[L] =

∫
H L(h)Q(dh), i.e. the Q-average

of the standard population loss L(h) =
∫
`(h, z)P1(dx) for a fixed hypothesis h ∈ H, where

` : H × Z → [0,∞) is a given loss function and P1 ∈ M1(Z) generates one random example.
Similarly, the expected empirical loss is Q[L̂S ] =

∫
H L̂S(h)Q(dh), where L̂s(h) = L̂(h, s) is the

empirical loss, namely, L̂(h, s) = 1
n

∑n
i=1 `(h, zi) for a fixed h and s = (z1, . . . , zn).

An important component of our development is using a convenient way to formalize the notion of
“data-dependent distributions overH” that makes explicit their difference to fixed distributions.

1We writeM1(Z) to denote the family of probability measures over a set Z , see Appendix A.
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Randomised predictors with a data-dependent distribution. A data-dependent distribution over
the space H is formalized here as a stochastic kernel2 defined as a mapping3 Q : S × ΣH → [0, 1]
such that (i) for each B ∈ ΣH the function s 7→ Q(s,B) is measurable; and (ii) for each s ∈ S
the function B 7→ Q(s,B) is a probability measure over H. We will write K(S,H) to denote
the set of all such stochastic kernels from S to —distributions over— H. In the following, given
Q ∈ K(S,H) and s ∈ S , we will write Qs[L] =

∫
L(h)Qs(dh) and Qs[L̂s] =

∫
L̂s(h)Qs(dh) to

denote the expected population loss and expected empirical loss, respectively.

With the notation just introduced,QS stands for the distribution overH corresponding to a randomly
drawn data set S. The stochastic kernel Q can be thought of as describing a randomizing learner.
One well-known example is the Gibbs learner, where QS is of the form QS(dh) ∝ e−γL̂(h,S)µ(dh)
for some γ > 0, with µ a base measure overH.

A common question arising in learning theory aims to explain the generalization ability of a learner:
how can a learner ensure a ‘well-behaved’ population loss? One way to answer this question is
via upper bounds on the population loss, also called generalization bounds. Often the focus is
on the generalization gap, which is the difference between the population loss and the empiri-
cal loss, and giving upper bounds on the gap. There are several types of generalization bounds
we care about in learning theory, with variations in the way they depend on the training data S
and the data-generating distribution Pn. The classical bounds (such as VC-bounds) depend on
neither. Distribution-dependent bounds are expressed in terms of quantities related to the data-
generating distribution (e.g. population mean or variance) and possibly constants, but not the data
in any way. These bounds can be helpful to predict the behaviour of a learning method on different
distributions—for example, some data-generating distributions might give faster convergence rates
than others. Finally, there are data-dependent bounds which are expressed in terms of empirical
quantities that can be computed directly from data. These are of interest in practical situations,
for instance for “self-bounding” algorithms, which are learning algorithms that use all the data to
simultaneously provide a predictor and a certificate of performance [Freund, 1998].

PAC-Bayesian inequalities allow to derive distribution- or data-dependent generalization bounds
in the context of the stochastic prediction model discussed above. The usual PAC-Bayes analysis
introduces a reference probability measure Q0 ∈ M1(H) on the hypothesis space H. The learned
data-dependent distributionQS is commonly called a posterior, whileQ0 is called a prior. However,
in contrast to Bayesian inference, the PAC-Bayes prior Q0 acts as an analytical device and may or
may not be used by the learning algorithm, and the PAC-Bayes posteriorQS is unrestricted and may
be different from the posterior that would be obtained from Q0 through Bayesian inference.

2 Our Contributions

In this paper we discuss a general PAC-Bayesian theorem encompassing many usual bounds which
appear in the literature [McAllester, 1998, Seeger, 2002, Catoni, 2007, Thiemann et al., 2017], but
the formulation discussed here (see Theorem 2 in Appendix B) allows the PAC-Bayes priors to be
data-dependent by default, and the loss functions to have an unbounded range.

Our take on the PAC-Bayes theorem (Theorem 2 in Appendix B) establishes that for any convex
function F : R2 → R, probability kernels Q,Q0 ∈ K(S,H) and δ ∈ (0, 1),

F (QS [L], QS [L̂S ]) ≤ KL(QS‖Q0
S) + log(ξ(Q0)/δ) w.p. ≥ 1− δ , (1)

where KL stands for the Kullback-Leibler divergence4, and ξ(Q0) is the exponential moment of
F (L(h), L̂S(h)), which is defined as follows:

ξ(Q0) =

∫
S

∫
H
eF (L(h),L̂S(h))Q0

s(dh)Pn(ds) .

