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In Part 1 of this work, we derived general asymptotic results for the three-dimensional
flow field and energy fluxes for flow within a tube whose walls perform prescribed
small-amplitude periodic oscillations of high frequency and large axial wavelength.
In the current paper, we illustrate how these results can be applied to the case of
flow through a finite-length axially non-uniform tube of elliptical cross-section – a
model of flow in a Starling resistor. The results of numerical simulations for three
model problems (an axially uniform tube under pressure–flux and pressure–pressure
boundary conditions and an axially non-uniform tube with prescribed flux) with
prescribed wall motion are compared with the theoretical predictions made in Part 1,
each showing excellent agreement. When upstream and downstream pressures are
prescribed, we show how the mean flux adjusts slowly under the action of Reynolds
stresses using a multiple-scale analysis. We test the asymptotic expressions obtained
for the mean energy transfer E from the flow to the wall over a period of the motion.
In particular, the critical point at which E = 0 is predicted accurately: this point
corresponds to energetically neutral oscillations, the condition which is relevant to
the onset of global instability in the Starling resistor.

1. Introduction
Flows through flexible tubes and channels have widespread biological applications,

notably in the respiratory and cardiovascular systems (Grotberg & Jensen 2004).
They are of particular fluid-mechanical interest because of the diverse instabilities
that can arise in such systems. In addition to intrinsic hydrodynamic instabilities that
can be manipulated using compliant walls (Davies & Carpenter 1997), a variety of
instabilities originate through direct interaction between the flow and the deformable
wall. The canonical experimental device for investigating such instabilities is the
Starling resistor, in which a flow is driven through a finite length of externally
pressurized flexible tube that is mounted between rigid supports (e.g. Bertram
2003; Bertram & Tscherry 2006). The present paper contributes to attempts by
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researchers over many years to develop a full understanding of the mechanisms by
which the three-dimensional flow in a Starling resistor loses stability to self-excited
oscillations.

Previous theoretical models have largely considered simplified models of this system
in zero-, one- and two-dimensional formulations. Although low-dimensional models
are inevitably inaccurate in many respects, a broadly consistent picture emerges from
these studies. In the absence of wall inertia and assuming the internal flow is laminar
but at moderately high Reynolds number, the system can lose stability to multiple
modes of oscillation. One-dimensional models show how a supported flexible tube in
a non-uniform configuration (typically being collapsed towards its downstream end)
loses stability to modes with two, three or more extrema in the axial distribution
of wall displacement (Jensen 1990), with each mode falling into a distinct frequency
band. Modes with similar characteristics have recently been reported in simulations
of a two-dimensional channel analogue of the Starling resistor (Luo et al. 2008),
although these are accompanied by the excitation of internal Tollmien–Schlichting
waves. High-frequency mode-1 instabilities (with a single extremum in displacement
amplitude) have also been predicted by both one- and two-dimensional models of the
Starling resistor system when the axial tension in the flexible segment is large (Jensen
& Heil 2003; Stewart, Waters & Jensen 2009), although direct experimental evidence
for this class of instability is not yet available.

The mechanism responsible for the mode-1 instability was revealed by
detailed asymptotic analysis of the two-dimensional model system, supported by
computational simulation (Jensen & Heil 2003). Typically the experimental system
is asymmetric (either the upstream and downstream rigid supports differ in length,
or different boundary conditions are applied at the two tube ends). Rapid inward
and outward motion of the flexible wall can induce axial inviscid sloshing of the
core flow, which is superimposed on the mean flow through the channel. If the
sloshing is of larger amplitude at the upstream end of the system, it is possible for
a net flux of kinetic energy to be extracted from the mean flow in order to sustain
self-excited oscillations of the wall. Threshold asymptotic criteria for the onset of
self-excited mode-1 oscillations were identified in both one- and two-dimensional
models, involving a balance between kinetic energy flux and viscous dissipation in
Stokes layers (Jensen & Heil 2003; Stewart et al. 2009).

It is natural to ask whether the mode-1 instability mechanism identified in one- and
two-dimensional models applies also in three dimensions. Rather than considering
full flow–structure interaction, this question can be addressed by imposing prescribed
wall displacements to a finite-length tube under axial boundary conditions relevant to
the Starling resistor (i.e. either pressure or flux conditions) and assessing the overall
energy budget of the system. A necessary, but not sufficient, condition for instability
through the mode-1 mechanism is for there to be a net time-averaged flux of energy
from the flow to the wall. Choosing wall displacements that mimic modes of a flexible
shell then provides a useful indication of the likelihood of genuine instability. Heil &
Waters (2006) took this approach by examining small-amplitude non-axisymmetric
displacements to a circular tube. They focused attention on the cross-sectional flows
driven by these displacements. Although such displacements resemble the primary
buckling instability of an elastic tube, the cross-sectional area changes are quadratic
in displacement amplitude, and therefore the induced sloshing flows are too weak
to draw energy into the wall within the parameter regime studied. However, if the
oscillations occur about a non-axisymmetrically buckled steady configuration, Heil
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& Waters (2008) showed via direct simulation that the induced sloshing flows are
sufficiently vigorous to extract energy from the mean flow (after averaging over
oscillations). Their computations indicated that for this to be the case, α/St should
exceed a threshold value dependent on the particular profile of the oscillations.
Here St = a/U T is the Strouhal number of the mean flow U through a tube
of initial mean radius a and α = a(ρ/μT )1/2 is the Womersley number associated
with wall oscillations of period T ; ρ and μ are the fluid density and viscosity.
Heil & Waters (2008) provided a scaling argument that explained the observed
behaviour.

In Part 1 of the current study (Whittaker et al. 2010), we used asymptotic methods
to identify a general, and remarkably simple, criterion for prescribed small-amplitude
high-frequency long-wavelength oscillations to extract zero time-averaged energy from
the mean flow. This criterion is (9.5) in Part 1, which is reproduced below as (2.13b)
and (2.17b) for two special cases. In addition to St , α and � = L/a, where L is
the tube length, the expression involves only simple geometric quantities that can
be computed once the form of the oscillation has been prescribed. The zero-energy-
transfer threshold applies in the distinguished limit 1 � α ∼ �St ∼ �2, for arbitrarily
small oscillation amplitude. While this work was motivated by a possible axial-mode-1
instability mechanism, the results of Part 1 are valid for arbitrary (long-wavelength)
deformation profiles and indicate that it is possible for higher-order axial modes to
exhibit instability too.

The aim of the present paper is to test this formula against numerical simulations
of the three-dimensional flow through an oscillating tube, with both pressure and
volume-flux boundary conditions at the tube ends. The walls of the tube are
subjected to periodic oscillations with an azimuthal wavenumber of 2 and axially
varying amplitude. The initial tube shape, about which the oscillations occur, is
termed the ‘steady configuration’. To ensure that vigorous axial sloshing is induced,
a non-axisymmetric steady configuration is chosen. Specifically we shall consider
tubes of elliptical cross-section (possibly axially varying) in the examples that
follow.

