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The internal cross-sectional area of collapsible tubes underpoing self-excited oscillation is
investigated as a function of both time and streamwise position. Numerical predictions are
made using a nonlinear one-dimensional model which incorporates longitudinal wall-
tension effects and dissipation due to flow separation. Experimental measurements are
made with a conductimetric catheter at successively incremented axial locations, using the
sharply defined minimum of the pressure waveform at the downstream end of the tube to
provide a phase reference. This methodology is limited to strictly periodic oscillations. The
waveformn chosen for both simulation and observation was of low frequency, with a
prolonged collapse phase. Despite unavoidable parameter differences between theory and
experiment, the qualitative similarity between the predicted and empirical results suggests
that the model captures many essential features of this mode of collapsible-tube oscillation,
The model has also been previously shown to predict the observed change to a mode of
some two to three times the frequency as the pressure outside the tube is increased; the
present observations support the prediction that the two modes share a common
mechanism.

1. INTRODUCTION

THE SIMULTANEOUS APPLICATION TO FLEXIBLE TUBES of a through-flow at substantial
Reynolds numbers and of an external pressure causing the cross-section to flatten leads
readily to the production of sustained oscillations. These oscillations present particular
difficulties to both theoretician and empiricist. Theoretical models must encompass
both the strong nonlinearity of the relationship between local transmural pressure and
local cross-sectional area, and the high degree of coupling between the fluid flow and
the houndary configuration. Measurements must avoid interfering with the vigorous
motion of the tube wall and, equally, leave unperturbed the flow patterns within.

A degree of similarity is evident in the responses of mathematicians and experimen-
talists to these challenges. The theoretical lumped-parameter model (Conrad 1969,
Schoendorfer & Shapiro 1977, Cancelli & Chiocchia 1979; Bertram & Pedley 1982)
specifies the time-varying quantities at only a few important sites along the tube, and
thereby secures the advantage of working with ordinary differential equations. Such
models can incorporate ecffects arising at regions of rapid change of shape or
cross-section, for example flow separation, but no description of wave travel is possible.
A parallel scheme of experimental approach has involved the measurement of

0889-9746/94 /060637 + 24 $08.00 © 1994 Academic Press Limited



638 C. D. BERTRAM ET AL.

time-variables at chosen fixed sites, usually at the tube extremities [e.g., Conrad (1969);
Bonis (1979); Lyon et al. (1981); Ohba er al. (1984)]. This has sometimes been extended
to the measurement of a specific time-variable within the tube, using either a catheter
(Bertram 1986) or through-the-wall technique (Mazghi 1986) or an otherwise prepared
tube (Bertram & Ribrean 1989). By common consent, the utility of further such
investigations is waning. Theoretical progress now rests largely with the hybrid models
which combine lumped eclements in regions of rapid change with continuous spatial
evolution of time-variables elsewhere {Cancelli & Pedley 1985; Jensen & Pediey 1989:
Matsuzaki & Matsumoto 1989). For a full test, such models demand experimental data
on one or more of the critical variables in equivalent distributed form. No ideal way of
providing these data currently exists. Multi-sensor catheter techniques are not feasible
for the number of distinct locations required. Perhaps the closest to the ideal is the
measurement of cross-sectional area from oblique images of lines projected or scribed
on the outside wall (Rosenberg et al. 1990; Elad et al. 1992). One camera then yields
data for as many locations as there are lines. In practice there are problems: the
resolution is dubious, and assumption rather than measurement provides the parts of
the perimeter not visible to the camera’s line of sight. As currently realized, the system
is also complex and expensive.

Pravided that strictly repetitive oscillations are to be observed, a simpler alternative
is to build up a picture of the desired variable by successively recording its
time-waveform at progressively incremented locations. For a one-dimensional formula-
tion, the three variables of interest are the tube cross-sectional area, a(x, ), the
internal pressure, p(x, ) and the flow-speed, u(x, ), where x is the longitudinal
coordinate and r time. It is assumed that the cross-stream variation of p and « is small
enough for each to be represented by its cross-sectional average. While u# does not
therefore correspond to any experimentally measurable guantity, the product au = (3,
the local volume flow-rate, is accessible experimentally, However, it is easier to
measure the local area, with the impedance technique (McClurken 1978), or the local
pressure. We have investigated the practicality of such incremental acquisition in the
context of collapsible-tube oscillations (Bertram & Sheppeard 1991) using a conduc-
timetric catheter and a conveyor belt, as described by Kececioglu er al. (1981) for the
acquisition of static area-distance profiles. The results obtained by this technique are
compared below with area-position profiles computed from the theoretical model used
by Jensen {1992). The model predicts several other quantities in addition to those
which are measured experimentally here.