2This is also called a transition kernel, see e.g. Kallenberg [2017] for more details on this definition.
3The space of size-n samples S is equipped with a sigma algebra that we denote ΣS , and the hypothesis

spaceH is equipped with a sigma algebra ΣH. For precise definitions see Appendix A.
4Given two probability distributions Q,Q′ ∈ M1(H), the Kullback-Leibler divergence between them,

also known as relative entropy, is defined as follows: KL(Q‖Q′) =
∫
H log (dQ/dQ′) dQ, where dQ/dQ′

denotes the Radon-Nikodym derivative. For Bernoulli distributions with parameters q and q′ we will write
kl(q‖q′) = q log( q

q′ ) + (1− q) log( 1−q
1−q′ ), also called the binary KL divergence.
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Observe that Eq. (1) is defined for an arbitrary5 convex function F . This way the usual bounds are
encompassed. For example, taking F (x, y) = 2n(x− y)2 yields the McAllester [1998]-type bound,
F (x, y) = n kl(y‖x) gives the bound of Seeger [2002], by F (x, y) = n log

(
1

1−x(1−e−λ)

)
− λny

we get the bound of Catoni [2007], whereas by F (x, y) = n(x−y)2/(2x) we obtain with a suitable
derivation a bound of Thiemann et al. [2017], or by a different derivation we get a novel bound that
holds under the usual requirements of fixed ‘data-free’ prior and losses within the [0, 1] range:

QS [L] ≤


√
QS [L̂S ] +

KL(QS‖Q0) + log( 2
√
n
δ )

2n
+

√
KL(QS‖Q0) + log( 2

√
n
δ )

2n

2

. (2)

As consequence of the universality of Eq. (1), besides the usual bounds we may derive novel bounds,
e.g. with data-dependent priors Q0

S . Conceptually, our approach splits the usual PAC-Bayesian
analysis into two components: (i) choose F to use in Eq. (1), and (ii) obtain an upper bound on
the exponential moment ξ(Q0). The cost of generality is that for each specific choice of the bound
(technically, a choice of a function F and Q0) we need to study the behaviour of the exponential
moment ξ(Q0), and in particular, provide a reasonable, possibly data-dependent upper bound on it.
We stress that the only technical step necessary for the introduction of a data-dependent prior is a
bound on ξ(Q0), the rest is taken care of by Eq. (1). We are not aware of previous work making the
role of the exponential moment6 explicit in PAC-Bayesian analysis with data-dependent priors.

2.1 A PAC-Bayes bound with a data-dependent Gibbs prior

First we present a novel approach to data-dependent PAC-Bayes priors, which is based on the prior
empirical Gibbs distribution Q0

s(dh) ∝ e−γL̂(h,s)µ(dh) for some fixed γ > 0 and base measure µ
over H. In this approach, to upper-bound the exponential moment, we focus on the specific choice
F (x, y) =

√
n(x− y), and we prove that in this case

log(ξ(Q0)) ≤ 2

(
1 +

2γ√
n

)
+ log

(
1 +
√
e
)
.

The proof (Appendix E) is based on the algorithmic stability argument for Gibbs densities, inspired
by the proof of [Kuzborskij et al., 2019, Theorem 1]. Combining this with Eq. (1), for any posterior
Q ∈ K(S,H) and δ ∈ (0, 1), with probability at least 1− δ over size-n i.i.d. samples S we have

QS [L]−QS [L̂S ] ≤ 1√
n

(
KL(QS‖Q0

S) + 2
(

1 +
2γ√
n

)
+ log

(1 +
√
e

δ

))
. (3)

Interestingly, the choice Q = Q0 gives the smallest right-hand side in Eq. (3) (however, it does not
necessarily minimize the bound on QS [L]) which leads to the following high-probability bound for
the Gibbs learner: QS [L]−QS [L̂S ] . 1/

√
n+γ/n . Notice that this bound gains an additive 1/

√
n

compared to the bound in expectation of Raginsky et al. [2017].

2.2 PAC-Bayes bounds with d-stable data-dependent priors

Next we discuss an approach to convert any PAC-Bayes bound with a usual ‘data-free’ prior into a
bound with a stable data-dependent prior, which is accomplished by generalizing a technique from
Dziugaite and Roy [2018b]. In particular, we show (Appendix C) that for any fixed ‘data-free’
distribution Q∗ ∈M1(H) and stochastic kernel Q0 ∈ K(S,H) satisfying the DP(ε) property7,

ξ(Q0) ≤ 2 max{ξ(Q∗), 1} exp

{
nε2

2
+ ε

√
n

2
log

(
2

β

)}
β ∈ (0, 1) . (4)

Eq. (4) suggests that one should take infimum over ‘data-free’ distributions Q∗ to get the tightest
possible bound (and make the bound free from Q∗). Note that different choices of F would lead

5Germain et al. [2009] presented a similar generic PAC-Bayes inequality but with fixed ‘data-free’ priors.
6Audibert and Bousquet [2007] separately analyzed the exponential moment but under ‘data-free’ priors.
7See Appendix C.
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to different forms of ξ(Q∗) —essentially, upper bounds on the exponential moment typically con-
sidered in the PAC-Bayesian literature. For example, taking F (x, y) = n kl(x‖y) one can show
that ξ(Q∗) ≤ 2

√
n [Maurer, 2004], and by fixing β = 2/3 we derive a bound that is equivalent to

Theorem 4.2 of Dziugaite and Roy [2018b] but with slightly improved constants:

kl(QS [L̂S ]‖QS [L]) ≤ 1

n

(
KL(QS‖Q0

S) + 1
2nε

2 + ε

√
log(3)

2 n+ log( 3
√
n
δ )

)
.