In § 2 we describe the general set-up for the flow through a collapsible tube and
briefly review the key results obtained in Part 1. In § 3 we define a particular tube
shape and oscillation profile and describe the asymptotic and numerical techniques
employed. Results and comparison for the cases of an axially uniform steady
configuration with pressure–flux and pressure–pressure conditions are presented in §§ 4
and 5 respectively. Results and comparison for an axially varying steady configuration
subject to pressure–flux boundary conditions are presented in § 6. Finally, we make
some concluding remarks in § 7.

2. General set-up and key results from Part 1
We consider a tube of length L and typical diameter 2a, containing a Newtonian

fluid of density ρ and dynamic viscosity μ. Boundary conditions applied at the ends
drive a mean axial flow, with cross-sectionally averaged velocity U at the upstream
end. Sections of the tube adjacent to each end are assumed to be rigid and therefore
do not deform. The central section undergoes prescribed small-amplitude periodic
oscillations of typical amplitude aΔ and time scale T (see figure 1a).



126 R. J. Whittaker, M. Heil, J. Boyle, O. E. Jensen and S. L. Waters

(a)
x

y

z

z = z2

z = 0
p = pup

z = L

r′ ∫∫ w dA = Q
or p = pdn

z = z1

(b)

b̂

r (Y, Z, t)

n̂
r′(Y, Z, t)

�0

� (t)

t̂

r0 (Y, Z)

Figure 1. (a) A sketch of the elliptical tube configuration used in the numerical simulations
described in the present paper. The rigid sections occupy 0 < z < z1 and z2 < z < L, and
the central section undergoes oscillations described by the displacement vector r ′. The mean
flow is from left to right, driven either by an imposed pressure drop or a flux condition at the
downstream end. (b) A close-up of the upper surface of the tube, depicting the triad of unit

vectors (n̂, t̂, b̂) aligned with the surface W0 in the steady configuration, and the displacement
vector r ′ = r − r0.

2.1. Notation and parameter regime

The fluid velocity u and pressure p within the tube are governed by the Navier–Stokes
equations:

∇ · u = 0, (2.1a)

ρ

(
∂ u
∂t

+ (u · ∇)u
)

= −∇p + μ∇2u. (2.1b)

The centreline of the tube is located on the z-axis, with the upstream and downstream
ends located at z = 0 and z = L respectively. We parameterize the tube wall by two
Lagrangian coordinates (Y, Z), such that the position vector to a material point on
the moving tube wall W (t) is given by

r(Y, Z, t) = r0(Y, Z) + r ′(Y, Z, t), (2.2)

where r0(Y, Z) parameterizes the steady configuration W0, while the time-periodic
wall deformation is described by the displacement vector r ′.

We define a right-handed orthonormal triad of unit vectors (n̂, t̂, b̂) aligned with

the surface W0, so that n̂ is the outward-pointing normal, t̂ · ẑ = 0 and b̂ · ẑ > 0 (see
figure 1b). The displacement vector r ′ is then decomposed as

r ′(Y, Z, t) = aΔ Re

[(
ξ (Y, Z) n̂ + η(Y, Z) t̂ +

a

L
ζ (Y, Z) b̂

)
eiωt

]
, (2.3)

for some complex-valued functions ξ (Y, Z), η(Y, Z) and ζ (Y, Z) where Re denotes the
real part.

The boundary condition on the tube wall is the no-slip condition

u =
∂ r ′

∂t
on W . (2.4)

At z = 0 we apply a ‘pressure’ condition p = pup . At z = L, we apply either another
‘pressure’ condition p = pdn or a ‘flux’ condition

∫∫
u · ẑ dA = Q0. (For the asymptotic

calculations, the specification of a flux or a pressure at the tube end is sufficient,
since we have assumed slow axial variation. Details of the conditions applied in the
numerical simulations can be found in § 3.3.) In both cases we define the axial velocity
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scale as

U =
Q0

πa2
, (2.5)

where Q0 is the steady flux through the tube in the absence of any oscillations. For
the case of pressure–flux boundary conditions, Q0 is imposed by the downstream
boundary condition. For the pressure–pressure case, Q0 must be computed by solving
a steady flow problem.

This system has four dimensionless parameters:

St =
a

U T
, α2 =

ρa2

μT
, � =

L

a
and Δ. (2.6a–d )

These are the Strouhal number (the ratio of the time scale for mean axial flow to
that of the wall oscillations), the Womersley number (the ratio of the time scale for
viscous diffusion to that of the oscillations), the tube aspect ratio and the dimensionless
amplitude of the wall oscillations, respectively.

The results of Part 1 apply in the asymptotic regime

1 � �St ∼ α ∼ �2 � Δ−1, (2.7)

which corresponds to a scenario in which the wall performs high-frequency
small-amplitude oscillations with large axial wavelength. This regime was chosen
(see § 2.5 of Part 1) to include cases in which the oscillations are energetically
neutral.

2.2. Key asymptotic results from Part 1

The main results from Part 1 are an expression for the energy transfer E from the fluid
to the wall, averaged over one period of the oscillation, and the resulting condition
that corresponds to E = 0, i.e. the point at which the oscillations are energetically
neutral. The latter condition is given in the form of a critical inverse Strouhal number
St−1

c . Since St−1 ∝ U , this can be thought of as a dimensionless critical flow rate for
the applied background flow. For St−1 > St−1

c , i.e. at higher dimensionless flow rates,
the time-averaged energy transfer E to the wall is positive.

The asymptotic predictions for E and St−1
c depend only on the parameters in (2.6)

and on three simple functions of the tube geometry. These are the cross-sectional area
A0(z) of the steady configuration, its relative perimeter

�(z) =
1

2 (πA0(z))1/2

∮
C0(z)

ds (2.8)

and the dimensionless cross-sectional area change

Ã(z) =
1

a

∮
C0(z)

ξ (b̂ · ẑ)−1 ds (2.9)

induced by the oscillations. Here C0(z) is the position of the tube wall surrounding a
cross-section in the steady configuration and ds is the incremental arclength around
C0.

From these we can compute a fourth function

�̃(z) =

∫ z

0

χ(z′)Ã(z′)
dz′

L
−

∫ L

z

(
1 − χ(z′)

)
Ã(z′)

dz′

L
, (2.10)
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where χ(z) ≡ 0 if the flow is prescribed at the downstream end and

χ(z) =

∫ z

0

1

A0(z′)
dz′

/ ∫ L

0

1

A0(z′)
dz′ (2.11)

if the flow is driven by an imposed pressure drop. Physically, �̃(z) is the volume-flux
variation at each point along the length of the tube and χ(z) is the downstream-
directed fraction of the oscillatory flow generated by the wall motion at each
point.

Equations (9.1) and (9.8) in Part 1 provide asymptotic predictions for E and
St−1

c in terms of these geometric functions. Below we provide two special cases of
these predictions relevant to the scenarios considered in the current paper. Part 1
also provides asymptotic expressions for the full flow field and the other energy
fluxes.

Throughout the paper, we shall present all energies on the scale

� ≡ ρU 3a2 · Δ2�2St3 ≡ ρ
a3L2

T 3
Δ2, (2.12)

which is independent of the mean velocity U .

