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Abstract

We extend probability estimates on the smallest singular value of
random matrices with independent entries to a class of sparse random
matrices. We show that one can relax a previously used condition of
uniform boundedness of the variances from below. This allows us to con-
sider matrices with null entries or, more generally, with entries having
small variances. Our results do not assume identical distribution of the
entries of a random matrix and help to clarify the role of the variances
of the entries. We also show that it is enough to require boundedness
from above of the r-th moment, r > 2, of the corresponding entries.
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1 Introduction and main results

Let N ≥ n be positive integers. In this paper we study the smallest singu-
lar value of N × n matrices Γ = (ξji), whose entries are real-valued random
variables obeying certain probability laws, and furthermore we are interested
in allowing these matrices to contain some null entries (or, more generally, to
contain entries with small variances). Thus we deal with sparse (or dilute)
random matrices. Sparse random matrices and sparse structures play an im-
portant role, as they arise naturally in many branches of pure and applied
mathematics. We refer to Chapter 7 of [5] for definitions, relevant discussions,
and references (see also the recent works [14, 31]).

Understanding the properties of random matrices, in particular the behav-
ior of their singular values (see the definitions in Section 2), is of importance
in several fields, including Asymptotic Geometric Analysis, Approximation

1Research partially supported by the E.W.R. Steacie Memorial Fellowship.
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Theory, Probability and Statistics. The study of extreme singular values in
classical random matrix theory concentrates on their limiting behavior as the
dimension grows to infinity. Such limiting behavior is now well understood for
various kinds of random matrices whose entries are independent in aggregate,
or independent up to the symmetry constraints (e.g. hermitian or unitary
matrices), in many cases even with identical distribution being required. We
refer to the following books, surveys, and recent papers for history, results,
and open problems in this direction [4, 5, 9, 11, 12, 22, 31, 33].

In the non-limiting asymptotic case very little was known till very recently.
In such a case one studies the rate of convergence, deviation inequalities, and
the general asymptotic behavior of singular values of a matrix as functions of
the dimensions, assuming that the dimensions are large enough (growing to
infinity). The Gaussian case, i.e. the case when the entries of the matrix are
independent N (0, 1) Gaussian, was treated independently in [8] and [29] (see
also [13] for related results, and the survey [7]). In the last decade the attention
shifted to other models, like matrices with independent subgaussian entries
(in particular, symmetric Bernoulli ±1 entries), independent entries satisfying
some moment conditions as well as matrices with independent columns or
rows satisfying some natural restrictions. Major achievements were obtained
in [2, 3, 18, 25, 26, 27, 30, 32].

In all previous non-limiting asymptotic results for random matrices with
independent entries, an important assumption was that the variances of all the
entries are bounded below by one, i.e. in a sense, that all entries are buffered
away from zero and thus cannot be too small. Such a condition is not natural
for some applications, for instance when one deals with models in the theory
of wireless communications, where signals may be lost (or some small noise
may appear), or with models in neural network theory, where the neurons are
not of full connectivity with each other, making sparse random matrices more
suited in modelling such partially connected systems.

The main goal of our paper is to show that one can significantly relax the
condition of boundedness from below of all entries, replacing it by averaging
type conditions. Thus our paper clarifies the role of the variances in the corre-
sponding previous results (cf. e.g. [18, 25, 26, 27]). Another advantage of our
results is that we require only boundedness (from above) of the r-th moments
for an arbitrary (fixed) r > 2. We would like to emphasize that we don’t
require identical distributions of all entries of a random matrix nor bounded-
ness of the subgaussian moment of entries (both conditions were crucial for
deep results of [27]). Moreover, the condition on entries “to be identically dis-
tributed” is clearly inconsistent with our model, as, under such a condition, if
one entry is zero then automatically all entries are zeros.

We describe now our setting and results. Our main results present estimates
for the smallest singular value sn(Γ) of large matrices Γ of the type described.
It turns out the methods used to establish those estimates depend on the aspect
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ratio of the matrices. The aspect ratio of an N × n matrix A is the ratio n/N
of number of columns to number of rows, or, more intuitively, the ratio “width
by height”. To have a suggestive terminology, we will say that such matrix A
is

• “tall” if n
N
≤ c0 for a small positive constant c0;

• “almost square” if n
N

is close to 1.

Clearly, a matrix is square when its aspect ratio is equal to 1.

Since we will deal with random matrices under various conditions, for the
sake of exposition clarity we list now all our conditions. For parameters r > 2,
µ ≥ 1, a1 > 0, a2 > 0, a3 ∈ (0, µ), and a4 ∈ (0, 1], we will consider N × n
random matrices Γ = (ξji)j≤N, i≤n whose entries are independent real-valued
centered random variables satisfying the following conditions:

(i) Moments: E |ξji|r ≤ µr for all j and i.

(ii) Norm: P
(
‖Γ‖ > a1

√
N
)
≤ e−a2N .

(iii) Columns: E‖(ξji)Nj=1‖22 =
∑N

j=1 E ξ2ji ≥ a23N for each i.

For almost square and square matrices we also will need the following condition
on rows.

(iv) Rows: |{i : E ξ2ji ≥ 1}| ≥ a4n for each j.

Notice that these conditions allow our matrices to contain many null (or small)
entries, in the sense that we don’t impose any restrictions on the variance of
a particular random variable. Naturally, in order for our random matrices to
have entries of different kinds, we do not require that the entries are identi-
cally distributed. Our model is different from the sparse matrix models used
e.g. in [14, 31], where zeros appeared randomly, i.e. starting from a random
matrix whose entries have variances bounded away from 0, each entry was
multiplied by another random variable of type 0/1. Our model is more similar
to those considered in [9], where a condition similar to (iii) was used for square
symmetric matrices.

It is important to highlight that the parameters µ, r, a1, a2, a3, a4 should
be regarded as constants which do not depend on the dimensions n, N . Note
also that the ratio µ/a3 is of particular importance (µ is responsible for the
maximal Lr-norm of entries, while a3 is an average-type substitution for the
lower bound on L2-norm of entries).

Before stating our main results let us comment our conditions in more
detail. The first condition is a standard requirement saying that the random
variables are not “too big”. For the limiting case it is known that one needs
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boundedness of the forth moments. It turns out that for our estimates it is
enough to ask boundedness of moments of order r = 2+ε only, which improves
all previous results. In particular, this was one of the questions raised in [34],
where the author proved corresponding estimates for entries with bounded 4+ε
moment, and asked about 2 + ε moment.