The parameter dependence of the experimental results is best viewed in terms of
what in nonlinear dynamics is called a control-space diagram. The axes are the two
control variables used (o set a required operating point. These are the upstream
pressure, p,, driving the flow, and the pressure external to the tube, p.. The
control-space diagram shows regions of oscillatory instability, at low frequency
(2-4 Hz). intermediate frequency (8-12 Hz), and high frequency (from about 60 Hz
upwards). These regions are quite distinct. However, as shown previously (Bertram er
al. 1991}, a modified control-space diagram is preferable for this system, utilizing
instead of p, the time-averaged negative transmural pressure at the downstream end of
the tube, i.e. external pressure minus mean internal pressure at the downstream end, or
P.>=p.— p,. In this form the diagram also shows explicitly the regions of divergent
instability (Bertram 1986; Bertram et al. 1990), where the dependent variables A (the
time-averaged tube minimum area), 7, (the time-averaged pressure at the upstream
end of the tube), p,, @, and O, (the time-averaged flow rates at each end of the tube)
all change discontinuously as p, is progressively adjusted.
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Because of the jump in frequency between successive oscillatory regions found
experimentally, and the large gap in frequency between the observed intermediate-
frequency and high-frequency regions in particular (Bertram er af. 1990), we were
initially inchined to regard these regions as being the result of different oscillation
mechanisms. However, subsequently, calculation showed that regions with approxim-
ately these frequency ratios might be due to different modes of a single oscillation
mechanism (Jensen 1990b), the spacing of the frequency bands being accounted for by
the dispersive effect of longitudinal wall-tension. Jensen (1990b) also showed that for
small-amplitude oscillations, at parameter values near the apppropriate boundaries of
stability, each mode exhibited a different number of maxima along the tube in the
amplitude of area fuctuations. More recent computations show that for larger-
amplitude osciilations, such a mode-specific pattern of maxima persists, but is less
distinct {sec below). Thus an important test of the theory is to compare the theoretical
and observed patterns of tube area versus distance along the tube and versus time, in
the different regions or modes, and see whether the predicted patterns of maxima are
observed. The results of this test form the main subject of this paper. The methods
used to measure the area profiles are described in Section 2. The theoretical model is
briefly summarized in Section 3. The observations are presented in Section 4. The
corresponding theoretical predictions are described in Section 5. In Section 6, the
measured and predicted area—distance profiles are examined further, in conjunction
with numerical predictions of variables that could not be measured, to provide a
detailed analysis of events during a cycle of oscillation. The overall success of the
comparison is discussed in Section 7.

2. EXPERIMENTAL METHODS

In the impedance technique for measuring local cross-sectional area of a tube
(McClurken 1978), an alternating electric current is arranged to flow between
electrodes up- and downstream of the tube, through the ionically conducting liquid
within. This creates an alternating electric field gradient which is measured as a small
potential difference using a catheter with two closely spaced electrodes. For area-
distance profiles, the catheter was made part of a conveyor belt arrangement, so that it
could be kept taut and its position could be readily incremented, and then recorded
electrically via a potentiometer linked to the belt motion. At each position a recording
of time-varying area was made, then the belt was moved on a constant amount, pulling
the catheter through the tube wia leakproof glands. If the catheter lies on the axis of
the tube, it interferes with the motion of the throat at the point of maximal collapse.
Instead, it was positioned so that it lay in one side-lobe of the cross-section. In this
position the system still registers the local cross-section of the whole tube (Bertram
1987).

The arca-measurement system has been shown previously to give an output voltage
which is linearly related to the area of the conduit (McClurken 1978; Bertram 1986).
The linearity does not extend right to zero, because the electronic divider responsible
for taking the reciprocal of the demodulated catheter-measured voltage difference has
a limited dynamic range. By extrapolation of calibration tests it can be verified that the
zero-voltage intercept corresponds to the cross-sectional area of the catheter itself
(Bertram 1987). This was used as one point of calibration; the other was the
cross-sectional arca of the tube at zero transmural pressure, which by definition is
@ = 1. Prior to measurement, the performance of the system was checked by measuring
the area profile of a long cylindrical tube, because various phenomena can cause the
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Figure 1. Area versus axial position and time for an LD oscillation, of frequency 4-3 Hz. Lines show area
measurements made at 29 fixed positions. Parameter values: p,, = 66 and 7,, = 48-1 kPa, giving Q = 220ml/s.
Time increases in the direction away from the viewer. The measurements shown cover the downstream

75 mm {32%) of the tube.

measured are to vary systematically from one end to the other. Countermeasures
include maximizing the common-mode rejection performance of the processing
electronics (Kececioglu er al. 1981). The calibration was checked with respect to the
known area of the rigid pipe to which the flexible tube was joined at each end.

The o, x (axial position) and p, signals were digitized at 500 Hz using the grealer
part of the range of a 12-bit a.d.c. Subsequently the whole series of recordings at
different positions were lined up and re-plotted as a three-dimensional graph of area
versus distance and time; see for example Figure 1. For the lining-up, the sharply
defined minimum of p, was used as a timing reference.

The accuracy of the technique was checked in two ways. First, since this metho-
dology relies on the operating point giving stable oscillations which can be overlaid,
we measured the extent of discrepancy between cycles recorded at the same position,
due to either cycle-to-cycle variation or error in the lining-up precedure using p;. An
example of several overlaid cycles under these conditions is shown in Figure 2.

Second, the amount of additional error due to inaccurate catheter positioning was
assessed by recording many cycles at one position but displacing and restoring the
catheter position in between. From these tests it was calculated that the total combined
error in o was of the order of +0-02 when da/d¢ was small, amounting to 7% when «
was small and less when it was large.

The operating point used for these experiments was from the region identified as LD
by Bertram et al. (1991) on the control-space diagram for a tube approximately 17
diameters long and for a low value of downstream resistance [see Figure 2(g) of
Bertram et al. (1991)]; further experimental parameters are given in Appendix A]. The
LD notation denotes an oscillation of low frequency (about 4 Hz) with a relatively
prolonged phase of tube collapse at the throat. This mode was chosen in preference to
the other low-frequency mode (LU), in which the throat cellapse is brief relative to the
cycle period, because the LD mode resembled more closely the sinusoidal escillations
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Figure 2. Errors due 1o lining up and to incompletely periodic oscillation. The waveforms shown are
alxy, t) and p,(t) versus time s, where x, is the fixed position of the catheter electrodes, near the (slightly
variable) point of minimum area. The oscillation is annotated in six phases, (i}-(vi), for comparison with

Figure 9,

described by the linear stability theory used by Jensen (1990b). Recordings digitized at
200 Hz were aiso made at an I-region (intermediate-frequency) operating point.