2.2.1. An axially uniform steady configuration (with either set of boundary conditions)

For a tube whose steady configuration is axially uniform with cross-sectional area
A0 = πa2, subjected to oscillations of frequency ω = 2π/T , Part 1 (9.1) and Part 1
(9.8) simplify to

E = 2π�(|�̃(0)|2 − |�̃(1)|2)
(

1

St
− 1

St c

)
, (2.13a)

1

St c

=
�

α

2π1/2

|�̃(0)|2 − |�̃(1)|2

∫ L

0

� |�̃(z)|2 dz

L
− Ψ, (2.13b)

where Ψ is a flux correction factor that depends on the boundary conditions at the
tube ends. For pressure–flux boundary conditions we have Ψ = 0. With pressure–
pressure boundary conditions, we have from Part 1 (9.7) that

Ψ = kα2�Δ2(|�̃(0)|2 − |�̃(1)|2), (2.14)

where

k =
μLU

a2(pup − pdn)
(2.15)

is a conductivity factor based on the geometry of the steady configuration. With a
uniform tube and pressure–pressure boundary conditions, (2.11) simplifies to χ(z) =
z/L.

With pressure–pressure boundary conditions, Reynolds stresses generated by the
oscillatory flow create an additional effective pressure gradient. This alters the steady
flux Q through the tube from its value of πa2U in the absence of any oscillations.
Including the leading-order change, Part 1 (9.6) predicts the actual steady flux to be

Q = πa2U (1 + St Ψ ). (2.16)

2.2.2. Axially non-uniform steady configuration with pressure–flux boundary conditions

The asymptotic predictions also apply for cases in which the tube’s steady
configuration is axially non-uniform, which is typical of collapsible-tube systems.
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For such a tube, subject to pressure–flux boundary conditions with A0(0) = πa2,
Part 1 results (9.1) and (9.8) simplify to

E = 2π� |�̃(0)|2
(

1

St
− 1

St c

)
, (2.17a)

1

St c

=
�

α

2π2

|�̃(0)|2

∫ L

0

�(z) A0(z)
−3/2|�̃(z)|2 dz

L
. (2.17b)

Since χ ≡ 0 with pressure–flux boundary conditions, �̃(z) takes the simpler form

�̃(z) = −
∫ L

z

Ã(z′)
dz′

L
. (2.18)

3. Three specific model problems
In the current paper, we consider three different problems that are motivated by

the typical set-up in collapsible-tube experiments using a Starling resistor. We first
consider the simplest realistic cases possible: a tube whose steady configuration is
an axially uniform elliptical cylinder, which is subjected to oscillations of a single
cross-sectional mode shape with an amplitude that varies smoothly along the length
of the tube. We later relax the requirement of axial uniformity in § 6.

We choose an elliptical tube because typical deformations of amplitude O(Δ) of a
tube of circular cross-section result in volume changes that are O(Δ2). This would be
too small to allow a net transfer of energy to the wall to be seen in the parameter
regime considered here. However, typical O(Δ) deformations of an elliptical tube
(which is not too close to being circular) result in volume changes of O(Δ). (The
actual area change for an ellipse with ellipticity parameter σ0 – as introduced in § 3.1 –
is O(Δe−2σ0, Δ2). The first contribution can be seen in (A 11); the second arises because
of nonlinear effects. So as σ0 → ∞ and the ellipse becomes more circular, the O(Δ2)
area change is recovered.)

The prescribed oscillatory deformations are chosen to have zero amplitude in the
two sections (0 < z < z1 and z2 < z < L) adjacent to each end of the tube, to mimic
the rigid sections commonly used in experiments. The deformations in the central
section join smoothly to the rigid sections and have an azimuthal wavenumber of
2. A sketch of the tube geometry is shown in figure 1. The specific form of the
displacement field, specified below, is chosen to simplify the analysis, but we wish
to stress that the general results derived in Part 1 hold for arbitrary prescribed wall
displacements that induce volume changes O(Δ).

3.1. The steady configuration for the elliptical tube

In terms of Cartesian coordinates, the tube wall in the steady configuration is located
at r0 = (x, y, z), where

x

a
= c cosh σ0 cos Y̆ ,

y

a
= c sinh σ0 sin Y̆ ,

z

L
= Z̆, (3.1a–c)

in which the surface coordinates are Y̆ ∈ [0, 2π) and Z̆ ∈ [0, 1], c is a normalization
factor, and σ0 is an eccentricity parameter. Both σ0 and c may be chosen to vary in z

in order to obtain an axially varying steady configuration. We normalize the elliptical
cross-sections by fixing A0(0) = πa2 and ensuring the perimeter C0 is constant along
the whole length of the tube. (The latter condition is physically realistic, since thin-
walled elastic tubes deform primarily by bending rather than stretching.) For a given
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σ0(z), we see from (A 8) and (A 9) that we should therefore take

c(z) =

√
2

sinh 2Σ0

Ee(sech Σ0)

sechΣ0

sech σ0(z)

Ee(sech σ0(z))
, (3.2)

where Σ0 = σ0(0) and

Ee(κ) ≡
∫ π/2

0

(1 − κ2 sin2 θ)1/2 dθ (3.3)

is the complete elliptic integral of the second kind. For an axially uniform steady
configuration, (3.2) simplifies to

c2 =
2

sinh 2σ0

. (3.4)

For the axially non-uniform cases, the variation of σ0 with z is taken to be of the
form

σ0(z) =

⎧⎪⎪⎨
⎪⎪⎩

Σ0 : 0 < z < z1,

Σ0 − Σ1 sin2

(
π(z − z1)

z2 − z1

)
: z1 < z < z2,

Σ0 : z2 < z < L,

(3.5)

so that σ0 varies smoothly between Σ0 in the (axially uniform) rigid sections at each
end of the tube and Σ0 − Σ1 in the centre.

3.2. The displacement profile for the wall oscillations

The prescribed displacement of the wall is defined in terms of the three components
introduced in (2.3). We choose

ξ (Y̆ , Z̆) =
d(Z̆L)

H s
Y H s

Z

(
−3 sech 2σ0

4
+ cos 2Y̆ − sech 2σ0

4
cos 4Y̆

)
, (3.6a)

η(Y̆ , Z̆) = − d(Z̆L)

2H s
Y H s

Z

tanh 2σ0 sin 2Y̆ , (3.6b)

ζ (Y̆ , Z̆) = 0, (3.6c)

where

d(z) =

⎧⎪⎪⎨
⎪⎪⎩

0 : 0 < z < z1,

sin2

(
π(z − z1)

z2 − z1

)
: z1 < z < z2,

0 : z2 < z < L,

(3.7)

is the smoothly varying amplitude function and H s
Y (Y̆ , Z̆) and H s

Z(Y̆ , Z̆) are the surface
scale factors defined in Part 1 (2.4). In general, we have

H s
Y = c

(
cosh 2σ0 − cos 2Y̆

2

)1/2

, H s
Z =

1

ẑ · b̂
. (3.8a,b)

For an axially uniform tube, we have

H s
Y =

(
cosh 2σ0 − cos 2Y̆

sinh 2σ0

)1/2

, H s
Z = 1. (3.9a,b)

The deformations are depicted in figure 2.
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Figure 2. The prescribed deformations applied to the tube. (a) The axial amplitude
function d(z) from (3.7) for the cases z1 = L/10, z2 = 9L/10 (solid line) used for the
pressure–flux case of § 4 and z1 = L/17, z2 = 9L/17 (dashed line) used for the pressure–pressure
case of § 5. (b) The initial elliptical cross-section for σ0 = 0.6 (solid line), together with
the extremal deformations (3.6) with exaggerated amplitude Δ = 0.1 (dashed line).