The second condition is crucial for many results on random matrices. We
recall that the norm of an N × n matrix is understood to be the operator
norm from `n2 to `N2 , also called the spectral norm, which is equal to the largest
singular value. In fact, the question “What are the models of random matri-
ces satisfying condition (ii)?” (and more generally, “What is the behavior of
the largest singular value?”) is one of the central questions in random ma-
trix theory. Such estimates are well known for the Gaussian and subgaussian
cases. We refer to [3, 16] and references therein for other models and recent
developments on this problem.

We would like to emphasize that condition (ii) is needed in order to get
probabilities exponentially close to one. Alternatively, one may substitute this
condition by

pN := P
(
‖Γ‖ > a1

√
N
)
< 1,

in which case one should add pN to the estimates of probabilities in our theo-
rems below.

The main novelty in our model are conditions (iii) and (iv). These two
conditions substitute the standard condition

E |ξji|2 ≥ 1 for all j, i, (1)

which was used in all previous works related to the smallest singular value of a
random matrix (in the non-limiting case). Removing such strong assumption
on all entries, we allow the possibility of zeros to appear among the entries
of a random matrix. Our conditions (iii) and (iv) should be compared with
the normalization conditions (1.1) and (1.16) in [9]. Our methods are similar
to those used in [18, 27], however we deal with a rather different model, and
correspondingly our proofs require much more delicate computations. In par-
ticular, the proof of key Proposition 4.1, which estimates the probability that
for a fixed vector x the Euclidean norm ‖Γx‖2 is small, is much more involved
(cf. the proof of [18, Proposition 3.4] or [26, Corollary 2.7]).

Of course we want to rule out matrices having a column or a row consisting
of zeros only, for if there is a zero column then immediately sn(Γ) = 0, while
if there is a zero row then the matrix Γ is essentially of size (N − 1) × n.
Hence we need some general assumptions on the columns and the rows of
the matrices under consideration. Our condition (iii) alone implies that each
column vector of the matrix has relatively big `2-norm. Moreover, condition
(iii) together with condition (i) guarantee that proportionally many rows have
`2-norms bounded away from 0. It turns out that condition (iii) is already
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enough for “tall” matrices, when N > Cn, as the first theorem below shows.
The cases of “almost square” and square matrices are more delicate, because N
becomes closer to n, and we need to control the behavior of rows more carefully.
Condition (iv) ensures that each row of the matrix has proportionally many
entries with variance at least one.

Now we state our results. The first theorem deals with “tall” matrices and
extends the corresponding result from [18] (for uniformly bounded above mean
zero random variables with bounded below variances this was shown in [6]).
Note that we use only three conditions, (i), (ii), and (iii), while condition (iv)
is not required for this result.

Theorem 1.1. Let r > 2, µ ≥ 1, a1, a2, a3 > 0 with a3 < µ. Let 1 ≤ n < N be
integers, and write N in the form N = (1+δ)n. Suppose Γ is an N×n matrix
whose entries are independent centered random variables such that conditions
(i), (ii) and (iii) are satisfied. There exist positive constants c1, c2 and δ0
(depending only on the parameters r, µ, a1, a2, a3) such that whenever δ ≥ δ0,
then

P
(
sn(Γ) ≤ c1

√
N
)
≤ e−c2N .

Remark. Our proof gives that c1 = c1(r, µ, a3), c2 = c2(r, µ, a2, a3) and
δ0 = δ0(r, µ, a1, a3).

Our next theorem is about “almost square” matrices. This theorem extends
[18, Theorem 3.1]. Here both conditions (iii) and (iv) are needed in order to
substitute condition (1).

Theorem 1.2. Let r > 2, µ ≥ 1, a1, a2 > 0, a3 ∈ (0, µ), a4 ∈ (0, 1]. Let
1 ≤ n < N be integers, and write N in the form N = (1 + δ)n. Suppose Γ
is an N × n matrix whose entries are independent centered random variables
such that conditions (i), (ii), (iii) and (iv) are satisfied. There exist positive
constants c1, c2, c̃1 and c̃2, depending only on the parameters r, µ, a1, a2, a3,
a4, and a positive constant γ = γ(r, µ, a1, a3) < 1, such that if

a4 > 1− γ and δ ≥ c̃1
ln(2 + c̃2n)

then
P
(
sn(Γ) ≤ c1

√
N
)
≤ e−c2N .

Remarks. 1. Our proof gives that c1 = c1(r, µ, a1, a3, δ), c2 = c2(r, µ, a2, a3),
c̃1 = c̃1(r, µ, a1, a3) and c̃2 = c̃2(r, µ, a1, a3, a4).
2. Note that for small n, say for n ≤ 2/c̃2, Theorem 1.2 is trivial for every
δ > 0, either by adjusting the constant c2 (for small N) or by using Theo-
rem 1.1 (for large N).
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Let us note that in a sense our Theorems 1.1 and 1.2 are incomparable
with the corresponding result of [27]. First, we don’t restrict our results only
to the subgaussian case. The requirement of boundedness of the subgaussian
moment is much stronger, implying in particular boundedness of moments of
all orders, which naturally yields stronger estimates. Second, another con-
dition essentially used in [27] is “entries are identically distributed.” As was
mentioned above, such a condition is inconsistent with our model, since having
one zero we immediately get the zero matrix.

Our third theorem shows that we can also extend to our setting the corre-
sponding results from [26], where the i.i.d. case was treated, and from [1, 2],
which dealt with the case of independent log-concave columns. Note again that
we work under the assumption of bounded r-th moment (for a fixed r > 2).
In fact in [26] two theorems about square matrices were proved. The first
one is for random matrices whose entries have bounded fourth moment. Our
Theorem 1.3 extends this result with much better probability. The second
main result of [26] requires the boundedness of subgaussian moments as well
as identical distributions of entries in each column, and, thus, is incomparable
with Theorem 1.3.

Theorem 1.3. Let r > 2, µ ≥ 1, a1, a2, a3, a4 > 0 with a3 < µ. Suppose Γ is
an n×n matrix whose entries are independent centered random variables such
that conditions (i), (ii), (iii) and (iv) are satisfied. Then there exists a positive
constant γ0 = γ0(r, µ, a1, a3) < 1 such that if a4 > 1− γ0 then for every ε ≥ 0

P
(
sn(Γ) ≤ εn−1/2

)
≤ C

(
ε+ n1−r/2),

where C depends on the parameters r, µ, a1, a2, a3, a4.

