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Abstract

In this expository note we explore subgaussian random variables
and their basic properties. We also present equivalent formulations of
the subgaussian condition, and we discuss briefly the structure of the
space of subgaussian random variables. All the results contained here
are known; pertinent references are provided wherever possible, though
some of the knowledge presented here seems to be ‘folklore’ and the
author has abandoned disheartedly the tedious task of tracking down
original sources.

1 Introduction

Intuitively, a random variable is called subgaussian when it is subordinate to
a Gaussian random variable, in a sense that will be made precise momentarily.
As it turns out, subgaussians are a natural kind of random variables for which
the properties of Gaussians can be extended ([1]); probably one of the reasons
why subgaussians attracted interest in the first place.

To the best of the author’s knowledge, subgaussian random variables were
introduced by Kahane in [3], where they played a role to establish a sufficient
condition for the almost-sure uniform convergence of certain random series of
functions. The name “subgaussian” is the English counterpart of the French
“sous-gaussienne” coined by Kahane in [3]. Subsequent works have studied
subgaussian random variables and processes either per se or in connection
with various other subjects. For instance, subgaussian random variables have
been studied in connection with random series in [2]; in connection with the
geometry of Banach Spaces in [9]; with the spectral properties of random
matrices in [7], [12].
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2 Subgaussian random variables

A real-valued random variable X is said to be subgaussian if it has the property
that there is some b > 0 such that for every t ∈ R one has

E etX ≤ eb
2t2/2.

Thus, the condition for X to be subgaussian says that there is a positive real
number b such that the Laplace transform of X is dominated by the Laplace
transform of a Gaussian random variable with mean zero and variance b2.
When this condition is satisfied with a particular value of b > 0, we say that
X is b-subgaussian, or subgaussian with parameter b.

It is an immediate consequence of this definition that subgaussian random
variables are centered, and their variance has a natural upper bound in terms
of the subgaussian parameter. We state this “for the records” in the next
proposition, whose proof has been borrowed from [13]; although it should be
pointed out that this was known much earlier (see e.g. [1]).

Proposition 2.1. If X is b-subgaussian, then E(X) = 0 and Var(X) ≤ b2.

Proof. Using Taylor’s expansion for the exponential function and Lebesgue’s
Dominated Convergence Theorem, for any t ∈ R,

∞∑
n=0

tn

n!
E(Xn) = E etX ≤ eb

2t2/2 =
∞∑
n=0

b2nt2n

2nn!
.

Thus

E(X)t+ E(X2)
t2

2!
≤ b2t2

2
+ o(t2) as t→ 0.

Dividing through by t > 0 and letting t → 0 we get E(X) ≤ 0. Dividing
through by t < 0 and letting t → 0 we get E(X) ≥ 0. Thus E(X) = 0. Now
that this is established, we divide through by t2 and let t → 0, thus getting
Var(X) ≤ b2. �

Next we look at three natural examples of subgaussian random variables.

Example 2.2. The most natural example of a subgaussian random variable is
that of a centered Gaussian. If X has the distribution N (0, σ2), then an easy
computation shows that for any t ∈ R,

E etX = eσ
2t2/2.

Thus X is subgaussian with parameter σ.
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Example 2.3. Let X be a random variable with the Rademacher distribution,
meaning that the law of X is PX = 1

2
δ−1 + 1

2
δ1 [here δx is the point mass at x].

Then for any t ∈ R,

E etX =
1

2
e−t +

1

2
et = cosh t ≤ et

2/2,

so X is 1-subgaussian. Random variables with this distribution are also called
symmetric ±1 random variables, or symmetric Bernoulli random variables.

Example 2.4. Suppose X is uniformly distributed over the interval [−a, a]
for some fixed a > 0, meaning the law of X is PX = 1

2a
1[−a,a]λ, where λ is

Lebesgue measure. Then for any real t 6= 0,

E etX =
1

2a

∫ a

−a
etx dx =

1

2at
[eat − e−at] =

∞∑
n=0

(at)2n

(2n+ 1)!
.

Using the inequality (2n+ 1)! ≥ n!2n, we see that X is a-subgaussian.

More generally, any centered and bounded random variable is subgaussian,
as we demonstrate now (see e.g. [13, Theorem 9.9]).