An explanation of the chosen form (3.6)–(3.7) is in order. The factor H s
Y H s

Z is
introduced in (3.6) because it is convenient when it comes to solving the fluid
problem and also when computing the changes Ã in the cross-sectional area (see
(2.9)). The remaining dependence on the azimuthal coordinate Y̆ is then conveniently
expressed using Fourier-like terms of the form an cos(2nY̆ ) for ξ and bn sin(2nY̆ ) for
η. (In the expansion for ξ , only the n = 0 term leads to a change in the cross-
sectional area at leading order in Δ.) The relative coefficients of these terms were
chosen so as to conserve circumferential length at leading order. Conveniently, we find
that this condition can be satisfied with a small number of terms, and the resulting
displacement field has an azimuthal wavenumber of 2.

Observe that in the limit σ0 → ∞, the steady configuration approaches a circular
cross-section, and the deformations take a somewhat simpler form. However, there is
then no change in the cross-sectional area at leading order.

3.3. Solution methods

We simulated the flow in the oscillating tube, using the object-oriented multi-physics
finite-element library oomph-lib (Heil & Hazel 2006) to solve the three-dimensional
unsteady Navier–Stokes equations (2.1) in the moving domain (the tube with the
prescribed wall motion) specified in §§ 2, 3.1 and 3.2. The flow was driven either by
prescribing the axial velocity profile at the downstream end, leaving the inflow axially
traction-free (the ‘pressure–flux’ boundary conditions), or by imposing a pressure
drop between the upstream and downstream ends, such that in the absence of any
wall motion the flow is steady Poiseuille flow with uniform flux πa2U (the ‘pressure–
pressure’ boundary conditions). We exploited the symmetry of the configuration and
discretized only one quarter of the domain, applying appropriate symmetry conditions
in the planes x = 0 and y = 0. Details of the numerical scheme and code validation
can be found in Heil & Waters (2008), in which computations were performed using
the same code.

We compare the numerical results with the asymptotic predictions for E and St−1
c

given in § 2.2. We also use the methods described in Part 1 to calculate the first few
terms of the asymptotic expansions for the velocity and pressure fields inside the tube
and compare these with the numerical results. Full details of the relevant calculations
and the evaluation of the integrals for E and St−1

c can be found in Appendices A–D.
The asymptotic calculations of Part 1 assume that the flow is periodic; so we must

ensure that the numerical simulations have reached such a state before attempting
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any comparisons. For simplicity, the initial conditions used in the simulations were
a uniform Poiseuille flow in each cross-section of the steady configuration. This does
not satisfy the boundary conditions on the moving wall, but the velocity field quickly
adjusts to take account of this over the first few time steps. In the case of pressure–flux
boundary conditions, the system is found to quickly settle down to a periodic state.
For pressure–pressure boundary conditions, the relaxation to a periodic state takes
longer, through a slow adjustment of the background flux about which the system
oscillates. (With pressure–flux boundary conditions this mode is absent, since the flux
is fixed by the condition at the downstream end.) This adjustment is discussed in
detail in § 5.2.

4. An axially uniform tube with pressure–flux boundary conditions
We start by considering a case in which the flow is driven by an imposed flow at

the downstream end of the tube and is subject to a fixed pressure at the upstream
end. Calculations were performed with σ0 = 0.6 (corresponding to an elliptical cross-
section with semi-axes of 1.365 and 0.733), z1 = 0.1 L and z2 = 0.9 L and Δ = 0.025.
Simulations were then performed for various values of α, � and St , corresponding,
for example, to variations in μ, L and U . The numerical results will be compared
with the energy flux results (2.13) and also with the full flow fields calculated in
Appendix B.

4.1. Velocity and pressure fields

Figure 3 illustrates the numerically computed axial velocity profiles for α2 = 100,
� = 10 and St−1 = 1.5, at quarter-period intervals. In each case, the upper figure shows
the total axial velocity w, while the lower figure shows the (magnified) perturbation
to the steady mean flow, obtained by subtracting the Poiseuille flow profile (B 6) from
w. The flow exhibits the expected structure: a mean Poiseuille flow plus an oscillatory
component driven by the wall motion. The oscillatory flow is almost uniform over
most of the cross-section, with a thin Stokes layer adjacent to the wall.

Figure 4 shows a direct comparison between the numerical results (dashed lines)
and asymptotic predictions (solid lines) for the axial velocity w and pressure p along
the centreline x = y = 0 of the tube at the same four instants as in figure 3.

The plot of the centreline velocity w(0, 0, z; t) in figure 4(a) illustrates how the
magnitude of the axial velocity perturbation increases towards the upstream end
of the tube. At the far downstream end of the tube, the prescribed Poiseuille flow
profile imposes a constant value w(0, 0, L; t) = 2U . When the tube becomes more
collapsed, the volume of the cross-sectional slices in the central deforming part of
the tube decreases, and some of the fluid occupying these slices must be displaced.
Since the flow rate is held constant at the downstream end, the fluid can only be
displaced towards the upstream end of the tube. As the wall moves inwards (e.g. at
t = 4.75 T ), each infinitesimal cross-sectional ‘slice’ therefore makes a small negative
contribution to the volume flux upstream of its position. As the wall moves outwards
(e.g. at t = 4.25 T ) the same applies, but the contributions are positive. At each
position along the tube the fluctuations in flux are precisely due to the volume
change occurring downstream of that position. Since, for the mode-1 oscillations
considered here, the changes to the cross-sectional area at different axial positions
are all in phase with each other, the fluctuations are maximal at the upstream
end.

We also observe in figure 4(a) that the perturbation to the centreline velocity is
slightly out of phase with the volume flux changes caused by the wall motion. In
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Figure 3. Numerical results at four equally spaced instants during the fifth period of the
oscillation for α2 = 100, St−1 = 1.5, Δ = 0.025, � = 10, z1 = 0.1 L, z2 = 0.9 L, with
the prescribed wall motion described in § 3.2 and an imposed steady Poiseuille flow at the
downstream (right-hand) end. Left: profiles of the axial velocity at each instant. The upper plot
in each part shows the full axial velocity profile w, while the lower one shows the perturbation
obtained by subtracting the Poiseuille profile (B 6) from w. The perturbation velocities are
magnified by a factor of 3 for visualization purposes. Right: an exaggerated depiction of
the tube cross-section at each instant. The dashed ellipse is the steady configuration, and the
arrows indicate instantaneous velocities of the wall. In (a) and (c) the wall is in its extremal
configurations and so is instantaneously at rest.

particular, w is not exactly 2U at t = 4.0 T and t = 4.5 T when the wall is at rest.
This is consistent with the asymptotic predictions (B 9) and (B 21). The leading-order
oscillatory velocity (w̃00 in the notation of Part 1) is in phase with the wall velocity,
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Figure 4. Plots of (a) the centreline axial velocity w(0, 0, z; t) and (b) the centreline pressure
p(0, 0, z; t) at four equally spaced instants of the oscillation for the same set-up and parameter
values as in figure 3. The solid lines denote the asymptotic prediction (B 26) and (B 22); the
dashed lines denote numerical results. The dotted vertical lines show the boundary between
the rigid and flexible sections at z = z1 and z = z2.

but there are out-of-phase corrections at O(α−1) because of viscous effects in the
Stokes layer (and these appear in w̃01 as the term involving C0/R).