Finally we would like to mention that all results can be extended to the
complex case in a standard way.

Acknowledgment. The authors would like to thank N. Tomczak-Jaegermann
for many useful conversations. We also thank S. Spektor for showing us ref-
erence [24] and S. O’Rourke for showing us reference [9]. The second named
author thanks G. Schechtman for hosting him at the Weizmann Institute of
Science in Spring 2008, during which time part of this work was done.

2 Notation and preliminaries

We start this section by agreeing on the notation that we will use throughout.
For 1 ≤ p ≤ ∞, we write ‖x‖p for the `p-norm of x = (xi)i≥1, i.e. the norm
defined by

‖x‖p =
(∑
i≥1

|xi|p
)1/p

for p <∞ and ‖x‖∞ = sup
i≥1
|xi|.

6



Then, as usual, `np = (Rn, ‖·‖p). The unit ball of `np is denoted Bn
p . Also, Sn−1

denotes the unit sphere of `n2 , and e1, . . . , en is the canonical basis of `n2 .
We write 〈·, ·〉 for the standard inner product on Rn. By |x| we denote

the standard Euclidean norm (i.e. `2-norm) of the vector x = (xi)i≥1. On the
other hand, when A is a set, by |A| we denote the cardinality of A.

The support of a vector x = (xi)i≥1, meaning the set of indices correspond-
ing to nonzero coordinates of x, is denoted by supp(x).

Given a subspace E of Rn we denote by PE the orthogonal projection onto
E. If E = Rσ is the coordinate subspace corresponding to a set of coordinates
σ ⊂ {1, . . . , n}, we will write Pσ as a shorthand for PRσ .

Let N ⊂ D ⊂ Rn and ε > 0. Recall that N is called an ε-net of D (in the
Euclidean metric) if

D ⊂
⋃
v∈N

(v + εBn
2 ).

In case D is the unit sphere Sn−1 or the unit ball Bn
2 , a well known volumetric

argument (see for instance [23, Lemma 2.6]) establishes that for each ε > 0
there is an ε-net N of D with cardinality |N | ≤ (1 + 2/ε)n.

2.1 Singular values.

Suppose Γ is an N × n matrix with real entries. The singular values of Γ,
denoted sk(Γ), are the eigenvalues of the n× n matrix

√
Γt Γ, arranged in the

decreasing order. It is immediate that the singular values are all non-negative,
and further the number of nonzero singular values of Γ equals the rank of Γ.

The largest singular value s1(Γ) and the smallest singular value sn(Γ) are
particularly important. They may be equivalently given by the expressions

s1(Γ) = ‖Γ : `n2 → `N2 ‖ = sup
{
|Γx| : |x| = 1

}
, sn(Γ) = inf

{
|Γx| : |x| = 1

}
.

In particular for every vector x ∈ Rn one has

sn(Γ)|x| ≤ |Γx| ≤ s1(Γ)|x|. (2)

Note that the estimate on the left-hand side becomes trivial if sn(Γ) = 0.
On the other hand, when sn(Γ) > 0 the matrix Γ is a bijection on its image,
and can be regarded as an embedding from `n2 into `N2 , with (2) providing an
estimate for the distortion of the norms under Γ.

To estimate the smallest singular number, we will be using the following
equivalence, which clearly holds for every matrix Γ and every λ ≥ 0:

sn(Γ) ≤ λ ⇐⇒ ∃x ∈ Sn−1 : |Γx| ≤ λ. (3)

7



2.2 Subgaussian random variables.

All random quantities appearing in this work are defined on the same under-
lying probability space (Ω,A,P). We will present estimates for the smallest
singular value of matrices whose entries are independent random variables
satisfying certain assumptions. Our results are valid for a large class of matri-
ces which includes, in particular, those whose entries are subgaussian random
variables.

A (real-valued) random variable X is called subgaussian when there exists
a positive constant b such that for every t ∈ R

E etX ≤ eb
2t2/2.

When this condition is satisfied with a particular value of b > 0, we also say
that X is b-subgaussian, or subgaussian with parameter b. The minimal b in
this capacity is called the subgaussian moment of X.

It is an easy consequence of this definition that if X is b-subgaussian, then
E(X) = 0 and Var(X) ≤ b2. Thus all subgaussian random variables are
centered. The next proposition presents well-known equivalent conditions for
a centered random variable to be subgaussian.

Proposition 2.1. For a centered random variable X, the following statements
are equivalent:

(1) ∃b > 0, ∀t ∈ R, E etX ≤ eb
2t2/2

(2) ∃b > 0, ∀λ > 0, P(|X| ≥ λ) ≤ 2e−λ
2/b2

(3) ∃b > 0, ∀p ≥ 1, (E|X|p)1/p ≤ b
√
p

(4) ∃c > 0, E ecX2
< +∞

Two important examples of subgaussian random variables are the centered
Gaussian themselves and the symmetric Bernoulli ±1 random variables. In
general, any centered and bounded random variable is subgaussian.

We point out that, as consequence of the subgaussian tail estimate, the
norm of a matrix whose entries are independent subgaussian random variables
is of the order of

√
N with high probability. Namely, the following proposition

holds (see e.g. [18, Fact 2.4], where this was shown for symmetric random
variables, the case of centered is essentially the same).

Proposition 2.2. Let N ≥ n ≥ 1 be positive integers. Suppose Γ is an
N × n matrix whose entries are independent subgaussian random variables
with subgaussian parameters bounded above uniformly by b. Then there are
positive constants c, C (depending only on b) such that for every t > C

P
(
‖Γ‖ > t

√
N
)
≤ e−ct

2N .
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2.3 Compressible and incompressible vectors.

As equivalence (3) suggests, to estimate the smallest singular value of Γ we
estimate the norm |Γx| for vectors x ∈ Sn−1. More precisely, we will estimate
|Γx| individually for vectors in an appropriately chosen ε-net and, as usual,
we use the union bound. In the case of “tall” matrices just one single ε-net
is enough for this approximation method to work; but in the case of “almost
square” matrices, as well as for square matrices, we will need to split the
sphere into two parts according to whether the vector x is compressible or
incompressible, in the sense that we now define.

Let m ≤ n and ρ ∈ (0, 1). A vector x ∈ Rn is called

• m-sparse if |supp(x)| ≤ m, that is, if x has at most m nonzero entries.

• (m, ρ)-compressible if it is within Euclidean distance ρ from the set of
all m-sparse vectors.

• (m, ρ)-incompressible if it is not (m, ρ)-compressible.