Theorem 2.5. If X is a random variable with E(X) = 0 and |X| ≤ 1 a.s.,
then

E etX ≤ cosh t ∀t ∈ R (1)

and so X is 1-subgaussian. Moreover, if equality holds in (1) for some t 6= 0,
then X is a Rademacher variable and hence equality holds for all t ∈ R.

Proof. Define f on R by f(t) := et[cosh t− E(etX)]. Thus

f(t) = 1
2
e2t + 1

2
− E(et(1+X)).

For convenience let us set Y := 1 + X, so f(t) = 1
2
e2t + 1

2
− E(etY ). Apply

the Mean Value Theorem and Lebesgue’s Dominated Convergence Theorem
to conclude f ′(t) = e2t − E(Y etY ). Using E(Y ) = 1,

f ′(t) = E
(
Y (e2t − etY )

)
.

Since 0 ≤ Y ≤ 2 a.s., we have

t ≥ 0 =⇒ Y (e2t − etY ) ≥ 0 a.s.

It follows that f ′ ≥ 0 and f is increasing on [0,∞). In particular, for t ≥ 0 we
have f(t) ≥ f(0) = 0, and so (1) holds for t ≥ 0. Since −X satisfies the same
hypothesis as X, we have just proved that (1) holds for all t ∈ R.
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Now suppose that equality holds in (1) for some t0 > 0. Then f(t0) =
f(0) = 0, which implies f(t) = 0 for all t ∈ [0, t0]. Thus f ′(t0) = 0, and hence
Y (e2t0 − et0Y ) = 0 a.s. Therefore

P(X = −1) + P(X = 1) = P(Y = 0) + P(Y = 2) = 1.

Since E(X) = 0, it follows that P(X = −1) = P(X = 1) = 1/2, and so X is
a Rademacher variable. If, on the other hand, equality holds in (1) for some
t0 < 0, then applying the same argument to −t0 > 0 and −X we see that −X
is a Rademacher variable, and hence so is X. �

Corollary 2.6. If X is a random variable with E(X) = 0 and |X| ≤ b a.s.
for some b > 0, then X is b-subgaussian.

The set of all subgaussian random variables has a linear structure. The
proof that this set is stable under scalar multiples is trivial. For stability
under sums the proof we present comes from [1].

Theorem 2.7. If X is b-subgaussian, then for any α ∈ R, the random variable
αX is |α|b-subgaussian. If X1, X2 are random variables such that Xi is bi-
subgaussian, then X1 +X2 is (b1 + b2)-subgaussian.

Proof. Suppose X is b-subgaussian. For α 6= 0, we have

E et(αX) ≤ eb
2α2t2/2 = e(|α|b)

2t2/2.

Now suppose that Xi is bi-subgaussian, for i = 1, 2. For any p, q > 1 such
that 1

p
+ 1

q
= 1, using Hölder inequality,

E et(X1+X2) ≤
[
E
(
etX1

)p]1/p[E(etX2
)q]1/q

≤ exp
{t2

2

(
pb21 + qb22

)}
= exp

{t2
2

(
pb21 +

p

p− 1
b22
)}
.

Minimizing over p > 1 we get

E et(X1+X2) ≤ exp
{t2

2

(
b1 + b2

)2}
,

and the claim follows. �

Remark. In the context of Theorem 2.7, if the random variables X1, X2 are
required to be independent, then the parameter b1 + b2 can be improved to√
b21 + b22 (see e.g. [3]).
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As it turns out, the set of subgaussian random variables has a much richer
structure. For a centered random variable X, the subgaussian moment of X,
denoted σ(X), is defined as follows

σ(X) := inf
{
b ≥ 0

∣∣∣ E etX ≤ eb
2t2/2, ∀t ∈ R

}
. (2)

Clearly X is subgaussian if and only if σ(X) < ∞. Moreover, the functional
σ(·) is a norm on the space of subgaussian random variables (upon identifi-
cation of random variables which are equal almost surely), and this normed
space is complete (see e.g. [1]).

Remark. We observe that in case X ∼ N (0, σ2) is a centered Gaussian, then
σ(X) = σ. Thus for Gaussian variables the subgaussian moment coincides
with the standard deviation.

3 Characterization of subgaussians

According to the definition, a real-valued random variable is subgaussian when
its Laplace transform is dominated by the Laplace transform of a centered
Gaussian. The following theorem presents equivalent conditions for a random
variable to be subgaussian. The calculations used to prove it are well known,
the absence of a reference should not be taken as a claim of originality but
rather as reflecting the fact that this is folklore knowledge.