Viscosity acts in the oscillatory Stokes layer, which, like a classical Womersley
layer, contains a velocity component that is out of phase with the wall motion (see
(B 18)). The non-zero axial perturbation velocities in the Stokes layer at instants when
the wall is at rest are clearly visible in figure 3(a,c). The non-zero oscillatory axial
volume flux generated in these layers must be compensated for by an additional small
oscillatory axial velocity in the core region to achieve the required total volume flux
set by global mass conservation.

The plot of the centreline pressure p(0, 0, z; t) in figure 4(b) indicates that the
pressure distribution is dominated by the large axial pressure gradients required
to accelerate and decelerate the flow during the high-frequency oscillations. The
viscous pressure drop associated with the steady mean flow is much smaller than
these inertial pressure fluctuations. The pressure is not exactly in phase with the
accelerations of the wall, for the same reasons (viscous effects in the Stokes layer, as
discussed above) that the axial velocity is not exactly in phase with the velocity of the
wall.

Figure 5 shows a direct comparison between the numerical (right) and asymptotic
(left) predictions for the velocity and pressure distributions in the cross-sectional
plane z = 0.5 L at t = 4.875 T (i.e. 7/8th through a period of the oscillation). At this
instant of time, the wall still collapses inwards but decelerates as it approaches its
most strongly deformed configuration. The upper two plots show contours of pressure
p and instantaneous streamlines of the transverse velocity u⊥. The transverse velocity
field is dominated by the stagnation-point-like core flow, while the boundary layers
remain passive. The transverse flow is decelerated by an adverse pressure gradient, but
the induced cross-sectional pressure variations are small compared with the pressure
variations along the tube, shown in figure 4(b).

The lower two plots in figure 5 show the axial velocity profile in the same cross-
section and illustrate how the Poiseuille flow profile is depleted by the upstream-
directed axial velocity perturbation: the centreline velocity is reduced slightly below
the Poiseuille value of 2U , and the effect of the Stokes layer on the velocity
distribution is clearly visible in both plots.
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Figure 5. Comparison of the (a,c) asymptotic and (b, d ) numerical predictions for the flow
field in a cross-sectional slice at z = 0.5 L, at t = 4.875 T , with the same set-up and parameter
values as in figure 3. Only one quarter of each cross-section is shown. (a, b) Instantaneous
streamlines of the transverse velocity u⊥ and contours of the pressure p − pc relative to the
centreline pressure pc. (c, d ) Profiles of the axial velocity w. The asymptotic results are taken
from the composite expansions in § B.6. The dashed lines in (c, d ) show the steady Poiseuille
flow that would occur in the absence of any oscillations.

4.2. Energy budget and criticality condition

Figure 6 illustrates the system’s energy budget. The work done by the fluid on the
wall is given by

W (t) =

∫ t

0

∫∫
W

u ·
(
pI − 2μe

)
· N̂ dS dt ′, (4.1)

where N̂ is the outward-pointing unit normal to the moving wall W (t), I is the identity
tensor, and e is the rate-of-strain tensor. The mean rate of working, E, is found by
averaging dW/dt over a period of the oscillation:

E =
W (t∗ + T ) − W (t∗)

T
=

1

T

∫ t∗+T

t∗

∫∫
W

u ·
(
pI − 2μe

)
· N̂ dS dt, (4.2)

where t∗ is taken to be sufficiently large so that the system has settled into a periodic
state.

Figure 6(a) shows a plot of W (t) for several different inverse Strouhal numbers.
As can be seen, there are certain time intervals in the period of the motion in which
the wall does work on the fluid and others in which the fluid does work on the wall.
The oscillations in the work are dominated by oscillation of period T/2 caused by
the product of the oscillatory period-T components of the pressure p and velocity u.
A smaller component with period T arises from the product of the steady pressure
and the oscillatory component of the velocity.

We observe from (B 18a) and (B 10) that the leading-order oscillatory normal
velocity and pressure are proportional to sin(2πt/T ) and − cos(2πt/T ) respectively,



136 R. J. Whittaker, M. Heil, J. Boyle, O. E. Jensen and S. L. Waters

–60

–40

–20

0

20(a) (b)

(c) (d)

St–1

St–1

–10

–5

0

5

10

0 1 2 3 4

t/T

0 1 2 3 4 5

l = 5

� α2

10 15
20

1.0

2.0

3.0

5 10 15 20
1.0

1.5

2.0

2.5

50 100 150 200

W
�T

E
�

1

Stc

1

Stc

Figure 6. Energy budget comparisons for pressure–flux boundary conditions. (a) Numerical
evolution of the total work W (t) done by the fluid on the wall for α2 = 100 and � = 10, with
St−1 = 1.0 (solid line), 1.5 (dashed line), 2.0 (dotted line). (b) Mean energy flux E from the
fluid to the wall as a function of St−1, at α2 = 100 and with various tube lengths �. (c) The
critical inverse Strouhal number St−1

c as a function of � at α2 = 100. (d ) St−1
c as a function of

α2, for � = 10. Other parameters as in figure 3. In (b)–(d ), the points denote numerical results;
the lines denote the asymptotic predictions (4.3) and (4.4).

while from (B 8) the steady pressure component is negative. Inserting these forms into
(4.1) we find that the period-T/2 component of W is proportional to cos(4πt/T ), while
the (smaller) period-T component is proportional to cos(2πt/T ). This is consistent
with the oscillations in figure 6(a).

On top of these oscillations is a general increasing or decreasing trend, growing
linearly with time. At lower St−1 (lower flow rates) the wall, on average, does more
work on the fluid over a period of the motion. This implies that the oscillation
can only be maintained if an external agency provides that energy to the wall. Our
conjecture is that in a fully coupled fluid–structure interaction problem in which the
wall is allowed to move freely and no external input of energy to the wall is available,
the oscillations would decay. As St−1 is increased, the average work done by the fluid
on the wall over a period increases. At St−1 ≈ 1.59 (for these particular parameter
values) the oscillation becomes energetically neutral over a period. For higher St−1

(corresponding, e.g., to higher background flows U ) the wall extracts energy from the
flow. We conjecture that this would be a necessary condition for oscillations to grow
in the corresponding fluid–structure interaction problem.