The sets of sparse, compressible, and incompressible vectors will be denoted,
respectively, Sparse(m), Comp(m, ρ), and Incomp(m, ρ). The idea to split the
Euclidean sphere into two parts goes back to Kashin’s work [15] on orthogonal
decomposition of `2n1 , where the splitting was defined using the ratio of `2
and `1 norms. This idea was recently used by Schechtman ([28]) in the same
context. The splitting the sphere essentially as described above appeared in
[18, 19] and was later used in many works (e.g. in [26, 27]).

It is clear from these definitions that, for a vector x, the following holds:

x ∈ Comp(m, ρ) ⇐⇒ ∃σ ⊂ {1, . . . , n} with |σc| ≤ m such that |Pσx| ≤ ρ

x ∈ Incomp(m, ρ) ⇐⇒ ∀σ ⊂ {1, . . . , n} with |σc| ≤ m one has |Pσx| > ρ.
(4)

2.4 Two more results.

Here we formulate two results, which will be used in the next section. The first
one is a quantitative version of the Central Limit Theorem (CLT), called Berry-
Esséen inequality. The second one is a general form of the Paley-Zygmund
inequality (see e.g. [18, Lemma 3.5]).

Theorem 2.3 (Berry-Esséen CLT). Let 2 < r ≤ 3. Let ζ1, . . . , ζn be in-
dependent centered random variables with finite r-th moments and set σ2 :=∑n

k=1 E|ζk|2. Then for all t ∈ R∣∣∣∣P( 1

σ

n∑
k=1

ζk ≤ t

)
− P

(
g ≤ t

)∣∣∣∣ ≤ C

σr

n∑
k=1

E|ζk|r,

where g ∼ N (0, 1) and C is an absolute constant.
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Remarks.
1. The standard form of Berry-Esséen inequality requires finite 3-rd moment
(i.e., it is usually stated for r = 3), see e.g. [10, p. 544] or [21, p. 300]. The
form used here is from [24] (see Theorem 5.7 there).
2. If r ≥ 3, then clearly we have boundedness of 3-rd moment for free, and
in this case we use the standard form of Berry-Esséen inequality (i.e., with
r = 3).

Lemma 2.4 (Paley-Zygmund inequality). Let p ∈ (1,∞), q = p/(p− 1). Let
f ≥ 0 be a random variable with E f 2p < ∞. Then for every 0 ≤ λ ≤

√
E f 2

we have

P (f > λ) ≥ (E f 2 − λ2)q

(E f 2p)q/p
.

3 Small ball probabilities for random sums

In this section we gather auxiliary results related to random sums, their small
ball probabilities, etc., which are needed later. In fact, we adjust corresponding
results from [18] and [26] to our setting. These results are also of independent
interest. We provide proofs for the sake of completeness.

The following lemma provides a lower bound on the small ball probability
of a random sum. Its proof follows the steps of [18, Lemma 3.6] with the
appropriate modification to deal with centered random variables (rather than
symmetric), to remove the assumption that the variances are bounded from
below uniformly, and to replace the condition of finite 3-rd moments by finite
r-th moments (r > 2).

Lemma 3.1. Let 2 < r ≤ 3 and µ ≥ 1. Suppose ξ1, . . . , ξn are independent
centered random variables such that E|ξi|r ≤ µr for every i = 1, . . . , n. Let
x = (xi) ∈ `2 be such that |x| = 1. Then for every λ ≥ 0

P
(∣∣∣ n∑

i=1

ξixi

∣∣∣ > λ

)
≥
(

[E
∑n

i=1 ξ
2
i x

2
i − λ2]+

8µ2

)r/(r−2)
.

Proof. Define f =
∣∣∑n

i=1 ξixi
∣∣. Let ε1, . . . , εn be independent symmetric

Bernoulli ±1 random variables, which are also independent of ξ1 . . . , ξn. Us-
ing the symmetrization inequality [17, Lemma 6.3], and applying Khinchine’s
inequality, we obtain

E f r ≤ 2r E
∣∣∣ n∑
i=1

εiξixi

∣∣∣r = 2r Eξ Eε
∣∣∣∑
i≥1

εiξixi

∣∣∣r ≤ 2r2r/2 Eξ
(∑
i≥1

ξ2i x
2
i

)r/2
.

Now consider the set

S :=

{
s = (si) ∈ `1 : si ≥ 0 for every i and

∑
i≥1

si = 1

}
.
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We define a function ϕ : S → R by

ϕ(s) = Eξ
(∑
i≥1

ξ2i si

)r/2
.

This function is clearly convex, so that

sup
s∈S

ϕ(s) = sup
i≥1

ϕ(ei) = sup
i≥1

Eξ(ξ2i )r/2 ≤ µr.

Thus E f r ≤ 23r/2µr. On the other hand, using the independence of ξ1, . . . , ξn,

E f 2 = E
∑
i≥1

ξ2i x
2
i .

Lemma 2.4 with p = r/2, q = r/(r − 2) implies the desired estimate. �

The next proposition, which is a consequence of Theorem 2.3, allows us
to estimate the small ball probability. The proof goes along the same lines as
the proof of [18, Proposition 3.2] (see also [20, Proposition 3.4]), with slight
modifications to remove the assumption about variances. Recall that for a
subset σ ⊂ {1, 2, . . . , n}, Pσ denotes the coordinate projection onto Rσ.

Proposition 3.2. Let 2 < r ≤ 3 and µ ≥ 1. Let (ξi)
n
i=1 be independent

centered random variables with E|ξi|r ≤ µr for all i = 1, 2, . . . , n. There is a
universal constant c > 0 such that

(a) For every a < b and every x = (xi) ∈ Rn satisfying A :=
√
E
∑n

i=1 ξ
2
i x

2
i > 0

one has

P
(
a ≤

n∑
i=1

ξixi < b

)
≤ b− a√

2πA
+ c

(
‖x‖r
A

µ

)r
.

(b) For every t > 0, every x = (xi) ∈ Rn and every σ ⊂ {1, 2, . . . , n}
satisfying Aσ :=

√
E
∑

i∈σ ξ
2
i x

2
i > 0 one has

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤ 2t√

2πAσ
+ c

(
‖Pσx‖r
Aσ

µ

)r
.

The next corollary gives an estimate on the small ball probability in the
spirit of [26, Corollary 2.10].