3. THE THEORETICAL MODEL

The theoretical model is based upon four major assumptions: (i} the dominant source
of dissipation is due to flow separation; (ii) the tube wall is thin enough to be treated as
a thin membrane; (iii) the tube shape and the flow vary over long wavelengths,
allowing a one-dimensional description of the problem; and (iv) the dominant forces in
the tube wall are transverse bending (or stresses) and longitudinal tension.

The equations of the model, derived using these assumptions, have been given by
Jensen (1990b, 1992}, but for convenience are repeated here. The system is formed of
fluid mass and axial-momentum conservation equations, which in nondimensional form
are

a, + (au), =0, W, T yui, = —py

(subscripts in x and t denote partial derivatives), the latter modified by a factor x to
take account of the energy losses associated with flow separation beyond a constriction
in the tube, and a pressure-area relationship

l—-a*for0<a=1
k(e —1) fora>1

comprising a nonlinear ‘tube law’ P(a) (in which k is a constant) representing

pp= P -ba  with 9=
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transverse stresses and bending in the tube wall, and a longitudinal tension term
proportional to a,,. The latter makes the system fourth-order in space, so the
boundary conditions were that & = 1 at each end of the tube and that the pressure at
these points matches that determined by the apparatus up- and downstream, thereby
taking into account the resistance and inertance of the rigid parts of the system {for
details see Appendix A). This model is a development of that proposed by Cancelli &
Pedley (1985), and shares many features, in particular the expression d = (¥ — 1)uu, for
dissipation due to flow separation (¥ =1, so that d =0, where the flow was fully
attached; y = (-2 arbitrarily, where the flow was separated). An important difference
from that model concerns the location at which the flow leaving the tube throat is
assumed to separate. Cancelli & Pedley (1985) and Matsuzaki & Matsumoto (1989)
assumed that the flow separates at a point which depends hysteretically on the
magnitude of the adverse pressure gradient. As in Jensen (1992), the separation point
was here chosen to be where the flow speed was maximal (so that the dissipation
increased smoothly from zero across the separation point). In steady flow, this is also
the point of minimum area and, in the absence of other dissipation mechanisms (Jensen
& Pedley 1989), of minimum pressure. Contributions to the dissipation in the flow due
to frictional forces are neglected in this model, being assumed negligible compared to
the dissipation associated with flow separation.

In the theoretical model, the natural parameters governing steady flows are the
values of O and p,, (Jensen & Pedley 1989). These same two quantities were used to
parametrize unsteady solutions also, because for the values of other parameters
assumed in the calculations, there existed unique steady (nondimensional) values of p,,
and p, for a given @ and p,, (Jensen 1990b). (Note that in general the steady Q meant
here is that in the absence of oscillation, and is not the same quantity as the
time-averaged O, during oscillation.)

The experimental and theoretical parameterizations are therefore equivalent.
Complete matching of parameter values was not possible, however, for the following
reason. The model is one-dimensional. and therefore rests centrally on assumption (iii)
above that the tube shape varies slowly along the tube. The validity of this assumption
requires Iy« Ly, where D is the internal diameter of the tube and L, [defined as
(DyT/K,)"?, where T is the longitudinal tension per unit perimeter and K, the
circumferential bending stiffness] is a length-scale of longitudinal variation over which
forces due to longitudinal wall tension and transverse bending stiffness balance one
another. This approximation is suited to thin-walled tubes, because they typically have
small bending stiffnesses and thus large L,/D,. Under such conditions, and in steady
flow, the model is quantitatively accurate {Jensen & Pedley 1989).

However, extremely thin-walled tubes joined to a rigid downstream pipe can
undergo large-amplitude oscillations involving a phase of suction into the pipe. Such a
motion is neither physiological nor within the scope of current theoretical modelling.
Tubes of greater wall thickness, in which the longitudinal bending stiffness of the wall is
a significant restoring force, are therefore preferable experimentally. A relatively
thick-walled tube was used in the experiments described here, with /D, =0-15, where
h is the wall thickness; note that assumption (ii) requires #/D,<< 1. For such a tube,
K, is necessarily large also, making L, small: in the present case Ly =9-4 mm, less than
one internal diameter (D, = 13-5mm). Terms in the model’s governing equations that
were neglected under assumption (iii) can therefore be expected to be of (1)
magnitude, producing significant error. In addition, neglect of longitudinal bending
stiffness may be significant: an argument presented in Appendix B, albeit based on
assumptions (ii) and (ili}. indicates that for the tube used in the experiments the effects



SELF-EXCITED OSCILLATION OF COLLAPSIBLE TUBES 643

of longitudinal bending, longitudinal tension and transverse bending of the tube wall
are all equally important. Quantitative comparisen of the numerical predictions with
the experimental results of Bertram (1986) and of Bertram et al. (1990, 1991). and with
those described here, was not therefore achieved.

Nevertheless, qualitatively good agreement with the above series of experiments in
respect of predicted steady flows and frequency ratios between low, intermediate and
high frequency modes have been reported previously (Jensen & Pedley 1989; Jensen
1990b). An idea of the correspondence between p, and O as parameters may be gained
by inspection of figure 12 in Bertram (1986}, where constant-p, curves and constant-g,,
curves are plotted in (Q,, 7,,)-space. Since the patterns of stability boundaries in
(experimental) (p,, p..)-space also have clear similarities to those in (theoretical)
(Q. p.2)-space (Jensen 1990b), the examples chosen for comparison below come from
two regions sharing roughly identifiable locations; this is the extent to which
parameters could be matched (full details of parameter values are given in Appendix
A).