A more general version of Eq. (4), whose derivation is based on the notion of max-information
[Dwork et al., 2015a], is discussed in Appendix C (see Lemma 3 there) and proved in Appendix D.
The details of the conversion recipe are also in Appendix C.

2.3 Towards a PAC-Bayes bound with a free range loss function

Consider the case that the loss function ` : H × Z → [0,∞) has unbounded range. For any λ > 0

we may upper-bound E[exp{−λnL̂n(h, S)}] by standard techniques under the i.i.d. data-generation
model. Then with a few calculations we obtain:

E[eλn(L(h)−L̂n(h,s))] ≤ eλ
2n
2 E[`(h,Z)2] .

Then assuming∞ > M = suph E[`(h, Z)2] (see Holland [2019] whose main result required this),
using the function f(h, s) = λn

(
L(h) − L̂n(h, s)

)
− λ2n

2 M with a usual ‘data-free’ prior Q0, the
exponential moment satisfies ξ ≤ 1. Thus, for any posterior Q ∈ K(S,H) and δ ∈ (0, 1), with
probability at least 1− δ over size-n i.i.d. samples S we have

QS [L] ≤ QS [L̂S ] +
KL(QS‖Q0) + log(1/δ)

nλ
+
λ

2
sup
h

E[`(h, Z)2] . (5)

This illustrates that PAC-Bayes bounds are possible with unbounded loss functions. However, since
the bound given in Eq. (5) is dominated by M = suph E[`(h, Z)2], this specific example is not the
best upper bound that we could hope for. It is the focus of ongoing research to obtain tighter bounds
for general hypothesis classes under loss functions with unbounded range.

3 Discussion

The resurgence of the PAC-Bayes approach has been in part motivated by the interest in general-
ization properties of neural networks. While Langford and Caruana [2001] used a PAC-Bayesian
bound to evaluate the error of a (stochastic) neural network classifier, Dziugaite and Roy [2017] ob-
tained numerically non-vacuous generalization bounds by turning a PAC-Bayes bound on the error
into a training objective. Several subsequent studies [Blundell et al., 2015, Rivasplata et al., 2019,
Mhammedi et al., 2019] took this approach further, sometimes with links to the generalization ability
of stochastic optimization [London, 2017, Neyshabur et al., 2018, Dziugaite and Roy, 2018a].

Our work mainly contributes in the direction of connecting PAC-Bayes priors to data. We point out
the benefit of separating the proof of the general PAC-Bayes inequality from techniques to bound the
exponential moment of the function used in the inequality. This made it possible to derive a PAC-
Bayes bound where the prior is data-dependent by default. Obtaining more cases of data-dependent
priors is the topic of ongoing research. Our work briefly touched upon boundedness of the loss
function, which generally is difficult to avoid in PAC-Bayesian analysis due to the need to control
higher moments. While the specific PAC-Bayes bound for loss functions with unbounded range
presented here is a rather restricted case, deriving realistic cases is the topic of ongoing research.

Notice that a line of work related to connecting priors to data was explored by Lever et al. [2013],
Pentina and Lampert [2014] and more recently by Rivasplata et al. [2018], who assumed that priors
are distribution-dependent. In that setting priors are still ‘data-free’ but in a less agnostic fashion
(compared to an arbitrary fixed prior), which allows to demonstrate improvements for “nice” data-
generating distributions. Finally, it is worth mentioning that the PAC-Bayesian analysis extends
beyond bounds on the gap between population and empirical losses: A large body of literature has
also looked into upper and lower bounds on the excess risk, namely, QS [L] − infh∈H L(h), e.g.
Catoni [2007], Alquier et al. [2016], Grünwald and Mehta [2019], Kuzborskij et al. [2019]. The
approach of analyzing the gap is generally complementary to such excess risk analyses, while on
the other hand our results point out interesting directions for future research.
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A Measure-Theoretic Notation

Let (X ,ΣX ) be a measurable space, i.e. X is a non-empty set and ΣX is a sigma-algebra of subsets
of X . A measure is a countably additive set function ν : ΣX → [0,+∞] such that ν(∅) = 0.
We write M(X ,ΣX ) for the set of all measures on this space, and M1(X ,ΣX ) for the set of all
measures with total mass 1, i.e. probability measures. Actually, when the sigma-algebra where the
measure is defined is clear from the context, the notation may be shortened toM(X ) andM1(X ),
respectively. For any measure ν ∈ M(X ) and measurable function f : X → R, we write ν[f ] to
denote the ν-integral of f , so

ν[f ] =

∫
X
f(x)ν(dx) .

Thus for instance if X is an X -valued random variable with probability distribution8 P ∈ M1(X ),
then P [f ] = E[f(X)] is the expected value.

8For sets A ∈ ΣX the event that the value of X falls within A has probability P[X ∈ A] = P (A).
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B Our take on the PAC-Bayes inequality

The following results involve hypothesis- and data-dependent functions f : H×S → R. Notice that
the orderH×S is immaterial—functions S ×H → R are treated the same way. If ρ ∈M1(H) is a
‘data-free’ distribution, we will write ρ[f(·, s)] to denote the ρ-average of f(·, s) for fixed s, that is,
ρ[f(·, s)] =

∫
H f(h, s)ρ(dh). When ρ is data-dependent, that is, a stochastic kernel ρ ∈ K(S,H),

we may write ρs for the distribution over H corresponding to a fixed s, so ρs(B) = ρ(s,B) for
B ∈ ΣH, and ρs[f(·, s)] =

∫
H f(h, s)ρs(dh).