Corollary 3.3. Let 2 < r ≤ 3 and µ ≥ 1. Let ξ1, . . . , ξn be independent
centered random variables with E|ξi|r ≤ µr for every i = 1, . . . , n. Suppose
x = (xi) ∈ Rn and σ ⊂ {1, . . . , n} are such that A ≤ |xi| ≤ B and E ξ2i ≥ 1
for all i ∈ σ. Then for all t ≥ 0

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤ C

|σ|r/2−1

(
t

A
+ µr

(B
A

)r)
,

where C > 0 is an absolute constant.
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Proof. By assumptions on coordinates of x we have

A2
σ := E

∑
i∈σ

ξ2i x
2
i ≥ |σ|A2

and
‖Pσx‖rr =

∑
i∈σ

|xi|r ≤ |σ|Br.

Then, by part (b) of Proposition 3.2

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤
√

2

π

t

A|σ|1/2
+ cµr

Br|σ|
Ar|σ|r/2

≤ C

|σ|r/2−1

(
t

A
+ µr

(B
A

)r)
.

�

We need the following lemma proved in [26, Lemma 3.4].

Lemma 3.4. Let γ, ρ ∈ (0, 1), and let x ∈ Incomp(γn, ρ). Then there exists a
set σ = σx ⊂ {1, . . . , n} of cardinality |σ| ≥ 1

2
ρ2γn and such that for all k ∈ σ

ρ√
2n
≤ |xk| ≤

1
√
γn
.

The next lemma is a version of [26, Lemma 3.7], modified in order to remove
the assumption “variances ≥ 1”.

Lemma 3.5. Let 2 < r ≤ 3 and µ ≥ 1. Let ξ1, . . . , ξn be independent centered
random variables with E|ξi|r ≤ µr for every i. Suppose σ := {i : E ξ2i ≥
1} has cardinality |σ| ≥ a4n. Let γ, ρ ∈ (0, 1), and consider a vector x ∈
Incomp(γn, ρ). Assuming that a4 + 1

2
ρ2γ > 1 we have for every t ≥ 0

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤ c(tn

3−r
2 + µrn

2−r
2 ),

where c is a positive constant which depends on γ, ρ, a4, and r.

Proof. Let σx be the set of spread coefficients of x from Lemma 3.4, so that
|σx| ≥ 1

2
ρ2γn. Set σ := σ ∩ σx. Then

|σ| = |σ|+ |σx| − |σ ∪ σx| ≥ a4n+
1

2
ρ2γn− n =: c0n.

By the construction, for every i ∈ σ we have

ρ√
2n
≤ |xi| ≤

1
√
γn
.

12



Applying Corollary 3.3 we obtain

sup
v∈R

P
(∣∣∣ n∑

i=1

xiξi − v
∣∣∣ < t

)
≤ C

|σ|r/2−1

(√
2nt

ρ
+ µr

( √2

ρ
√
γ

)r)
≤ C

(c0n)r/2−1

(√
2nt

ρ
+ µr

( √2

ρ
√
γ

)r)
≤ c(tn

3−r
2 + µrn

2−r
2 ).

�

4 “Tall” matrices (proof of Theorem 1.1)

In this section we prove Theorem 1.1, which establishes an estimate on the
smallest singular value for “tall” random matrices, meaning matrices whose
aspect ratio n/N is bounded above by a small positive constant (independent
of n and N). It is important to notice that Theorem 1.1 uses only conditions
(i), (ii), and (iii), i.e. no condition on the rows is required here.

The proof depends upon an estimate on the norm |Γx| for a fixed vector x,
which is provided by the following proposition.

Proposition 4.1. Let 1 ≤ n < N be positive integers. Suppose Γ is a matrix of
size N ×n whose entries are independent centered random variables satisfying
conditions (i), (ii) and (iii) for some 2 < r ≤ 3, µ ≥ 1 and a1, a2, a3 > 0 with
a3 < µ. Then for every x ∈ Sn−1 we have

P
(
|Γx| ≤ b1

√
N
)
≤ e−b2N ,

where b1, b2 > 0 depend only on µ, a3 and r.

Remark. Our proof gives that

b1 =
a43

25µ2

( a23
25µ2

)r/(r−2)
, b2 =

a23
23µ2

( a23
25µ2

)r/(r−2)
.

We postpone the proof of this technical result to the last section, so that
we may keep the flow of our exposition uninterrupted.

Proof of Theorem 1.1. Passing to r0 = min{3, r} we may assume without
loss of generality that r ≤ 3.

Let t ≥ 0 and Ω0 := {ω : ‖Γ‖ ≤ a1
√
N}. By (3) it is enough to estimate

the probability of the event

E := {ω : ∃x ∈ Sn−1 s.t. |Γx| ≤ t
√
N}.

To this end we use the inclusion E ⊂ (E ∩ Ω0) ∪ Ωc
0 and the union bound.
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To estimate P(E ∩ Ω0), let 0 < ε ≤ 1, and let N be an ε-net of Sn−1

with cardinality |N | ≤ (3/ε)n. For any x ∈ Sn−1 we can find y ∈ N such
that |x − y| ≤ ε. If further x satisfies |Γx| ≤ t

√
N , then the corresponding y

satisfies

|Γy| ≤ |Γx|+ ‖Γ‖ · |y − x| ≤ t
√
N + εa1

√
N = (t+ εa1)

√
N. (5)

Taking ε = min{1, t/a1}, we see that for each x ∈ Sn−1 satisfying |Γx| ≤ t
√
N

there is a corresponding y ∈ N such that |x−y| ≤ ε and |Γy| ≤ 2t
√
N . Hence,

using the union bound, setting t = b1/2 and using Proposition 4.1, one has

P(E ∩ Ω0) ≤
∑
y∈N

P
(
|Γy| ≤ 2t

√
N
)
≤ |N |e−b2N ≤

(3

ε

)n
e−b2N ,

where b1 and b2 are as in Proposition 4.1. Thus

P(E ∩ Ω0) ≤ exp
(
−b2N

2

)
as long as (3

ε

)n
≤ exp

(b2N
2

)
.

Bearing in mind that N = (1 + δ)n, we can see that the last condition is
satisfied if

δ ≥ δ0 := max

{
2

b2
ln
(6a1
b1

)
,

2

b2
ln 3

}
. (6)

To finish, we use P(E) ≤ P(E ∩ Ω0) + P(Ωc
0) with the estimate for P(E ∩ Ω0)

just obtained and the estimate P(Ωc
0) ≤ e−a2N coming from condition (ii). �

5 “Almost square” matrices (proof of Theo-

rem 1.2)

In this section we prove Theorem 1.2. We will be using all conditions (i)
through (iv). The two key ingredients for the proof of this theorem are Propo-
sition 4.1 and Proposition 3.2.