Figure 6(b) summarizes these results, by showing E as a function of the inverse
Strouhal number St−1. The different sets of results correspond to different tube
lengths �. An asymptotic estimate for E is provided by the result (2.17). The detailed
calculation for the specific problem set-up and tube geometry used here is presented
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Figure 7. Plots of (a) the centreline axial velocity w(0, 0, z; t) and (b) the centreline pressure
p(0, 0, z; t) at four equally spaced instants of the oscillation with pressure–pressure boundary
conditions. The set-up is as described at the beginning of § 5, with α2 = 100 and St−1 = 2.5.
The solid lines are the asymptotic predictions (calculations omitted for brevity), and the dashed
lines represent the numerical results. The dotted vertical lines show the boundary between the
rigid and flexible sections at z = z1 and z = z2.

in § B.1. From (B 2) and (B 3), we obtain

E ∼ 6.81 �

(
1

St
− 1

St c

)
, (4.3)

where
1

St c

∼ 1.59 �

α
(4.4)

is the critical inverse Strouhal number at which the oscillations are energetically
neutral. The numerical results are seen to be in excellent agreement with these
predictions.

Figure 6(c, d ) confirms the accuracy of (4.4), by comparing the predicted behaviour
of St−1

c with numerical results for varying α and �. We see that within the parameter
regime considered here, shorter tubes are capable of extracting energy from the mean
flow at smaller flow rates and that an increase in the Womersley number α2 (e.g. via
a reduction in the fluid viscosity while keeping all other parameters constant) also
reduces the dimensionless flow rate beyond which energy is transferred from the flow
to the wall.

5. An axially uniform tube with pressure–pressure conditions
Next we consider the case in which the flow is driven by a prescribed pressure drop

between the far-upstream and downstream ends of the system. Since the instability
mechanism considered here requires the fluctuations in kinetic energy at the inflow to
exceed those at the outflow, we break the system’s upstream–downstream symmetry
by making the rigid downstream tube longer than its upstream counterpart, setting
z1 = L/17 and z2 = 9L/17. Throughout this section we use � ≡ L/a = 17 and
σ0 = 0.6 as in the pressure–flux case.

5.1. Velocity and pressure fields

Figure 7 illustrates the axial velocity and pressure on the tube’s centreline at four
equally spaced instants during a period of the oscillation, for α2 = 100 and St−1 = 2.5.
The numerical and asymptotic results are in excellent agreement.
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At the beginning of the period (at t = 25 T ), the tube wall is in its most strongly
collapsed configuration. The wall is instantaneously at rest and does not drive any
axial sloshing flow. The centreline velocity is therefore close to, but is not precisely,
its mean value. The deviation occurs for the same reasons as in the pressure–flux case
(see the discussion in § 4.1). However, for the pressure–pressure case, the mean value
is a little greater than 2U , since the oscillations increase the mean flux slightly (see
§ 7 of Part 1 and § 5.2 of the current paper).

Strong axial pressure gradients act in the upstream and downstream rigid sections
and accelerate the fluid, so that after a quarter of the period, at t = 25.25 T , when
the wall has returned to its steady configuration and is moving at maximum velocity,
strong sloshing flows are driven from the central section into the upstream and
downstream rigid sections. Upstream, the sloshing flow acts against the direction of
the mean flow, leading to a reduction in centreline velocity, while downstream it
augments the mean flow. At this instant, there is little net acceleration of the fluid;
hence the axial pressure variation is dominated by the imposed pressure drop, applied
between the far-upstream and downstream ends.

During the second half of the cycle the pattern reverses. Strong axial pressure
gradients in the upstream and downstream rigid tubes decelerate the sloshing flows
until they (approximately) disappear when the tube wall comes to rest in its second
extreme configuration. As in the case of the pressure–flux boundary conditions,
viscosity, acting in the Stokes layers, induces small phase differences between the wall
motion and the fluid motion in the core region.

5.2. The slow adjustment of the mean flow

When analysing the energy budget for the numerical simulations with pressure–flux
boundary conditions, we computed the average work done E by the fluid on the wall
over a few periods of the oscillation around t = 5T . This straightforward computation
was appropriate because the prescribed flow rate at the far downstream end ensured
that the system settled quickly into a periodic steady state, allowing the averaging to
be performed after a few periods of the oscillation.

With pressure–pressure boundary conditions this is no longer the case because
following the impulsive start of the wall oscillation at t = 0, the mean flux through
the system (as computed by averaging over a period T of the wall motion) adjusts
slowly over a time scale that is much larger than the period T of the oscillation. After
some initial transients, the adjustment towards the long-time limiting value is well
described by a decaying exponential, as shown in figure 8. There, the initial transients
occupy the first 10 or so periods, with the exponential fit being a good approximation
for t � 10T .

The deviation of the mean flow from its long-time steady limit is the result of
two effects. Firstly, the initial condition imposes an initial flux of πa2U , the value
we would obtain with the applied pressure drop in the absence of any oscillation.
However, as discussed in § 7 of Part 1 and § 5.3 of the present paper, the presence of
the oscillations increases this flux through the action of Reynolds stresses. Secondly,
initial transients, caused by the impulsive start from the steady initial conditions (see
§ 3.3), mean that the volume flux averaged over (say) the second period of the motion
is significantly different from that imposed at t = 0. In many of the simulations it
is this second effect that creates the larger deviation from the limiting value of the
steady flux. This explains, for example, why the average of the axial flux over each
period is seen to decrease (rather than increase) towards its final value in figure 8(a).
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Figure 8. An illustration of the initial transients and the slow adjustment of the system to a
periodic state, for (a) the mean axial volume flux and (b) the mean rate of working by the fluid
on the wall. The points are numerical data from a simulation with α2 = 100, St−1 = 2.5 and
other parameters as given at the beginning of § 5. Each point is the average value taken over
one period T of the oscillations. The continuous lines are functions of the form A + Be−λt .
Initial transients occupy 0 � t/T � 10, and the parameters A, B and λ were found using a
least squares fit to the numerical data for 10 < t/T < 50. The dashed lines are the asymptotes
of the fitted functions as t → ∞.

The limiting value of the steady flux is determined by a balance between the
effective axial pressure gradient (the imposed gradient plus the Reynolds stresses
from the oscillatory flow) and viscous stresses. We conjecture that after the initial
transients, the adjustment towards the limiting value is regulated by an axially uniform
axial acceleration of the body of fluid contained in the tube under the forces that
arise from the mismatch of the effective pressure and viscous forces. (This assumption
is justified a posteriori by the excellent agreement – as shown in figures 8 and 9a –
between the numerical simulations and the analysis that now follows.)