MacCormack’s scheme (Roache 1976) was suitable for integration of the governing
equations. This is an explicit, two-step method which is second-order accurate in both
space and time. In the computations reported below, 101 grid peints were distributed
uniformly along the length of the tube. A detailed account of the application to this
problem was given by Jensen (1990a).

Although the numerical method was successful in describing low-frequency oscilla-
tions of the LD type (see below), LU oscillations [e.g. figure 6(a) in Bertram et al.
(1990)] could not be reproduced. This may be related to a fundamental difficulty in the
model of flow separation, namely that at large amplitudes when variables are varying
rapidly, the quasi-steadiness implicit in the choice of separation point (the point where
1, = 0) is unlikely to be accurate. The model predicted multiple regions of dissipation
for very vigorous oscillations, for example, which is physically unreasonable. This
difficulty was not encountered in the results described in the following.

4. EXPERIMENTAL RESULTS

From data as shown in Figure 1 can be extracted the maximum and minimum
cross-sectional area reached during an oscillation at each catheter position, and from
these in turn is derived a profile of peak-to-peak area-oscillation amplitude versus
position. Figure 3 shows such a profile, for an experiment in which recordings were
made right to the upstream end of the tube. The main peak defines the position of the
throat unambiguously. The secondary peak does not correspond to theoretical
prediction (a broad plateau extending from the upstream end—see Figure 11 here, or
figure 6(a) in Jensen & Pedley 1989); it is much closer to the throat than was expected.
However, this was a consistent finding. As shown in Figure 3, no other maximum of
significance was found to occur upstream.

The two experiments shown in Figures 1 and 3 involved recordings every 2-9 mm
and cvery 2:8 mm along the tube respectively. To verify further the existence of the
secondary peak, an experiment was conducted with a position increment of only
1:15 mm, covering the downstream part of the tube as shown in Figure 4. Here, all
points along the tube which have the same phasing, or time-delay after the fiducial
point, have been joined; the result is more finitely delineated than would be the case
with lines of «(f)|,, because of the high sampling rate. The result appears to show a
smoother and more gradual amplitude maximum than that in Figure 3, because only
the last downstream 15% of the tube is shown here. Note that the oscillation upstream
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Figure 3. Area amplitude versus axial position, for an experiment in which recordings werc made along
the whole length of the tube. Parameter values: p, = 66 and p,, = 49-7 kPa. Frequency of oscillation: 4-5 Hz.

Figure 4. Area versus position and time. Lines show tube area versus x at fixed times. Parameter values:
P =66 and p,; = 54-5kPa, giving Q = 197 ml/s. Frequency of oscillation: 4-6 Hz. Time increases away from
the viewer. The 35 successive incremental recordings combined here show the downstream 15% of the tube.
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Figure 5. The position of the area minimum versus time, for the data shown in Figure 4. For phase
relerence, the waveform of minimum area versus time is also shown.

of the throat is in anti-phase with that downstream of the throat, in line with the
predictions of the model (see Section 5).

The streamwise variation of the position of the point of minimum area during a cycle
of the oscillation in Figure 4 is shown in Figure 5, along with a plot of the minimum
throat area versus time, A(?). Since the total range of the minimum area point spans
only nine different catheter positions, corresponding to 10 mm, the position variation is
somewhat crudely discretized. Nevertheless, the comparison shows clearly that the
minimum moves downstream when it is small, and vice versa.

From the data in Figure 4 were also derived the profiles of area maximum and
minimum versus position shown as dashed lines in Figure 6, and these in turn gave the
area-oscillation amplitude profile shown as a solid line, The secondary maximum on the
upstream shoulder of the main peak of the amplitude profile is now defined by several
successive measurements and is clearly a real feature. On the other hand, the slight
concavity of the main peak in this example is not consistently found. Notice that the
point of “minimum maximum” is slightly upstream of the point of “minimum
minimum’; this unexpected finding was consistent in our observations and was
subsequently found to agree with the corresponding prediction. The apparent spatial
maximum in the temporal area maximum very near the downstream end is a result of
the finite wall thickness of the downstream pipe over which the tube was secured. This
is because the impedance method can be thought of as measuring the crowding of
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Figure 6. The envelope of the area oscillation shown in Figure 4 is given via dashed curves following the
local arca maximum and arca minimum along the tube. Also shown (as a solid line) is the curve of local
amplitude (cf. Figure 11).

current flux lines. The lines ‘anticipate’ the cross-sectional area change where the pipe
lumen becomes the tube lumen. Furthermore, the electrodes measuring the local field
gradient have, of necessity, finite length (2mm) and spacing (1-6 mm). Thus, the
recorded area does not indicate as sharply as might be expected the location of the end
of the tube. The recording extends just into the pipe, so the maximum just outside is
real, a consequence of the slight area step at the pipe entrance.

Finally, Figure 7 shows data for area versus position versus time for an intermediate-
frequency (12Hz) oscillation. When these are reduced to area-oscillation amplitude
versus position as in Figure 8, the same pattern as for the low-frequency oscillation is
seen; there is no evidence of a three-humped distribution as in Figure 12 below. This
resemblance between [ and L oscillations supports the view that they are both driven
by essentially the same mechanism. Large-amplitude oscillations of these two modes
cannot be readily differentiated via the area-distance profiles, however, contrary to the
predictions of (small-amplitude) linear stability theory (Jensen & Pedley 1990b).