Proof of Theorem 1.2. Passing to r0 = min{3, r} we may assume without
loss of generality that r ≤ 3.

Consider the event

E := {ω : ∃x ∈ Sn−1 s.t. |Γx| ≤ t
√
N}.

By equivalence (3) we are to estimate P(E) with an appropriate value of t
(which will be specified later).

14



We split the set E into two sets EC and EI defined as follows:

EC = {ω : ∃x ∈ Sn−1 ∩ Comp(m, ρ) s.t. |Γx| ≤ t
√
N},

EI = {ω : ∃x ∈ Sn−1 ∩ Incomp(m, ρ) s.t. |Γx| ≤ t
√
N},

where m ≤ n and ρ ∈ (0, 1) will be specified later.
Define Ω0 := {ω : ‖Γ‖ ≤ a1

√
N}. We will estimate P(E) using the union

bound in the inclusion

E ⊂ (EC ∩ Ω0) ∪ (EI ∩ Ω0) ∪ Ωc
0. (7)

Our proof will require that t ≤ 1 (which will be satisfied once we choose t,
see (22) below); and furthermore that t and ρ satisfy

2t

a1
≤ ρ ≤ 1

4
. (8)

Case 1: Probability of EC ∩ Ω0. We work on the set Comp(m, ρ), where m ≤
n and ρ ∈ (0, 1) will be specified later.

Given x ∈ Sn−1 ∩ Comp(m, ρ), choose y ∈ Sparse(m) so that |y − x| ≤ ρ.
It is clear that we may choose such a y in Bn

2 (and thus 1− ρ ≤ |y| ≤ 1). Note
that on Ω0 we have ‖Γ‖ ≤ a1

√
N . Thus if x satisfies |Γx| ≤ t

√
N then

|Γy| ≤ |Γx|+ ‖Γ‖ · |y − x| ≤ t
√
N + a1ρ

√
N = (t+ a1ρ)

√
N.

Let N be a ρ-net in the set Bn
2 ∩ Sparse(m). We may choose such a net

with cardinality

|N | ≤
(
n

m

)(3

ρ

)m
≤
(en
m

)m(3

ρ

)m
=
(3en

ρm

)m
.

For y ∈ Bn
2 ∩ Sparse(m) chosen above, let v ∈ N be such that |v− y| ≤ ρ.

We observe that, by (8),

|v| ≥ |y| − ρ ≥ 1− 2ρ ≥ 1

2
,

and, by another use of (8),

|Γv| ≤ |Γy|+ ‖Γ‖ · |v − y| ≤ (t+ a1ρ)
√
N + ρa1

√
N

= (t+ 2a1ρ)
√
N ≤ 5a1ρ

2

√
N ≤ 5a1ρ

√
N |v|.

Hence

P(EC∩Ω0) ≤ P
(
∃v ∈ N s.t. |Γv| ≤ 5a1ρ

√
N |v|

)
≤
∑
v∈N

P
(
|Γv| ≤ 5a1ρ

√
N |v|

)
.

(9)
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Using Proposition 4.1, we obtain

P
(
|Γv| ≤ 5a1ρ

√
N |v|

)
≤ e−b2N ,

provided that
5a1ρ ≤ b1. (10)

We choose

ρ := min

{
1

4
,
b1

5a1

}
(11)

so that both (10) and the right hand side of (8) are true. Now, from (9), we
have

P(EC ∩ Ω0) ≤ |N |e−b2N ≤
(3en

ρm

)m
e−b2N .

Thus, if

m ln
(3en

ρm

)
≤ b2N

2
(12)

then
P(EC ∩ Ω0) ≤ e−

b2N
2 . (13)

Writing m = γn, we see that inequality (12) is satisfied if

γ ln
( 3e

ργ

)
≤ b2

2
,

so we choose

γ =
b2

4 ln
(

6e
ρb2

) . (14)

Case 2: Probability of EI ∩ Ω0. We work on the set Incomp(m, ρ), where ρ
is defined in (11) and m = γn with γ chosen in (14).

For convenience we set a := t1/(r−2)/a1. Since t ≤ 1 and in view of (8), we
observe that a ≤ ρ/2. Recall also that that on Ω0 we have ‖Γ‖ ≤ a1

√
N .

Let N be an a-net of Sn−1 with cardinality |N | ≤ (3/a)n. Let x ∈ Sn−1 ∩
Incomp(m, ρ) be such that |Γx| ≤ t

√
N . Recall that by (4) one has |Pσx| ≥ ρ

2

for every σ ⊂ {1, . . . , n} with |σc| ≤ m. Then there is v ∈ N such that |Γv| ≤
2t
√
N and with the additional property |Pσv| ≥ ρ

2
for each σ ⊂ {1, . . . , n}

with |σc| ≤ m. Indeed, choosing v ∈ N such that |x − v| ≤ a and using
a1a = t1/(r−2) ≤ t (which holds by the choice of a), we have

|Γv| ≤ |Γx|+ ‖Γ‖ · |v − x| ≤ t
√
N + a1

√
Na ≤ 2t

√
N

and
|Pσv| ≥ |Pσx| − |Pσ(v − x)| ≥ ρ− a ≥ ρ

2
,

where we used the condition 2a ≤ 2t/a1 ≤ ρ, required in (8).
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Denote by A the set of all v ∈ N with the property that for each set
σ ⊂ {1, . . . , n} with |σc| ≤ m we have |Pσv| ≥ ρ

2
. Then

P(EI ∩ Ω0) ≤ P
(
∃v ∈ A : |Γv| ≤ 2t

√
N
)
. (15)

Now, for each fixed v = (vi) ∈ A we have

P
(
|Γv|2 ≤ 4t2N

)
= P

(
N − 1

4t2
|Γv|2 ≥ 0

)
≤ E exp

{
N − 1

4t2
|Γv|2

}
= eN E exp

{
− 1

4t2

N∑
j=1

∣∣∣ n∑
i=1

ξjivi

∣∣∣2}
= eN

N∏
j=1

E exp
{
− 1

4t2

∣∣∣ n∑
i=1

ξjivi

∣∣∣2}, (16)

and our goal is to make this last expression small. To estimate the expectations
we use the distribution formula:

E exp
{
− 1

4t2

∣∣∣ n∑
i=1

ξjivi

∣∣∣2} =

∫ 1

0

P
(

exp
{
− 1

4t2

∣∣∣ n∑
i=1

ξjivi

∣∣∣2} > s

)
ds

=

∫ ∞
0

ue−u
2/2 P

(∣∣∣ n∑
i=1

ξjivi

∣∣∣ < √2tu

)
du. (17)

It is now apparent that we need to estimate the quantities

fj(λ) := P
(∣∣∣ n∑

i=1

ξjivi

∣∣∣ < λ

)
, j ≤ N.