The joint distribution over S ×H defined by P ∈M1(S) and Q ∈ K(S,H) is the measure denoted
by P ⊗Q that acts on functions φ : S ×H → R as follows:

(P ⊗Q)[φ] =

∫
S
P (ds)

∫
H
Q(s, dh)[φ(s, h)] .

Drawing a random pair (S,H) ∼ P ⊗Q is equivalent to drawing S ∼ P and drawing H ∼ QS . In
this case, with E denoting the expectation under the joint distribution P ⊗ Q, the previous display
takes the form E[φ(S,H)] = E[E[φ(S,H)|S]].

Lemma 1 Fix a probability measure P ∈ M1(S), a stochastic kernel Q0 ∈ K(S,H), and a
measurable function f : S ×H → R, and let

ξ =

∫
S

∫
H
ef(s,h)Q0

s(dh)P (ds) .

(i) For any Q ∈ K(S,H), for any δ ∈ (0, 1), with probability at least 1 − δ over the random
draw of a pair (S,H) ∼ P ⊗Q we have

f(S,H) ≤ log

(
dQS
dQ0

S

(H)

)
+ log(ξ/δ) .

(ii) For any Q ∈ K(S,H), for any δ ∈ (0, 1), with probability at least 1 − δ over the random
draw of S ∼ P we have

QS [f(S, ·)] ≤ KL(QS‖Q0
S) + log(ξ/δ) .

This lemma concerns data-dependent distributions over the hypothesis space. Typically Q is called
a ‘posterior’ distribution, and Q0 is called a ‘prior’ distribution. Notice that Q0 is allowed to be
data-dependent by default in our approach. To the best of our knowledge, this lemma is new. A
key step of the proof involves a change of measure that can be traced back to Csiszár [1975] and
Donsker and Varadhan [1975].

Proof Recall that when Y is a positive random variable, by Markov inequality, for any δ ∈ (0, 1),
with probability at least 1− δ we have:

log Y ≤ logE[Y ] + log(1/δ) . (?)

Let Q0 ∈ K(S,H), and let E0 denote expectation under the joint distribution P ⊗ Q0. Thus if
S ∼ P and H ∼ Q0

S we then have ξ = E0[E0[ef(S,H)|S]].

Let Q ∈ K(S,H) and denote by E the expectation under the joint distribution P ⊗ Q. Then by a
change of measure we may re-write ξ = E0[ef(S,H)] as ξ = E[ef̃(S,H)] = E[eD] with

D = f̃(S,H) = f(S,H)− log

(
dQS
dQ0

S

(H)

)
.

(i) Applying inequality (?) to Y = eD, with probability at least 1 − δ over the random draw of the
pair (S,H) ∼ P ⊗Q we get D ≤ logE[eD] + log(1/δ).

(ii) Notice that E[D|S] = QS [f(S, ·)] − KL(QS‖Q0
S) . By Jensen inequality we have

E[D|S] ≤ logE[eD|S], while from (?) applied to Y = E[eD|S], with probability at least
1− δ over the random draw of S ∼ P we have logE[eD|S] ≤ logE[eD] + log(1/δ).

7



Notice that Lemma 1 does not restrict the prior to be a fixed ‘data-free’ distribution. Indeed, Q0 may
be data-dependent by default. Also, the function f is not restricted to have a bounded range.

Suppose the function f is of the form f = F ◦ A with A : S × H → Rk and F : Rk → R convex.
In this case, by Jensen inequality we have F (Qs[A(s, ·)]) ≤ Qs[F (A(s, ·))] and Lemma 1(ii) gives:

Theorem 2 For any P ∈ M1(S), for any Q0 ∈ K(S,H), for any positive integer k, for any
measurable function A : S × H → Rk and convex function F : Rk → R, let f = F ◦ A and let
ξ = (P ⊗Q0)[ef ] as in Lemma 1. Then for any Q ∈ K(S,H) and any δ ∈ (0, 1), with probability
at least 1− δ over the random draw of S ∼ P we have

F (QS [A(S, ·)]) ≤ KL(QS‖Q0
S) + log(ξ/δ) . (6)

In fact, Theorem 2 is valid with any normed space instead of Rk. This result extends the typically
used case where k = 2 and A = (L̂(h, s), L(h)) is the pair consisting of empirical loss and true
population loss. Notice also that ξ is the exponential moment (moment generating function at 1) of
the function f under the joint distribution P ⊗ Q0. Writing E0 for the expectation under P ⊗ Q0,
we have ξ = E0[ef(S,H)] with randomly drawn S ∼ P and H ∼ Q0

S .