5. THEORETICAL PREDICTIONS

Figure 9 shows a numerical prediction of an LD oscillation. There are noticeable
similarities between the waveform of this example and that shown in Figure 2, or in LD
oscillation reported elsewhere, such as that in figure 6(b) of Bertram er al. (1990). On
Figures 9 and 2 the oscillation has been broken down into six stages to help identify the
common features. Both the minimum area, A, and the downstream pressure, p,, fall
sharply during (i), rise steeply during (i) and less steadily during (iii); p, and A may
then fall slightly [figure 6(b), Bertram er al. (1990)] before they resume a sharp rise
during (iv) to their maxima. During (v) p, and A diminish slightly, and then finally in
{vi) the collapse begins again. While the oscillation in Figure 2 tends to jump quite
abruptly between two states, that in Figure 9 varies more smoothly. The resistance and
inertia of the upstream and downstream rigid tubes account for the smooth variation of
the flow rates Q, and Q, in Figure 9 relative to the corresponding pressures p, and p,.
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Figure 7. Arca versus position and time, for an oscillation of intcrmediate frequency (12 Hz)., Parameter
values: p,, = 100 and g, = 51 kPa. Time increases away from the viewer. The 35 successive recordings shown
here span the downstream 90 mm (39%}) of the tube.

Comparison with the experimental results shown in Figures 1 and 4 can be made
from Figure 10, in which the tube area for the oscillation shown in Figure 9 is plotted as
a function of x and ¢ over two periods. Notice that while the tube upstream and
downstream of the throat appears to osciliate in fairly close antiphase in Figures 1 and
4, the relationship is less precise in Figure 10, where also the oscillation continues to
have significant amplitude as far as the upstream end of the tube. Figure 11 shows the
envelopes of the computed area oscillation and the distribution of area-oscillation
amplitude along the length of the tube. (The curves in this figure are slightly irregular
because the oscillation was sampled only 20 times during the cyele.) It is important to

Damp
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000 050 075 100
X

Figure 8. Area amplitude versus position for the same oscillation as in Figure 7, using all 47 recordings.
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Figure 9. The nondimensional upstream and downstream pressures p,, p,, flow rate ¢, @, and minimum
area A are plotted versus dimensionless time for a periodic low frequency oscillation. The oscillation is

divided into six stapes as indicated. The parameter values used for this oscillation were P=g, —p, =15,
Q =13, so that g, = 20-44, j, = 16-69.
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Figure 10. Tube area « is plotied versus x and ¢ for the oscillation shown in Figure 9.
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Figure 11. Area maximum and minimum and area amplitude, plotied versus x for the oscillation shewn in
Figure 9. The nondimensional tube length was chosen to be unity in thesc calculations. Compare with
Figure 3.

note here a difference between theory (Figure 11) and experiment {e.g. Figure 6) in the
proportion of the tube occupied by the throat; this is due in large part to differences in
parameters. Computations of steady flows by Jensen & Pedley (1989) demonstrated
that the throat/tube-length ratio was strongly dependent on Q, p.., and on the
parameter A= L/L,, where L is the tube length and L, the length-scale of
tube-deformation due to transverse bending and longitudinal tension: A =1 in the
theory, and A =25 in the experiment. These fundamental differences must be borne in
mind in what follows.

The greatest activity of both the experimental (Figure 3) and theoretical {Figure 11)
oscillations was confined largely to the downstream end of the tube, and both
amplitude distributions displayed two maxima. The upstream maximum of the
theoretical oscillation extended to the upstream end of the tube, in line with the
predictions of linear stability theory, but unlike those in Figure 3. The envelopes of the
varying arca distribution of the computed solution and the observations share the
feature that the “minimum maximum™ is upstream of the “minimum minimum”. The
area envelope of an intermediate-frequency oscillation [the ““mode 3” oscillation shown
in figures 4 and 5 of Jensen (1992)] is shown in Figure 12. As in Figure 11, the small
irregularities in the curves in Figure 12 are associated with discrete temporal sampling,
Three maxima are evident, the largest and most distinct very close to the downstream
end of the tube (75 <<x < 1), and two lower ones at 0<x <0-3 and 0-3 <x <0-75.
Recall that a three-humped shape was not observed experimentally (Figure 8). Again,
the difference in the degree of activity at the upstream end of the tube between Figures
8 and 12 suggests a considerable discrepancy in parameters, or an inherent inadequacy
in the model.

6. EVENTS DURING A CYCLE

To understand more of what is going on in the example of Figure 9 it is helpful to look
at the complete area, flow speed, and pressure distributions of the oscillation. These
are shown in Figure 13(i)-(vi), with each stage corresponding to those shown in
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Figure 12. Area maximum/minimum and amgplitude plotted versus x for the intermediatc frequency
oscillation shown in figures 4 and 5 ol Jensen (1992).

Figure 9. Six separate panels were necessary, as three-dimensional views of the four
variables were not sufficiently clear. «, «, p and the dissipation 4 (see Section 3) were
calculated at 20 intervals throughout the cycle, and are plotted in Figure 13 over
consecutive intervals as functions of x throughout the six stages. The paths traced out
during each stage of the cycle by the points of minimum area and maximum flow speed
are indicated by solid lines in the two upper right-hand panels.

The details of the oscillation are described in detail stage-by-stage below, referring
primarily to Figure 13. Comments related to experimental data are enclosed in square
brackets.