The effective pressure gradient necessarily scales like the viscous forces, since the two
must balance in steady state. We therefore estimate the time scale of the adjustment
by balancing the unsteady inertia term ρ ∂w/∂t with the viscous dissipation μ∇2w of
the axial flow. From this balance we obtain the time scale

Ti ∼ a2ρ

μ
= α2T . (5.1)

Since α2 � 1, the time scale Ti is much longer than the period T of the wall motion,
consistent with the observed behaviour in the numerical simulations. We therefore
examine the slow adjustment using a multiple-scale analysis. We start by defining a
slow time t∗ = t/Ti in addition to the (fast) non-dimensional time t̆ = t/T appropriate
to the oscillations. We then decompose the axial velocity as

w(x, t) = U
[(

w(x) + w∗(x, t∗)
)

+
(
w̃(x) + w̃∗(x, t∗)

)
e2πit̆ + · · ·

]
, (5.2)

where w and w̃ are the steady and frequency-ω components in the converged purely
oscillatory state. The other variables are decomposed similarly. Using the slow time
t∗, the time derivative becomes

∂

∂t
=

1

T

(
1

α2

∂

∂t∗ +
∂

∂t̆

)
. (5.3)

We now substitute this decomposition into the Navier–Stokes equations (2.1) and
average over a period T of the fast oscillations. Using the fact that w, w̃ and the
like satisfy the equations when ∂/∂t∗ = 0, and assuming w∗, w̃∗ and the like are
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Figure 9. (a) The decay constants λ for the adjustment of the mean flux. The solid line is
the theoretical prediction λ = 6.864/(α2T ). The points indicate results from the numerical
simulations, found by fitting the exponential form A+Be−λt to a moving average taken over a
window of length T . (b) The flux correction factor Ψ as a function of the Womersley number
α. The points represent numerical results, where Ψ is computed from the flux Q using (5.7).
The line is the theoretical prediction (5.8). For both graphs, for each value of α, simulations
were run with three different values of St (see figure 10a). The three points for each α are
almost indistinguishable on the graphs, consistent with the theoretical predictions that λ and
Ψ are independent of St .

independent of z, we obtain

∂w∗

∂t∗ = ∇̆2
⊥ w∗. (5.4)

at leading order, where ∇̆2
⊥ ≡ a2∇2

⊥ is the dimensionless cross-sectional Laplacian.
The boundary conditions are that w∗ = 0 on the tube wall, linearized to the steady
configuration of an elliptical cylinder. Equation (5.4) represents the decay of a flow
in a tube from a non-zero initial state under zero pressure gradient. We can analyse
this adjustment theoretically, following e.g. Mortensen & Bruus (2006).

The solutions of (5.4) can be written as

w∗(x̆, y̆, t∗) =
∑

n

kn Φn(x̆, y̆) e−λ∗
nt

∗
, (5.5)

where Φn and λ∗
n are the eigenfunctions and eigenvalues of the Helmholtz problem

∇̆2
⊥ Φn = λ∗

nΦn (5.6)

in the elliptical cross-section, subject to Φn = 0 on the boundary, and kn are constants
set by the initial conditions.

The long-time behaviour of the decay towards the steady state is therefore controlled
by the smallest eigenvalue λ∗

0. We evaluate this, for our ellipse of σ0 = 0.6, using the
polynomial approximation of Troesch & Troesch (1973). We obtain λ∗

0 = 6.864.
Figure 9(a) shows that the decay observed in the numerical simulations is in excellent
agreement with the theoretical (dimensional) decay constant λ = λ∗

0/(α
2T ).

At large Womersley numbers, the rate at which the mean flux approaches its
asymptotic value is therefore very slow relative to the period of the oscillations, and
it is infeasible to continue the numerical simulations long enough to obtain complete
convergence. For instance, for α2 = 200 and St−1 = 1.75 the rate-of-work E done by
the wall, averaged over the 50th period of the oscillation, still differs by more than
20 % from its asymptotic value. However, since the decay is so well approximated by
an exponential, we shall use a least-squares fit to such a function to determine the
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asymptotic values of the various quantities of interest when analysing the system’s
energy budget in § 5.4.

5.3. The oscillation-induced flux correction

As described in § 7 of Part 1, the oscillatory flow can affect the steady component of
the momentum equation via the time average of the nonlinear momentum term. The
resulting Reynolds stresses act like an additional pressure gradient on the steady flow.
In the case of pressure–flux boundary conditions, the steady pressure field can adjust
without affecting the axial volume flux. With pressure–pressure boundary conditions
the axial volume flux must change from the value πa2U that would be obtained in
the absence of any oscillations.

This change is parameterized by a flux correction factor Ψ , with the observed
steady flux (following the adjustment described in § 5.2 above) being written as

Q = πa2U (1 + StΨ ). (5.7)

The asymptotic prediction for Ψ from Part 1 for a tube with an axially uniform
steady configuration is given in (2.16). We have that Ψ > 0 whenever the oscillation
volume � is larger at the upstream end than at the downstream end. (The condition
|�(0)| > |�(L)| is a prerequisite for the extraction of energy from the mean flow
and is satisfied in each of the numerical simulations described here.) For the cases
considered here, (C 3) predicts

Ψ = 0.0161α2Δ2�. (5.8)

Estimates of Ψ can be obtained from the numerical simulations using the asymptotic
value of Q obtained from the least squares fit discussed in § 5.2 and the expression (5.7).
Figure 9(b) shows a comparison between these numerical results and the theoretical
prediction (5.8). The agreement is good, though somewhat counter-intuitively, the
agreement appears to get worse as α increases. However, a closer analysis of the
relative errors in Ψ shows them to be well approximated by a function of the form
f (St, �) − Cα−1, for some function f and constant C. This is consistent with the
prediction being asymptotic as α, �, St → ∞. The better agreement at α2 = 50 is
probably because of a coincidental cancellation between f (St, �) and Cα−1 there.

5.4. The energy budget and critical inverse Strouhal number

Asymptotic predictions for the net energy transfer to the wall E and the critical
Strouhal number St c are given by (2.13). The detailed calculations for the specific
set-up considered in this section can be found in Appendix C. Substituting z1 = L/17
z2 = 9L/17, σ0 = 0.6, ω = 2π/T into (C 4) and (C 5), we find that

E ∼ 0.97 �

(
1

St
− 1

St c

)
(5.9)

and
1

St c

∼ 1.47 �

α
− 0.0161 α2Δ2�. (5.10)

The second term on the right-hand side of (5.10) is due to the change in the mean
axial volume flux caused by the oscillations. The higher mean flux enhances the net
oscillatory kinetic energy flux at the tube ends, resulting in a greater flux of kinetic
energy into the system. The larger volume flux therefore has the effect of increasing
the energy transfer to the wall and thus reducing the critical inverse Strouhal number.
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Figure 10. Comparison of the numerical and asymptotic results for pressure–pressure
boundary conditions with σ0 = 0.6, z1 = L/17, z2 = 9L/17, � = 17. (a) The net energy
transfer to the wall as a function of St−1 for various α2. (b) The critical inverse Strouhal
number St−1

c as a function of Womersley number α2. Results from numerical simulations are
shown with the points and the asymptotic results (5.9) and (5.10) with the continuous lines.

Figure 10(a) shows a comparison between the numerical and asymptotic predictions
for the time-averaged work E done by the fluid on the wall, as a function of St−1,
for various values of α2. The overall behaviour is similar to that found in the case
of pressure–flux boundary conditions: for fixed α2, the rate-of-work E done by the
fluid on the wall increases with the flow rate (represented by the St−1), and St−1

c

decreases with an increase in α2. The agreement between numerical and asymptotic
predictions in figure 10 is slightly worse than in the case of pressure–flux boundary
conditions (figure 6b, d ). However, the agreement improves as the Womersley number
is increased, as expected.