To this end, note that for each row j ∈ {1, . . . , N} there exists σj ⊂ {1, . . . , n}
with cardinality |σj| ≥ a4n such that E ξ2ji ≥ 1 for all i ∈ σj (this is condition
(iv)). Also, for each fixed v, set

σv := {i : |vi| > a}.

Since v ∈ Sn−1 we have |σv| ≤ 1/a2.
Set σj = σj \ σv, and note that

|σj| ≥ a4n−
1

a2
.

It follows that |σcj| ≤ (1− a4)n+ 1
a2

, so to have |σcj| ≤ m it suffices to require

(1− a4)n+
1

a2
≤ m. (18)
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Note that (18), in particular, implies 1/a2 ≤ a4n ≤ n. Recall that m = γn,
where γ was chosen in (14). Then inequality (18) is satisfied if a4 > 1 − γ
(which is the condition on γ in our Theorem) and

t ≥
(

a1√
(γ + a4 − 1)n

)r−2
. (19)

Now, since |σcj| ≤ m, we have |Pσjv| ≥ ρ/2, and hence

A2
j := E

∑
i∈σj

ξ2jiv
2
i ≥

ρ2

4

(where we have used the property E ξ2ji ≥ 1 for i ∈ σj). Consequently, using
Proposition 3.2, and keeping in mind |vi| ≤ a for i ∈ σj, we get

fj(λ) ≤ c
(λ
ρ

+
µr

ρr
‖Pσjv‖rr

)
≤ c
(λ
ρ

+
µr

ρr
‖Pσjv‖r−2∞ · |Pσjv|2

)
≤ c
(λ
ρ

+
µrar−2

ρr

)
for some absolute constant c ≥ 1. Then, continuing from (17) we have

E exp
{
− 1

4t2

∣∣∣ n∑
i=1

ξjivi

∣∣∣2} =

∫ ∞
0

ue−u
2/2fj(

√
2tu)du

≤ c

∫ ∞
0

ue−u
2/2
(√2tu

ρ
+
µrar−2

ρr

)
du

=
c
√

2t

ρ

∫ ∞
0

u2e−u
2/2du+

cµrar−2

ρr

∫ ∞
0

ue−u
2/2du

=
c
√
πt

ρ
+

cµrt

ρrar−21

= c3t,

where

c3 := c
(√π
ρ

+
µr

ρrar−21

)
. (20)

Therefore, from (16), we get (for each fixed v ∈ A)

P
(
|Γv| ≤ 2t

√
N
)
≤ eN(c3t)

N = (c3et)
N ,

and from this, in (15) we get

P(EI ∩ Ω0) ≤ |A|(c3et)N ≤
(3

a

)n
(c3et)

N =
(3a1
t

)n
(c3et)

N .

Then we can make
P(EI ∩ Ω0) ≤ e−N (21)
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provided that

t ≤ 1

c3e2

( 1

3a1c3e2

)1/δ
. (22)

Choose t to satisfy equality in (22). Note

t

a1
≤ 1

c3e2a1
≤ ρ

ce2
√
π
, (23)

so the left hand side of (8) holds. Finally note that (19) is satisfied whenever

δ ≥
2
r−2 ln(3a1c3e

2)

ln
(

(γ+a4−1)n
a21(c3e

2)2/(r−2)

) =:
c̃1

ln(c̃2n)
.

To finish, we take probabilities in (7) and we use the estimates for P(EC ∩Ω0)
and P(EI ∩ Ω0) we have found in (13) and (21), respectively, combined with
the estimate P(Ωc

0) ≤ e−a2N coming from condition (ii). This shows that, with
the chosen t, we have P(E) ≤ e−b2N/2 + e−N + e−a2N , which completes the
proof. �

6 Square matrices (proof of Theorem 1.3)

In this section our goal is to prove Theorem 1.3. We are going to use two
lemmas from [26]. The first one is [26, Lemma 3.5]. Note that the proof given
there works for any random matrix.

Lemma 6.1. Let Γ be any random matrix of size m×n. Let X1, . . . , Xn denote
the columns of Γ and let Hk denote the span of all column vectors except the
k-th. Then for every γ, ρ ∈ (0, 1) and every ε > 0 one has

P
(

inf
x∈F
|Γx| ≤ ερn−1/2

)
≤ 1

γn

n∑
k=1

P
(
dist(Xk, Hk) < ε

)
,

where F = Sn−1 ∩ Incomp(γn, ρ).

The next lemma is similar to [26, Lemma 3.8]. To prove it one would
repeat the proof of that lemma, replacing [26, Lemma 3.7] used there with our
Lemma 3.5.

Lemma 6.2. Let r ∈ (2, 3] and Γ be a random matrix as in Theorem 1.3.
Let X1, . . . , Xn denote its column vectors, and consider the subspace Hn =
span(X1, . . . , Xn−1). Then there exists a positive constant γ0 = γ0(r, µ, a1, a3) <
1 such that if a4 > 1− γ0 then for every ε ≥ 0 one has

P
(

dist(Xn, Hn) < ε and ‖Γ‖ ≤ a1n
1/2
)
≤ c(εn

3−r
2 + µrn

2−r
2 ),

where c depends on r, µ, a1, a3, and a4.
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Now we are ready for the proof of Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality we assume ε ≤ a1/2
(otherwise choose C = 2/a1 and we are done). We also assume that r ≤ 3
(otherwise we pass to r0 = min{3, r}).

Consider the event

E := {ω : ∃x ∈ Sn−1 s.t. |Γx| ≤ tn−1/2}.
By equivalence (3) we are to estimate P(E) with an appropriate value of t
(which will be specified later).

As in the proof of Theorem 1.2, we split the set E into the sets EC and EI
defined as follows:

EC = {ω : ∃x ∈ Sn−1 ∩ Comp(m, ρ) s.t. |Γx| ≤ tn−1/2},
EI = {ω : ∃x ∈ Sn−1 ∩ Incomp(m, ρ) s.t. |Γx| ≤ tn−1/2}.