Theorem 3.1. For a centered random variable X, the following statements
are equivalent:

(1) Laplace transform condition: ∃b > 0, ∀t ∈ R, E etX ≤ eb
2t2/2;

(2) subgaussian tail estimate: ∃c > 0, ∀λ > 0, P(|X| ≥ λ) ≤ 2e−cλ
2
;

(3) ψ2-condition: ∃a > 0, E eaX2 ≤ 2.

Proof. (1)⇒ (2) Using Markov’s inequality, for any t > 0 we have

P(X ≥ λ) = P(tX ≥ tλ) ≤ E etX

etλ
≤ e−tλ+b

2t2/2,

and minimizing over t > 0 we get

P(X ≥ λ) ≤ inf
t>0

e−tλ+b
2t2/2 = e−λ

2/2b2 .

Similarly one sees that P(X ≤ −λ) ≤ e−λ
2/2b2 . Then, using the union bound,

we get P(|X| ≥ λ) ≤ 2e−λ
2/2b2 , and the assertion is proved with c = 1/(2b2).
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(2)⇒ (3) Assuming the subgaussian tail estimate is satisfied with a certain
c > 0, for any a with 0 < a < c we have

E eaX2 ≤ 1 +

∫ ∞
0

2ateat
2 · P(|X| > t)dt

≤ 1 +

∫ ∞
0

2at · 2e−(c−a)t2dt = 1 +
2a

c− a
.

Then, by taking a small enough (e.g. a = c/3), we get E eaX2 ≤ 2.

(3)⇒ (1) Assume that E eaX2 ≤ 2 for some a > 0. Recalling that X is
centered, we have

E etX = 1 +

∫ 1

0

(1− y)E
[
(tX)2eytX

]
dy ≤ 1 +

t2

2
E
[
X2e|tX|

]
≤ 1 +

t2

2
et

2/2a E
[
X2eaX

2/2
]

≤ 1 +
t2

2a
et

2/2a E eaX2

≤
(

1 +
t2

a

)
et

2/2a,

From this it follows that X is subgaussian with parameter β =
√

3
a
. �

Remark. If the random variable X has the Gaussian distribution N (0, σ2),
then for each p > 0 one has

E|X|p =

√
2p

π
σp Γ

(p+ 1

2

)
.

In fact, if the random variable X is subgaussian, then its (absolute) moments
are bounded above by an expression involving the subgaussian parameter and
the gamma function, somewhat similar to the right hand side of the above
expression for the moments of a Gaussian (see e.g. [14, p. 93]).

Proposition 3.2. If X is b-subgaussian, then for any p > 0 one has

E|X|p ≤ p 2
p
2 bp Γ

(p
2

)
.

Consequently, for p ≥ 1,

‖X‖Lp =
(
E|X|p

)1/p ≤ Cb
√
p.

Conversely, if a centered random variable X satisfies
(
E|X|p

)1/p ≤ Cb
√
p for

all p ≥ 1, then X is subgaussian.
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Proof. Assume X is subgaussian, and let p > 0. Using the distribution
formula and the subgaussian tail estimate,

E|X|p =

∫ ∞
0

ptp−1 P(|X| > t)dt ≤
∫ ∞
0

ptp−1 · 2e−t2/2b2dt,

using the substitution u = t2/2b2 the last integral is

= p(2b2)
p
2

∫ ∞
0

u
p
2
−1e−udu

= p 2
p
2 bp Γ

(p
2

)
.

In particular, using Stirling’s formula one gets
(
E|X|p

)1/p ≤ Cb
√
p, with C > 0

an absolute constant.
Conversely, suppose X satisfies

(
E|X|p

)1/p ≤ Cb
√
p for all p ≥ 1. Then,

using the Taylor expansion for the exponential function and Lebesgue’s Dom-
inated Convergence Theorem, for any a > 0 we have

E eaX2

=
∞∑
n=0

an E
(
|X|2n

)
n!

= 1 +
∞∑
n=1

an E
(
|X|2n

)
n!

≤ 1 +
∞∑
n=1

an
(
Cb
√

2n
)2n

n!
=
∞∑
n=0

an
(
Cb
√

2n
)2n

n!