(i) Initially the tube undergoes sudden collapse at its downstream end. The phase
begins with a moderate constriction near x =0-7. With a high flow speed here, and
quite substantial retardation beyond, d is sizeable enough for there to be little pressure
recovery across the region of separated flow. p, is indeed sufficiently low to encourage
further collapse, and so the constriction narrows further and moves downstream, and
the maximum speed increases rapidly, although the point of maximum speed (the
separation point) remains almost stationary. With growing velocity gradients, d
increases rapidly, but remains confined to a very narrow zone. This enhances the drop
in the downstream pressure, and the collapse proceeds almost unrestrained. [The
observed oscillations had a more rapid closure phase than is indicated by the theory
here (compare Figures 2 and 9).]

(ii) Ultimately, however, the high longitudinal tensile forces and the increasing
transverse bending stresses in the tube wall at the constriction are sufficiently large to
oppose further reductions in area. In addition, the tube wall upstream of the
constriction acts as a partial barrier to fluid entering the tube. and so the force arising
from the pressure of the fluid on the wall has a large longitudinal component. The
combination of elastic and inertial forces makes the tube bulge slightly upstream of the
constriction, obliging the constriction to widen and move upstream. Accordingly, the
maximum speed decreases, the separation point moves upstream, velocity gradients
lessen and d falls in magnitude, allowing greater pressure recovery where the flow 1s
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Figure 13(i). The oscillation shown in Figures 9 and 10 is shown in more detail in figures (i)-(vi), each of
which contains six panels. The left-hand column and bottom right-hand panel in each figure show the area, a,
velocity, u, pressure, p and dissipation, 4, as functions of x and ¢ at evenly spaced intervals during stages
(i}={v1). as shown in Figure 9. The two upper right-hand panels show the paths of the point of minimum area,
@ir- @nd the point of maximum velocity (the separation point) wu,,,; the segments of each path
corresponding to cach slage of the oscillation are plotted as solid lines; doited lines show their complete
paths. The dircction of increasing time is shown by arrows on the paths of «,, and u,,,,. and by numbers

labelling the curves in the remaining panels.

separated, and so p, rises rapidly. [Figure 5 above, which showed the measured motion
of the minimum area versus time, demonstrates that the predicted path of g, is
realistic.]

(iii) As the constriction continues to widen, the bulge due to the inertia of the fluid
entering the tube moves further upstream. (This upstream propagation demonstrates
the dispersive effect of longitudinal tension: the speed ¢ of long-wavelength waves
along the upstream third of the tube, where 0-8 < o << 1-0, varies between 1-2 and 1-5,
precisely the range of flow speeds, u, in this region; it is because it has a sufficiently
short wavelength that this bulge can propagate against the flow.) As it enters regions of
increasing «, i.e. regions of increasing compliance, the bulge increases in amplitude so
that the tube distends suddenly at its upstream end; correspondingly p, rises very
steeply. Ultimately longitudinal tension restrains the distension of the tube. [Note that
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although p, rises very steeply during this phase in Figure 9, such large changes in area
alt the upstream end of the tube, in particular those giving rise to @ >1, are not
observed experimentally. Again, this is partly due to differences in parameters, and
partly because such behaviour is less likely to be exhibited by a thick-walled tube. The
bulge directly upstream of the throat in Figures 1, 3, 4 and 6(b) appears never to travel
all the way upstream. This may be because the throat/tube-length ratio in the
experiments is much smaller than that in the calculations, making the theoretical results
more strongly influenced by the upstream boundary conditions. Further experiments
are needed to test whether upstream conditions become less important as the tube
length increases.)

(iv) This phase begins with the tube distended over 0 < x < 0-2, and having a steep
area gradient over 0-2 <x < 0-6, so that, as in (ii), inertial forces open the constriction
further. However, with the sudden bulging of the tube at its upstream end comes an
abrupt change in the direction of the path of the point of minimum area, which no
longer moves upstream but remains approximately stationary. Meanwhile the velocity
distribution flattens, and its maximum moves rapicly up and downstream. Thus the
length of the zone of dissipation varies considerably, although the amount of energy
loss is relatively small. {The re-opening in the experiment is more rapid than in the
model. The rather complex activity in the motion of the separation point may be an
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Figure 13(iii)

artefact of the model. Flow visualization could in principle check this, albeit with great
difficulty in this time-varying turbulent flow.]

(v) Throughout this stage the tube remains in a mildly collapsed state, with the area
profile relatively flat. The dissipation is therefore very weak. There is considerable
activity in p, and p, (see Figure 9), apparently the remnants of the disturbances
generated during stages (i)—(iii). Although it is difficult to identify waves and their
reflections from Figure 13, the time series on Figure 9 suggest that the sudden large rise
in p,; during (iii) results in a similar, but smaller rise in p, during (iv), and a further,
even smaller rise in p; during (v). (Each of these three events is separated by about (-1
units of time, implying that the average wave speed is near 10; to check that this speed
was not unreasonably large, the speed at which short waves generated by a sudden
perturbation travel the length of the tube was estimated numerically for these
parameter values, and found to be as great as 20.) [If similar area variations due to
upstream and downstream wave propagation do occur experimentally, they are so
weak as to be lost in measurement noise. In principle, subnoise-level waves could be
revealed by ensemble-averaging many cycles. However, the experimental finding that
frequency of oscillation is not governed by tube length (Bertram et al. 1990) seems to
indicate that end-to-end wave propagation is not a significant factor in the observed
oscillations. |
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Figure 13(iv)

(vi) During this final stage, the point of maximum flow speed moves downstream
very rapidly. This also occurred in stage (iv), but then p, and «,, were both
increasing—in this case p; is roughly constant and the tube area is decreasing. In these
conditions the tube can continue collapsing (leading to the events of stage (i)), and this
is enhanced by the fact that u,,,, comes closer to the downstream end of the tube, so
that velocity gradients {and dissipation) are larger.