Define Ω0 := {ω : ‖Γ‖ ≤ a1
√
n}. We will estimate P(E) using the union

bound in the inclusion

E ⊂ (EC ∩ Ω0) ∪ EI ∪ Ωc
0. (24)

Case 1: Probability of EC ∩ Ω0. The proof of this case is almost line to line
repetition of the corresponding proof in Theorem 1.2 (see Case 1 there). Let
m ≤ n and ρ ∈ (0, 1) be specified later. Using approximation argument and
the union bound as in the proof of Case 1 in Theorem 1.2, and choosing

ρ := min

{
1

4
,
b1

5a1

}
, γ :=

b2

4 ln
(

6e
ρb2

) , m = γn, (25)

we obtain
P(EC ∩ Ω0) ≤ e−b2n/2, (26)

provided that
2t

a1
≤ ρ. (27)

Case 2: Probability of EI . We work on the set Incomp(m, ρ), where m = γn
and γ, ρ chosen in (25).

Using Lemma 6.1 with ε = t/ρ, and also applying Lemma 6.2, we get

P(EI) ≤
1

γn

n∑
k=1

P
(
dist(Xk, Hk) < t/ρ

)
≤ 1

γn

n∑
k=1

{
P
(
dist(Xk, Hk) < t/ρ & ‖Γ‖ ≤ a1

√
n
)

+ P
(
‖Γ‖ > a1

√
n
)}

≤ 1

γn

n∑
k=1

{
c(εn

3−r
2 + n

2−r
2 ) + e−a2n

}
≤ c

γ
(εn

3−r
2 + n

2−r
2 ) +

1

γ
e−a2n. (28)
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Also notice that our choice t = ερ and our assumption ε ≤ a1/2 guarantee
that t satisfies (27).

To finish the proof, we take probabilities in (24), and we use the estimates
for P(EC∩Ω0) and for P(EI) obtained in (26) and (28), respectively, combined
with the estimate P(Ωc

0) ≤ e−a2n coming from condition (ii). This way we
obtain

P(E) ≤ e−b2n/2 +
c

γ
(εn

3−r
2 + n

2−r
2 ) +

1

γ
e−a2n + e−a2n ≤ C(εn

3−r
2 + n

2−r
2 )

for a suitable constant C. �

7 Proof of Proposition 4.1

Take an arbitrary x = (x1, . . . , xn) ∈ Rn with |x| = 1. For a > 0 (a parameter
whose value will be specified later), define a set of “good” rows as follows:

J = J(a) =

{
j ∈ {1, . . . , N} : E

n∑
i=1

ξ2jix
2
i ≥ a

}
.

Suppose that the cardinality of set J is |J | = αN for some α ∈ [0, 1]. Note
that for each index j = 1, . . . , N we have

E
n∑
i=1

ξ2jix
2
i ≤ max

1≤i≤n
E ξ2ji ≤ max

1≤i≤n
(E ξrji)2/r ≤ µ2.

Then on one hand we have

N∑
j=1

(
E

n∑
i=1

ξ2jix
2
i

)
=
∑
j∈J

(
E

n∑
i=1

ξ2jix
2
i

)
+
∑
j∈Jc

(
E

n∑
i=1

ξ2jix
2
i

)
≤ µ2αN + a(1− α)N,

while on the other hand, using condition (iii),

N∑
j=1

(
E

n∑
i=1

ξ2jix
2
i

)
=

n∑
i=1

(
E

N∑
j=1

ξ2ji

)
x2i ≥

n∑
i=1

a23Nx
2
i = a23N.

Hence we have µ2αN + a(1− α)N ≥ a23N , so α satisfies

α ≥ a23 − a
µ2 − a

. (29)
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Note that for each j = 1, . . . , N , the j-th entry of Γx is (Γx)j =
∑n

i=1 ξjixi.
Define fj :=

∣∣∑n
i=1 ξjixi

∣∣, so

|Γx|2 =
N∑
j=1

f 2
j .

Clearly f1, . . . , fN are independent. For any t, τ > 0 we have

P
(
|Γx|2 ≤ t2N

)
= P

( N∑
j=1

f 2
j ≤ t2N

)
= P

(
τN − τ

t2

N∑
j=1

f 2
j ≥ 0

)

≤ E exp

(
τN − τ

t2

N∑
j=1

f 2
j

)
= eτN

N∏
j=1

E exp

(
−
τf 2

j

t2

)
. (30)

From Lemma 3.1 we know that for every j = 1, . . . , N ,

P(fj > λ) ≥
(

[E
∑n

i=1 ξ
2
jix

2
i − λ2]+

8µ2

)r/(r−2)
=: βj(r), (31)

Note that for every j ∈ J one has

βj ≥
(

[a− λ2]+
8µ2

)r/(r−2)
. (32)

For arbitrary t > 0, η > 0 and λ > 0, set τ := ηt2

λ2
. For each j = 1, . . . , N we

have

E exp
(
−
τf 2

j

t2

)
=

∫ 1

0

P
(

exp
(
−
ηf 2

j

λ2

)
> s

)
ds

=

∫ e−η

0

P
(

exp
(ηf 2

j

λ2

)
<

1

s

)
ds+

∫ 1

e−η
P
(

exp
(ηf 2

j

λ2

)
<

1

s

)
ds

≤ e−η + P(fj < λ)(1− e−η).

Choosing η = ln 2 and applying (31), we obtain

E exp
(
−
τf 2

j

t2

)
≤ e−η + (1− βj(r))(1− e−η) = 1− βj(r)

2
≤ exp

(
−βj(r)

2

)
.

Since τ < t2

λ2
, inequality (30) implies

P
(
|Γx|2 ≤ t2N

)
≤ eτN

N∏
j=1

e−βj(r)/2 ≤ e(t
2/λ2)N

∏
j∈J

e−βj(r)/2. (33)
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Taking a = a23/2 and λ = a3/2 and using (32) we observe that for every

j ∈ J we have βj ≥
( a23
32µ2

)r/(r−2)
. Also note this choice of a and (29) imply

α ≥ a23/(2µ
2). Now let

t2 :=
a43

25µ2

( a23
25µ2

)r/(r−2)
.

Then continuing from (33) we obtain

P
(
|Γx|2 ≤ a43

25µ2

( a23
25µ2

)r/(r−2)
N

)
≤ exp

{
− a23

23µ2

( a23
25µ2

)r/(r−2)
N

}
.

This completes the proof. �
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