In contrast to the existing literature on PAC-Bayes bounds, in our Theorem 2 the distribution Q0

is allowed to be data-dependent by default. Note that a fixed ‘data-free’ distribution is equivalent
to a constant kernel: Q0

s = Q0
s′ for all s, s′ ∈ S , hence the usual cases are encompassed. The

requirement that Q0 does not depend on data, as in the literature, plays a role when controlling the
exponential moment ξ. This is because with a data-free Q0 we may swap the order of integration:

ξ =

∫
S

∫
H
ef(h,s)Q0(dh)P (ds) =

∫
H

∫
S
ef(h,s)P (ds)Q0(dh) =: ξswap .

Then bounding ξ proceeds by calculating or bounding ξswap for which there are readily available
techniques (see e.g. Maurer [2004], Germain et al. [2009], van Erven [2014]). Another important
aspect of Theorem 2 is the possibility of using losses with unbounded range. Once again, the usual
assumption of previous works that losses are bounded (typically with range [0, 1]) played a role when
calculating the ξ term, but as long as it is possible to bound the exponential moment, the restriction
of bounded loss function can be removed. This observation may have implications for analysis of
learning algorithms e.g. under the square loss or the cross-entropy loss, which are unbounded.

While the derivation of the results in this section follow steps that are well known, as previous works
focused on the case of fixed ‘data-free’ priors, we think that we are the first ones to explicitly point
out that the basic PAC-Bayes argument works even with data-dependent priors provided that the
exponential moment ξ can be controlled. Thus, developing PAC-Bayes bounds with data-dependent
priors is reduced to controlling ξ. We think that this new argument not only leads to a cleaner
presentation of existing results, but it also gives rise to improvements on previous results and some
new results, as we have demonstrated.

C d-stable data-dependent priors

Let π ∈ K(S,H) be a stochastic kernel. Recall that S = Zn is the space of size-n samples. When
we say that π satisfies the DP property with ε > 0 (written DP(ε) for short) we mean that whenever
s and s′ differ only at one element, the corresponding distributions overH satisfy:

dπs
dπs′

≤ eε .

This definition goes back to the literature on privacy-preserving methods for data analysis [Dwork
et al., 2015b], however, here we are interested in the technical properties only. This condition on
the Radon-Nikodym derivative is equivalent to the condition that for all sets A ∈ ΣH, the ratio
π(s,A)/π(s′, A) is upper bounded by eε. Thus, the property entails stability of the data-dependent
distribution πs with respect to small changes in the composition of the n-tuple s, hence it is a kind
of distributional stability, or d-stability for short.
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As noted before, the main challenge in obtaining PAC-Bayes bounds is in controlling the exponential
moment ξ(n). In the following we rely on a notion of β-approximate max-information [Dwork et al.,
2015a,b], which in our context is defined as

Iβ∞(S;Q0
S) = log sup

E

P((S,Q0
S) ∈ E)

P((S′, Q0
S) ∈ E) + β

β > 0

for S, S′ independent copies of each other (same distribution). The next lemma, whose proof is in
Appendix D, generalizes an idea we learned from Dziugaite and Roy [2018b]:

Lemma 3 (max-information lemma) Fix f : S ×H → R, n ∈ N and Pn ∈M1(S). Let ξbd(n) =
infQ′∈M1(H)

∫ ∫
ef(s,h)Q′(dh)Pn(ds). Then for any Q0 ∈ K(S,H) and for any β ∈ (0, 1) the

following bound on ξ(n) =
∫ ∫

ef(s,h)Q0
s(dh)Pn(ds) holds:

ξ(n) ≤ 2 max{ξbd(n), 1} exp
{
Iβ∞(S;Q0

S)
}
.

The max-information lemma leads to a general recipe for converting a PAC-Bayes bound with a
fixed ‘data-free’ prior into a PAC-Bayes bound with a data-dependent prior. Suppose that for the
usual case that Q0 ∈ M1(H) is a fixed ‘data-free’ prior, for any Q ∈ K(S,H) and δ ∈ (0, 1), with
probability ≥ 1− δ over size-n samples S ∼ Pn, we have

F (QS [A(S, ·)]) ≤ KL(QS‖Q0) + log(ξbd(n)/δ) . (7)

This is written in the generic framework of Theorem 2 where f(s, h) = F (A(s, h)), and ξbd(n) is
an upper bound on ξ(n) = E0[ef(S,H)] valid whenQ0 is a data-free distribution. Then by Lemma 3,
for any Q0, Q ∈ K(S,H), for any δ ∈ (0, 1), with probability≥ 1− δ over size-n samples S ∼ Pn,
we have

F (QS [A(S, ·)]) ≤ KL(QS‖Q0
S) + log(2 max{ξbd(n), 1}/δ) + Iβ∞(S;Q0

S) . (8)

The following upper bound (see Dwork et al. [2015a, Theorem 20]) on the max-information
Iβ∞(S;Q0

S) is available when the data-dependent Q0 satisfies DP(ε):

Iβ∞(S;Q0
S) ≤ nε2

2
+ ε

√
n

2
log(

2

β
) .