Taking a small enough one gets E eaX2 ≤ 2. This proves that the random
variable X satisfies the ψ2-condition, so it is subgaussian. �

4 The Orlicz space Lψ2

By ψ2 we denote the Orlicz function

ψ2(x) = ex
2 − 1.

The purpose of this section is to construct a special normed space associated
to this function, and to give some insight into the ψ2-condition. This material
is borrowed from [10]. We define

Lψ2 =

{
f : Ω→ R measurable

∣∣∣∣ Eψ2

( |f |
t

)
<∞ for some t > 0

}
.

We claim that this is a linear space. For it is clear that the zero function
is in Lψ2 . Given any f ∈ Lψ2 and real number λ 6= 0, let t > 0 be such that
Eψ2

(
|f |/t

)
<∞, and set t′ = |λ|t. We have

Eψ2

( |λf |
t′

)
= Eψ2

( |f |
t

)
<∞,
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which proves that λf ∈ Lψ2 . Finally, if f, g ∈ Lψ2 , choose t, s > 0 such that
Eψ2

(
|f |/t

)
< ∞ and Eψ2

(
|g|/s

)
< ∞. Since the function ψ2 is increasing

and convex, we have

ψ2

( |f + g|
t+ s

)
≤ ψ2

( |f |+ |g|
t+ s

)
≤ t

t+ s
ψ2

( |f |
t

)
+

s

t+ s
ψ2

( |g|
s

)
.

Then, taking expectations,

Eψ2

( |f + g|
t+ s

)
≤ t

t+ s
Eψ2

( |f |
t

)
+

s

t+ s
Eψ2

( |g|
s

)
. (3)

Since the right hand side is finite, we see that f + g ∈ Lψ2 .

We define a functional ‖·‖ψ2 : Lψ2 → R by setting

‖f‖ψ2 = inf

{
t > 0

∣∣∣∣ Eψ2

( |f |
t

)
≤ 1

}
. (4)

Given f ∈ Lψ2 , choose t > 0 such that Eψ2

(
|f |/t

)
<∞. Since ψ2 is increasing

for positive values, it follows that Eψ2

(
|f |/s

)
< ∞ for all s ≥ t. Then, using

Lebesgue’s Dominated Convergence Theorem,

lim
s→∞

Eψ2

( |f |
s

)
= 0.

This implies that there is some t0 > 0 such that Eψ2

(
|f |/t0

)
≤ 1. Thus we

have proved that ‖f‖ψ2 < ∞ for f ∈ Lψ2 , showing that ‖·‖ψ2 is well defined.
It is clear that ‖·‖ψ2 ≥ 0.

If f = 0 a.e., then clearly ‖f‖ψ2 = 0. Conversely, let f ∈ Lψ2 be such that
‖f‖ψ2 = 0. It follows that Eψ2

(
n|f |

)
≤ 1 for all n ≥ 1. Assuming f 6= 0 a.e.,

that is, P(|f | > 0) > 0, we may find some positive real number δ such that the
event A := {ω ∈ Ω | |f(ω)| ≥ δ} has P(A) > 0. Then we have

ψ2

(
nδ
)
P(A) =

∫
A

ψ2

(
nδ
)
dP ≤

∫
A

ψ2

(
n|f |

)
dP ≤ Eψ2

(
n|f |

)
≤ 1,

and letting n→∞ we get a contradiction. Hence f = 0 a.e.

It is clear that if f ∈ Lψ2 and λ ∈ R, then ‖λf‖ψ2 = |λ| · ‖f‖ψ2 . This is
obvious for λ = 0, and for λ 6= 0 it follows form properties of the infimum.
Thus the functional ‖·‖ψ2 is (positively) homogeneous.
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To see that ‖·‖ψ2 satisfies the triangle inequality, let f, g ∈ Lψ2 , and choose
t, s > 0 such that Eψ2

(
|f |/t

)
≤ 1 and Eψ2

(
|g|/s

)
≤ 1. Using inequality (3),

we obtain

Eψ2

( |f + g|
t+ s

)
≤ t

t+ s
Eψ2

( |f |
t

)
+

s

t+ s
Eψ2

( |g|
s

)
≤ 1.

Thus ‖f + g‖ψ2 ≤ t+ s, and taking infimum one at a time over t and s we get
‖f + g‖ψ2 ≤ ‖f‖ψ2 + ‖g‖ψ2 .