While Figure 13 shows very little activity during stages (ii) and (ili) and stages (v)
and (vi} (so that the tube appears to jump abruptly between two almost static states),
the numerical results suggest that the remnants of pressure disturbances propagating up
and down the tube affect the position of the separation point and the point of
minimum area during these phases. This activity might lead to the abrupt transitions
during (i) and (iv),

7. DISCUSSION

In view of the difficulties of quantitative comparison of the model with experiment. it is
pertinent to examine the development of both the assumptions underlying the model
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and the choice of experimental parameters, and the reasons for their adoption in each
case.

The experiments form part of a continuous programme in which the collapsible tubes
first reported on by Bertram (1986) have been progressively investigated in different
ways. The programme was designed to address a situation where theoretical modelling
was limited by the large variety of incompletely reported experiments in the literature.
In a series of papers, a more comprehensive picture has been built of the behaviour of
a particular type of collapsible tube than has ever been assembled before. A deliberate
choice was made to examine the behaviour of relatively thick-walled collapsible tubes.
These represented a relatively neglected area, in that previous experiments had
concentrated on tubes of either moderate or very small circumferential bending
stiffness, despite the fact that theory emphasized the local tube law as a source of
elastic restoring force. They offered the advantage that nowhere in a large region of
operating-point space did self-excited oscillation involve the tube being sucked into the
downstream rigid mounting pipe. The gross sudden change in wall properties between
a very compliant thin-walled tube and a rigid pipe is unphysiclogical (Kamm 1987),
although effects manifested only by such configurations can still be of considerable
interest. The extreme instantaneous tube shapes involved are also not readily
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Figure 13{vi)

modelled. Bertram er al. (1989) have since shown that effects arising from such a
discontinuity do not dominate the behavour of the thicker-walled tubes dealt with here.

The one-dimensional model, on the other hand, is based upon a long-wavelength
assumption {Lq>> Dy, see Section 3) that is not satisfied by the thick-walled tubes used
in the experiments because of their large bending stiffnesses. The model, known
to be quantitatively accurate for steady flows in thin-walled tubes, is therefore at
best qualitatively accurate in the present case. This discourages efforts to improve the
quantitative fit of the model to the experiments by varying other parameters in the
system. For instance, the conduits up- and downstream of the collapsible tube were
assumed by Jensen (1990a) to contribute unit dimensionless resistance to flow and fluid
inertance, whereas the corresponding experimental parameters relating pressure drop
to flow-rate squared and to rate of flow-rate change, respectively, were in the range
5-10 for resistance and 500 for inertance (see Appendix A). The frequency of
self-excited oscillation is a powerful function of the up- and downstream inertance, as is
shown for a limited range in Figure 14. This result is taken from the lumped-parameter
model of Bertram & Pedley (1982), but is expected to be as true for the hybrid model
here as it is experimentally. (In passing, we note that this means that the large
quantitative disparity in predicted frequency of oscillation between lumped-parameter
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Figure 14, Variation of period of oscillation with up- and downstream fluid inertia, as predicted by the

lumped-parameter model of Bertram & Pedley (1982). In their notation, the dimensionless model parameters
were Py (=p,) =150, P, =200, P, =4, R, =0-00466, | = 10, R; =75, and r = R, /R, = I/}, = (5.

and one-dimensional models noted by Bertram et al. (1989) cannot necessarily be used
to infer which is a better model of the prevailing oscillation mechanism in a given
experiment.) Despite the anticipated improvement in predicted frequency fit to the
experimental results, we have not therefore considered it worthwhile to compute
numerical results with these parameters quantitatively matched to the experimental
values while more fundamental discrepancies necessarily go uncorrected.

In summary, a new technique involving conductimetric catheterization at a sequence
of axial locations has been used to measure the area-distance profile of some strictly
periodic, low-frequency (D) oscillations of a collapsed tube. In the cases examined,
significant fluctuations in the cross-sectional area were shown to be confined to roughly
the downstream third of the tube; in this region the area-oscillation amplitude had a
large but narrow peak, with a smaller local maximum on its upstream shoulder. These
results were compared with numerical predictions of a one-dimensional model, the
central feature of which was a simple approximation of the dissipation associated with
flow separation; the model had previously been shown to describe many significant
features of collapsible-tube flows, although precise quantitative comparison with these
experiments was not possible. Although the area-distance profiles of a nonlinear LD
oscillation predicted by the maodel also had two peaks, they were spread further apart
and there was a more uniform distribution of area fluctuations along the length of the
tube; this difference can be accounted for to some extent by discrepancies in
parameters used in theory and experiment. However, the computations captured many
of the other observed features of LD oscillations, evident particularly in the pressure
measurements at each end of the tube.

Because of the success of the model in describing some of the more robust features
of the LD oscillation measured here, and of those measured previously (Bertram ef al.
1990), the experimental and model results were then used together to examine the
mechanism of the oscillation. The advantage of having both sets of results available was
that the model gave a reasonably reliable indication of the behaviour of internal
fluid-dynamical parameters (such as the position of the separation point) that are
currently difficult either to visualize or to measure. The oscillation was broken down into
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six distinct stages, during which the tube collapses violently at its downstream end
[(i)—(ii?) in Figures 9 and 13] and then during which it is less severely constricted and
the remnants of pressure disturbances propagate up- and downstream, (iv)—(vi). The
collapse is driven by the fall in downstream pressure resulting from the strong
dissipation in the separated-flow region beyond the throat of the tube, but opposed by
elastic forces and by the compliance of the section of the tube upstream of the throat.