Therefore, via the max-information lemma, one may derive PAC-Bayes bounds which are valid for
d-stable data-dependent priors. More specialized forms of the upper bound can be obtained when
a specific form of ξbd(n) is available. For instance, starting from the PAC-Bayes-kl bound (Seeger
[2002], see also Langford [2005]) we derive the following:

Theorem 4 For any n, for any P1 ∈M1(Z), for any Q0 ∈ K(S,H) satisfying DP(ε), for any loss
function with range [0, 1], for any Q ∈ K(S,H), for any δ ∈ (0, 1), with probability ≥ 1 − δ over
size-n i.i.d. samples S ∼ Pn1 we have

kl(QS [L̂S ]‖QS [L]) ≤
KL(QS‖Q0

S) + log( 3
√
n
δ ) + nε2

2 + ε
√

n
2 log(3)

n
. (9)

This is essentially equivalent to [Dziugaite and Roy, 2018b, Theorem 4.2] but with slightly improved
constants. The proof of Theorem 4 is as follows.

Under the restrictions of the theorem, we may use ξbd(n) = 2
√
n (as per Maurer [2004]) when the

prior is a fixed ‘data-free’ distribution. Then by Lemma 3 we get ξ(n) ≤ 2
√
neI

β
∞(S;Q0

S) + β when
the prior is data-dependent. Thus ξ(n) ≤ 3

√
neI

β
∞(S;Q0

S), which gives

log(ξ(n)) ≤ log(3
√
n) + Iβ∞(S;Q0

S) .

On the other hand, as mentioned above, if Q0 satisfies the DP(ε) property, then for any β ∈ (0, 1)
we have the upper bound

Iβ∞(S;Q0
S) ≤ nε2

2
+ ε

√
n

2
log(

2

β
) .

This is Dwork et al. [2015a, Theorem 20]. Using β = 2/3 completes the proof.
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D Proof of the max-information lemma

Let f(s, h) be a data-dependent and hypothesis-dependent function. Recall that s summarizes a
size-n sample. Suppose ξbd(n) is an upper bound on ξ(n) = E0[ef(S,H)] which is valid when
Q0 ∈ M1(H) is fixed (not data-dependent). Now suppose Q0 ∈ K(S,H) is a stochastic kernel, so
each random size-n data set S maps to a data-dependent distributionQ0

S overH. The corresponding
β-approximate max-information as defined by Dwork et al. [2015a] (see also Dwork et al. [2015b])
is denoted Iβ∞(S;Q0

S) in our context. The max-information argument to bound ξ(n) goes as follows:

ξ(n) =

∫
S

∫
H
ef(s,h)Q0

s(dh)Pn(ds)

≤ eI
β
∞(S;Q0

S)

∫
S

∫
S

∫
H
ef(s,h)Q0

s′(dh)Pn(ds)Pn(ds′) + β

≤ eI
β
∞(S;Q0

S)ξbd(n) + β .

The first inequality, valid for any β ∈ (0, 1), is due to the definition of Iβ∞(S;Q0
S). The second

inequality is due to the fact that f(s, h) and Q0
s′ have been decoupled, so that for each fixed s′ ∈ S

the internal double integral is upper bounded by ξbd(n).

Thus we get ξ(n) ≤ 2 max{ξbd(n), 1}eIβ∞(S;Q0
S) by considering the cases ξbd(n) ≤ 1 and ξbd(n) >

1. This finishes the proof of the “max-information lemma” (Lemma 3).

Notice that if a data-dependent prior Q0 ∈ K(S,H) satisfies DP(ε) for some ε > 0, then in the
exponential moment

ξ(n) =

∫
S

∫
H
ef(h,s)Q0

s(dh)Pn(ds)

we may change the measure Q0
s to Q0

s′ with any fixed s′ ∈ S, and the Radon-Nikodym derivative
satisfies dQ0

s/dQ
0
s′ ≤ enε, so we have

ξ(n) ≤ enε
∫
S

∫
H
ef(h,s)Q0

s′(dh)Pn(ds) ≤ enεξbd(n)

where the integral on the right hand side is upper bounded by ξbd(n) since Q0
s′ is now a fixed

distribution (constant kernel). Thus the max-information lemma gives a refined analysis leading to
an upper bound on ξ(n) where ‘nε’ is replaced with Iβ∞(S;Q0

S).

E Proof of the bound for data-dependent Gibbs priors

For the sake of clarity let us recall once more that P ⊗Q denotes the joint distribution over S ×H
defined by P ∈M1(S) andQ ∈ K(S,H). Drawing a random pair (S,H) ∼ P ⊗Q is equivalent to
drawing S ∼ P and drawing H ∼ QS . With E denoting expectation under P ⊗Q, for measurable
functions φ : S ×H → R we have E[φ(S,H)] = E[E[φ(S,H)|S]].

Lemma 5 For any n, for any loss function with range [0, b], for any Q ∈ K(S,H) such that
Qs(dh) ∝ e−γL̂n(h,s)µ(dh), the following upper bound on ξ(n) = E[e

√
n(L(H)−L̂n(H,S))] holds:

log(ξ(n)) ≤ 2b2
(

1 +
2γ√
n

)
+ log

(
1 + eb

2/2
)
.

For the proof of Lemma 5, we will use the shorthand ∆s(h) =
√
n
(
L(h)−L̂n(h, s)

)
where (s, h) ∈

S ×H. We need two technical results, quoted next for convenience.