We have established that ‖·‖ψ2 is a seminorm on Lψ2 . Upon identifying
functions in Lψ2 which are equal almost everywhere we obtain a normed space
denoted (Lψ2 , ‖·‖ψ2) and called the Orlicz space associated to the Orlicz func-
tion ψ2. Accordingly, the functional ‖·‖ψ2 is called an Orlicz norm. As is done
with the Lebesgue spaces Lp, we regard the elements of Lψ2 as functions, thus
avoiding the awkward treatment of ‘classes of functions’ and ‘representatives’
and so on. However, we should keep in mind that equality of elements in Lψ2

means equality almost everywhere.

Remark. This construction works as well for more general functions than ψ2.
If a function ψ : [0,∞) → R is continuous and convex with ψ(0) = 0 and
ψ(t) > 0 for t > 0 (necessarily ψ is increasing and limt→∞ ψ(t) = ∞), then
one may construct an Orlicz norm ‖·‖ψ associated to this function,

‖f‖ψ = inf

{
t > 0

∣∣∣∣ Eψ
( |f |
t

)
≤ 1

}
,

and an Orlicz space Lψ, following pretty much the construction we presented
above for ψ2(x) = ex

2 − 1. The reader is referred to [10] to see the details.
More about Orlicz norms and spaces can be seen in [5] or [6].

The next proposition, last of this note, helps elucidate the link between
subgaussian random variables, the ψ2-condition, and the Orlicz space Lψ2 .

Proposition 4.1.

‖f‖ψ2 ≤ 1 if and only if Eψ2

(
|f |
)
≤ 1 if and only if E ef2 ≤ 2.

Proof. The first equivalence is clear if ‖f‖ψ2 = 0; and in case ‖f‖ψ2 > 0,
setting a := ‖f‖ψ2 we first note that

Eψ2

( |f |
a

)
≤ 1.

If a ≤ 1, then Eψ2

(
|f |
)
≤ 1 by the monotonicity of the function ψ2. Con-

versely, if Eψ2

(
|f |
)
≤ 1, then 1 ∈

{
t > 0

∣∣ Eψ2

(
|f |/t

)}
, so upon taking the

infimum of this set we get a ≤ 1.
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The second equivalence is obvious. �

Comparing Proposition 4.1 and the ψ2-condition from Theorem 3.1, it is
now evident that a random variable is subgaussian precisely when it is an
element of the Orlicz space Lψ2 .
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aléatoires. Stud. Math. 19 (1960), 1 - 25.

[4] J.P. Kahane, Some random series of functions. 2nd ed. Cambridge
University Press, London, 1985.

[5] M.A. Krasnosel’skii and J.B. Rutickii, Convex Functions and Orlicz
Spaces. Noordhoff, Groningen, 1961.

[6] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II.
Reprint of the 1977, 1979 ed. Springer, Berlin Heidelberg New York,
1996.

[7] A.E. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann,
Smallest singular value of random matrices and geometry of random
polytopes. Adv. Math. 195 (2005), 491–523.

[8] M.B. Marcus and G. Pisier, Random Fourier series with applications
to harmonic analysis. Princeton University Press, Princeton, 1981.

[9] G. Pisier, Probabilistic Methods in the Geometry of Banach Spaces.
In: G. Letta, M. Pratelli, Probability and Analysis, Lecture Notes in
Mathematics 1206, pp. 167 - 241. Springer-Verlag, Berlin, 1986.

[10] M.M. Rao, Theory of Orlicz Spaces. M. Dekker, New York, 1991.

[11] M. Rudelson, Probabilistic and Combinatorial Methods in Analysis.
Unpublished lecture notes, CBMS Regional Meeting, Kent, 2006.

[12] M. Rudelson and R. Vershynin, The smallest singular value of a ran-
dom rectangular matrix. Comm. Pure Appl. Math. 62 (2009), 1707–
1739.

10



[13] K.R. Stromberg, Probability for Analysts. Chapman & Hall/CRC, New
York, 1994.

[14] D.W. Stroock, Probability Theory, An analytic view. 2nd. ed. Cam-
bridge University Press, Cambridge, 2011.

O. Rivasplata, Dept. of Math. and Stat. Sciences, University of Alberta, Edmon-

ton, AB, Canada T6G 2G1, orivasplata@ualberta.ca

11