Thus, the experimental and numerical results together demonstrate that the energy
loss associated with flow separation is a significant factor in driving the LD class of
self-excited oscillation. Because intermediate-frequency (I) oscillations exhibited many
qualitative features (both experimentally and theoretically) that strongly resembled the
LD results, it is likely that these classes of oscillation share a common mechanism. The
other class of low-frequency oscillations (LU), however, could not be modelled
successfully, suggesting either that additional sophistication in modelling the motion of
the separation process is required (perhaps by incorporating hysteresis in the motion of
the separation point), or that additional effects, perhaps beyond the scope of a
one-dimensional description, are at work. Further experimental measurements of
variables taken along the length of the tube, particularly relating to the internal fluid
dynamics, will be an essential part of this investigation.
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APPENDIX A: THE THEORETICAL MODEL: SCALINGS AND
PARAMETERS

The scalings and parameters used in the model are presented here. For further details, see
Cancelli & Pedley (1985), Jensen & Pedley (1989), Jensen (1990a,b) and Jensen (1992). We
define the following variables, using tildes to denote that they are dimensional: the distance
along the tube from its upstream end, £; time, f; the tube cross-sectional area, (%, f); the
cross-sectionally averaged flow speed, (¥, 1); the cross-sectionally averaged internal pressure,
F (%, ). The relevant parameters are as follows, with the experimental values of each given in
parentheses: the fluid density, p (10" kg m™); the tube length, £. (0-235 m); the pressure external
to the tube, p,; the tube circumferential bending stiffness, K, (11-4 kPa): the tube cross-sectional
area and diameter when unstressed, «, and d,, (13-5 mm internally); the longitudinal tension per
unit perimeter, 7 (74 N'm '); the upstream head, p,: and the resistances &, and inertances /; of
the rigid segments upstream (i =1) and downstream (i =2) of the coi]apsnble tube (k=
2:4x10" kgm ", k,=54x10" kgm 7,/ =38X 107kgm™, ,=33x107kgm *.

Defining a veloalty -scale ¢, = (K, fp)”z, and a length-scale, L,=(D,T/K,)'?,_we then use
the following nondimensionalization scheme: £ = Lx; f—(L(,/C(,)I a(x, 1) —a(,a(x t)
0{E, 1) =cyulx, 6); g(X, I)_K plx, ), p.=Kp.. p.=Kp.. L=LA k= (Pl’au)"h »n o=
(pLo/ag)A: 2
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The boundary conditions corresponding to the governing equations given in Section 3 are
a0, )=a(r, n)=1,
p(o! [) =ﬁ|r - (Ii + 771)“2(0: l) - A,u,(U, r)s
A, 1y = (A, 1) + A (A, 1),

The nondimensicnal parameters were not chosen to match the experiment directly, but as
follows: k=45, A=1, 5, =n,=1 and A, = A, =1. Note that by using experimental parameter
values, the length -scale L,=9-4mm, and the velocity-scale ¢, =3-38ms™', so the timescale

Lyfcoy=2-8x 10 's, two orders of magnitude smaller than the timescale of the oscillations,
indicating that the scaling of the model under assumptions (i-iv} (see Section 3) is not dlrectly
appropriate for the experiment. Corresponding values of the nondimensional groups for the
experiment were kK =67; A =25, n, =49, 5, =11, A, =578 and A, =502,

APPENDIX B: LONGITUDINAL BENDING STIFFNESS

Suppose that assumptions (ii) and (iii} in Section 3 hold. Using the pressure—area relation of
McClurken et al. (1981), we can estimate the strength of the three dominant contributions to the
transmural pressure: circumferential bending stiffness generates pressures of O(K ); the total
lengitudinal tension 7, (= 7D, T) generates pressures of O(T,/X?*), where X is the length-
scale over which the tube is deformed; and longltudmal bending stiffness B [ = K,D*/8;
McClurken er al. (1981)] generates pressures of O{B/X"). There are, therefore, three dlstmct
length-scales over which pairs of these forces are of the same order of magnitude: Xy =
(T/K,)'"?, Xgr = (BITY" and Xy = (B/K,)". Note that X%, = XX, The relative sizes of
the forces can be determined by cons:dermg the nondimensional parameter M = BK,,/T! =
(Xpr/Xr¢):. Clearly it M =((1), all three length-scales are of the same order, and the three
effects will be of equal importance.

Suppose that the dominant balance is between circumferential and longitudinal bending. Then
X = Xk, and longitudinal tension is negligible provided M >> 1. The case assumed by the theory
under assumption (iv) is that longitudinal bending is negligible compared to the remaining two
forces. In this case X =Xy and M <« 1. For there to be a dominant balance between
longitudinal bending and longitudinal tension, we require X = Xz, and M << 1 also. Thus, when
M << 1, so that X << Xy, the dominant balance is between longitudinal tension and transverse
bending over a length-scale X,; longitudinal bending may be important over a much smaller
length-scale X, in regions of rapid change (e.g., at the boundaries of the tube).

The value of M corresponding to the experimental parameter values is 0-4, indicating that all
three forces are likely to be of the same order of magnitude in this case. The tube deformation
can be expected to have a length-scale of the order of L, =10 mm (L, and X differ only by a
numerical factor; recall that in comparison the total tube length is 235 mm. Figure 1 confirms that
the deformation length-scale is substantially shorter than the total length of the tube, as it is only
the downstream 15% of the tube that is significantly collapsed.