Lemma 6 (Boucheron et al. 2013, Lemma 4.18) Let S be a real-valued integrable random vari-
able such that

logE
[
eα(S−E[S])

]
≤ α2σ2

2
α > 0

holds for some σ > 0, and let S′ be another real-valued integrable random variable. Then we have
E[S′]− E[S] ≤

√
2σ2 KL (Law(S′)‖Law(S)).
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Lemma 7 (Kuzborskij et al. 2019, Lemma 9) Let fA, fB : H → R be measurable functions such
that the normalizing factors

NA =

∫
H
e−γfA(h) dh and NB =

∫
H
e−γfB(h) dh

are finite for all γ > 0, and let pA and pB be the corresponding densities:

pA(h) =
1

NA
e−γfA(h) , pB(h) =

1

NB
e−γfB(h) , h ∈ H .

Whenever NA > 0 we have that

ln

(
NB
NA

)
≤ γ

∫
H
pB(h) (fA(h)− fB(h)) dh .

The last lemma is helpful for bounding the log-ratio of Gibbs integrals. The notation ‘dh’ stands for
integration with respect to a fixed reference measure (suppressed in the notation) over the space H.
Now we are ready for the proof.

Proof [of Lemma 5] Throughout the proof we will use an auxiliary random variable H ′ drawn ran-
domly from a distribution Q′ ∈ M1(H) that does not depend on S in any way. The first step is
to relate the exponential moment of ∆S(H) to the expectation of ∆S(H) under a suitably defined
Gibbs distribution and the exponential moment of ∆S(H ′). Then the expectation of ∆S(H) will
be bounded via an algorithmic stability analysis of the Gibbs density as in the proof of Theorem 1
by Kuzborskij et al. [2019], while the exponential moment of ∆S(H ′) is bounded by readily avail-
able techniques since the distribution of H ′ is decoupled from S.

We will carry out the first step through the continuous version of the log-sum inequality, which says
that for positive random variables A and B one has:

E[A] ln
E[A]

E[B]
≤ E

[
A ln

(
A

B

)]
.

We will use this inequality with the random variables A = e∆S(H) and B = e(∆S(H′))+ where
(x)+ = x1x≥0 is the positive part function. This gives

E
[
e∆S(H)

] (
lnE

[
e∆S(H)

]
− lnE

[
e(∆S(H′))+

])
≤ E

[
e∆S(H) (∆S(H)− (∆S(H ′))+)

]
so then rearranging

lnE
[
e∆S(H)

]
≤ E

[
e∆S(H)

E
[
e∆S(H)

] (∆S(H)− (∆S(H ′))+)

]
+ lnE

[
e(∆S(H′))+

]
≤ E

[
e∆S(H)

E
[
e∆S(H)

]∆S(H)

]
+ lnE

[
e(∆S(H′))+

]
. (10)

Let’s write qs for the density of Qs with respect to a reference measure dh over H, and introduce a
measure

dµS(h) =
e∆S(h)

E
[
e∆S(H)

] dqS(h) h ∈ H .

Then the inequality (10) can be written as

lnE
[
e∆S(H)

]
≤ E

∫
∆S(h) dµS(h)︸ ︷︷ ︸

(I)

+ lnE
[
e(∆S(H′))+

]
︸ ︷︷ ︸

(II)

.

Bounding (I). We handle the first term through the stability analysis of the density µS . By S(i) =
(Z1:i−1, Z

′
1, Zi+1:n) we denote the sample obtained from S = (Z1:i−1, Zi, Zi+1:n) by replacing the
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ith entry with an independent copy Z ′1. In particular,

1√
n
E
∫

∆S(h) dµS(h) = E
∫
`(h, Z ′1) dµS(h)− 1

n

n∑
i=1

E
∫
`(h, Zi) dµS(h)

=
1

n

n∑
i=1

E
∫

(`(h, Z ′1)− `(h, Zi)) dµS(h) (11)

=
1

n

n∑
i=1

E
[∫

`(h, Zi) dµS(i)(h)−
∫
`(h, Zi) dµS(h)

]
.

The last equality comes from switching Z ′1 and Zi since these variables are distributed identically.
Now we use Lemma 6 with µS(i) and µS , and with σ = b, to get that∫

`(h, Zi) dµS(i)(h)−
∫
`(h, Zi) dµS(h) ≤

√
2b2 KL (µS(i)‖µS) .

Notice that we may use σ = b in Lemma 6 since the loss function has range [0, b]. Focusing on the
KL-divergence, and writing ‘dh’ for a reference measure on H with respect to which qS , µS , µS(i)

are absolutely continuous,

KL (µS(i)‖µS) =

∫
ln(dµS(i)(h)/dh) dµS(i)(h)−

∫
ln(dµS(h)/dh) dµS(i)(h)

=

∫
ln

(
e∆

S(i) (h)

E
[
e∆S(H)

] e−γL̂S(i) (h)

NS(i)

)
dµS(i)(h)−

∫
ln

(
e∆S(h)

E
[
e∆S(H)

] e−γL̂S(h)

NS

)
dµS(i)(h)

=

∫
(∆S(i)(h)−∆S(h)) dµS(i)(h) + ln

(
NS
NS(i)

)
+ γ

∫ (
L̂S(h)− L̂S(i)(h)

)
dµS(i)(h)

≤
√
n

∫ (
L̂S(h)− L̂S(i)(h)

)
dµS(i)(h) (By definition of ∆S)

+ γ

∫ (
L̂S(i)(h)− L̂S(h)

)
dµS(h) (By Lemma 7)

+ γ

∫ (
L̂S(h)− L̂S(i)(h)

)
dµS(i)(h)

=
1√
n

∫
(`(h, Zi)− `(h, Z ′1)) dµS(i)(h)

+
γ

n

∫
(`(h, Z ′1)− `(h, Zi)) dµS(h)

+
γ

n

∫
(`(h, Zi)− `(h, Z ′1)) dµS(i)(h) ,

where the last step is due to multiple cancellations. Therefore, taking expectation,

EKL (µS(i)‖µS) ≤
(

1√
n

+
2γ

n

)
E
[∫

(`(h, Z ′1)− `(h, Zi)) dµS(h)

]
.

Putting all together, for each term in Eq. (11) (each i ∈ [n]) we get

E
[∫

(`(h, Z ′1)− `(h, Zi)) dµS(h)

]
= E

[∫
`(h, Zi) dµS(i)(h)−

∫
`(h, Zi) dµS(h)

]
≤ E

[√
2b2 KL (µS(i)‖µS)

]
≤
√

2b2 E[KL (µS(i)‖µS)] (By Lemma 6 and Jensen)

=

√
2b2
(

1√
n

+
2γ

n

)
E
[∫

(`(h, Z ′1)− `(h, Zi)) dµS(h)

]
.

The last calculation implies∣∣E [∫ (`(h, Zi)− `(h, Zi)) dµS(h)

]∣∣ ≤ 2b2
(

1√
n

+
2γ

n

)
.

Finally, combining this with Eq. (11) gives

E
∫

∆S(h) dµS(h) ≤ 2b2
(

1 +
2γ√
n

)
. (12)
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Bounding (II). Now we turn our attention to the exponential moment of (∆S(H ′))+ in (10):

lnE
[
e(∆S(H′))+

]
= lnEE

[
e(∆S(H′))+ | S

]
= lnEE

[
e(∆S(H′))+ | H ′

]
(swapping the order of integration)

and observe that the internal expectation is bounded as

E
[
e(∆S(H′))+ | H ′

]
≤ 1 + E

[
e∆S(H′) | H ′

]
= 1 + E

[
exp

(
1√
n

n∑
i=1

(E[`(H ′, Z ′1) |H ′]− `(H ′, Zi))

)
| H ′

]

= 1 +

n∏
i=1

E
[
exp

(
1√
n

(E[`(H ′, Z ′1) |H ′]− `(H ′, Zi))
)
| H ′

]

≤ 1 +

n∏
i=1

exp
((

2b/
√
n
)2
/8
)

= 1 + eb
2/2 ,

where we obtain the last inequality thanks to the Hoeffding’s lemma for independent random vari-
ables between [−b/

√
n, b/
√
n]. Plugging bounds on terms (I) and (II) into Eq. (10) finishes the

proof of Lemma 5.

We obtain the following generalization bound by observing that the Gibbs distribution with density
∝ e−γL̂n(h,s) satisfies the DP(2γ/n) property.

Corollary 8 For any n, for any P1 ∈ M1(Z), for any loss function with range [0, 1], for any
γ > 0, for any Q0 ∈ K(S,H) such that Q0

s ∝ e−γL̂n(h,s), for any Q ∈ K(S,H) and δ ∈ (0, 1),
with probability ≥ 1− δ over size-n i.i.d. samples S ∼ Pn1 , we have

|QS [L̂S ]−QS [L]| ≤
√

KL(QS‖Q0
S)

2n
+
γ

n
+

4

√
1

2
log(3)

√
γ

n
3
4

+

√√√√ log
(

3
√
n
δ

)
2n

.

Proof Theorem 6 of McSherry and Talwar [2007] gives that the Gibbs distribution Q0
s ∝ e−γL̂(h,s)

with potential satisfying sups,s′ suph∈S L̂s(h) − L̂s′(h) ≤ 1/n for s, s′ ∈ S that differ at most in
one entry, satisfies DP(2γ/n). Combined with Theorem 4, this gives

kl(QS [L̂S ]‖QS [L]) ≤ 1

n

(
KL(QS‖Q0

S) +
2γ2

n
+
√

2log(3)
γ√
n

+ log
(

3
√
n
δ

))
and applying Pinsker’s inequality 2(p− q)2 ≤ kl(p‖q) and sub-additivity of t 7→

√
t :

|QS [L̂S ]−QS [L]| ≤ 1√
2n

√
KL(QS‖Q0

S) +
2γ2

n
+
√

2log(3)
γ√
n

+ log
(

3
√
n
δ

)

≤
√

KL(QS‖Q0
S)

2n
+
γ

n
+

4

√
1

2
log(3)

√
γ

n
3
4

+

√√√√ log
(

3
√
n
δ

)
2n

.

While the argument based on d-stability (i.e. Corollary 8) gives a result where the order in γ/n
matches the one in our bound for the empirical Gibbs prior, our analysis offers an alternative proof
technique that might be of independent interest.
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