The asymptotic predictions are not quite as good for the pressure–pressure case,
probably because the net energy flux at the tube ends is now the difference between
that at the upstream and downstream ends. A small error in the partitioning of the
mass flux from the prescribed volume changes in the tube will cause an error of the
same sign at both ends of the tube. This source of error is absent in the pressure–flux
case, since only one end contributes to each flux.

6. An axially non-uniform tube with pressure–flux conditions
Finally, we consider a tube in which the steady configuration is not axially uniform,

choosing the ellipticity σ0 of each cross-section in the steady configuration to vary
with z, as described in (3.5). For simplicity, we consider only pressure–flux boundary
conditions, and take Σ0 = 0.6 so that the rigid end sections of the tube have the same
cross-section as those in §§ 4 and 5.

Figure 11(a) illustrates the axial non-uniformity of the tube: the solid line shows
the cross-sections of the rigid upstream and downstream tubes, while the various
dashed lines show the most strongly collapsed cross-sections at the centre of the
‘elastic’ section for a range of axial non-uniformities, characterized by the parameter
Σ1 in (3.5).

The calculations to obtain the asymptotic expressions for the energy transfer to
the wall and the critical inverse Strouhal number are described in Appendix D.



Flow in an oscillating tube. Part 2 143

–1.0

–0.5

0

0.5

1.0

0–0.5–1.0–1.5 1.00.5 1.5

x/a
0.100.050 0.200.15 0.25

Σ1

(a) (b)

Σ1

1.0

1.5

2.0

2.5

3.0

α2 = 50

α2 = 100

α2 = 200

1

Stc

y
a

Figure 11. (a) Elliptical cross-sections in the axially non-uniform steady configuration as
described in § 3.1 with Σ0 = 0.6. The solid line is the cross-section of the rigid end sections.
The dashed lines are the cross-section of the most collapsed part at z = (z1 + z2)/2 for
Σ1 = 0.05, 0.10, 0.15, 0.20 (Σ1 = 0 corresponds to an axially uniform steady configuration).
(b) The effect of the axial non-uniformity on the critical inverse Strouhal number St−1

c . Results
are shown for the set-up described in § 6 with pressure–flux boundary conditions, ω = 2π/T ,
Σ0 = 0.6 and Δ = 0.025. Numerical simulations were performed with three values of α2 at
various values of Σ1. The crosses are from simulations with � = 10, z1 = L/10 and z2 = 9L/10,
while the circles are from simulations with � = 17, z1 = L/17, and z2 = 9L/17. From (6.1), we
see that both these set-ups have the same theoretical predictions for St−1

c . These predictions
are shown as solid lines for the three values of α2 considered.

Substituting Σ0 = 0.6 into (D 4b), we obtain

1

St c

=
3.80

α

[
z1

a
+

z2 − z1

a

∫ 1

0

1

Θ2(0.6, Σ1; υ)2
Θ1(0.6, Σ1; υ)2

Θ1(0.6, Σ1; 0)2
dυ

]
, (6.1)

where the dimensionless functions Θi are defined in (D 5). A simpler form is not
possible, since Θ1 and hence the integral in (6.1) can only be evaluated numerically
for individual values of Σ1.

Figure 11(b) compares the asymptotic prediction (6.1) for St−1
c (solid lines) against

the numerical results (crosses) for a tube of aspect ratio � = 10 in which the
upstream and downstream rigid sections each occupy 10 % of the tube length, i.e.
z1 = L/10 = a, z2 = 9L/10 = 9a as in § 4. We performed computations for three values
of the Womersley number α and a range of axial non-uniformities (parameterized by
Σ1). The agreement between the numerical and asymptotic results is very good and
improves with increasing α.

The numerical and asymptotic results both predict an increase in St−1
c with an

increase in the axial non-uniformity Σ1. Physically, this occurs because the smaller
cross-sectional areas in the non-uniform section of the tube lead to increased axial
velocities, and hence increased dissipation, for a given axial flux. With higher
dissipative losses, more energy must be extracted from the background flow at the
critical point. This can be achieved by having a larger background flow, which is
equivalent to a larger St−1 ∝ U .

Over the range of axial non-uniformities considered here, the discrepancy between
the numerical and asymptotic results increases slightly with increasing Σ1, presumably
because the increase in axial wall slope begins to violate the long-wavelength
approximation employed in the asymptotic analysis. For even larger axial non-
uniformities the flow is likely to separate in the downstream part of the oscillating
section, invalidating the assumption that the flow remains attached to the walls
throughout the oscillation.
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The circular markers in figure 11(b) show the numerical results for St−1
c for α2 = 100

with the same boundary conditions, tube shape and oscillation profile as before but
with a longer downstream rigid section. The total length of the tube becomes L = 17a,
but we keep z1 = a and z2 = 9a. (This means that � = 17 and the lengths of the
upstream, central and downstream sections are then in the ratio 1 : 8 : 8 as in § 5.)
The agreement in figure 11(b) confirms the asymptotic prediction that for pressure–
flux boundary conditions, St c is independent of the length of the downstream rigid
section, when the lengths of the upstream and central sections (given by z1 and
z2 − z1 respectively) are held fixed (see (6.1)). Furthermore, the agreement between the
numerical results for the two cases shows that the imposition of a Poiseuille velocity
profile in the outflow cross-section has little effect on the energetics of the flow even
if the downstream rigid tube is relatively short, as it was for the � = 10 case.

7. Summary and conclusions
The main purpose of this paper was to show how the results of the theory developed

in Part 1 of this work (Whittaker et al. 2010) could be applied to specific problems
and to validate the theory by comparison with numerical simulations. A detailed
discussion of the theory can be found in Part 1; so here we just summarize the results
and findings from the present paper.

In §§ 4–6, we have shown excellent agreement between the asymptotic theory
and numerical simulations performed using the oomph-lib library (Heil & Hazel
2006). Comparisons were performed for an elliptical tube undergoing a class of
prescribed wall oscillations as described in § 3. Both canonical sets of boundary
conditions (pressure–flux and pressure–pressure) at the tube ends were considered,
with simulations conducted with a range of parameter values for each.

For pressure–flux boundary conditions (§ 4), we obtained excellent agreement
between the asymptotic predictions and the numerical results for the pressure and
flow fields (figures 4 and 5) and the overall energetics of the system (figure 6). For
pressure–pressure boundary conditions (§ 5), the agreement is not quite as good as
that in the pressure–flux cases, but it is still very satisfying given the parameter values
used: the ratios that should formally be ‘small’ in the asymptotic regime (2.7) were
only around 0.1.

The numerical simulations with pressure–pressure boundary conditions revealed a
slow adjustment phenomenon in the time-averaged axial flow. Reynolds stresses from
the oscillatory flows cause an additional steady axial pumping effect (also seen in
Jensen & Heil 2003), and the mean flow has to adjust from its value in the absence
of oscillations. The magnitude of the pumping effect is well captured by the theory
of Part 1, and in § 5.2 we showed how the slow adjustment over many periods can be
understood using a multiple-scale analysis. The change in the steady flux can have
either sign, as shown by (2.14) and (2.16), but in the case in which kinetic energy
is extracted from the mean flow (|�̃(0)| > |�̃(1)|), the steady flux will be increased.
Although the slow adjustment to the mean flow is a relatively weak effect in the
example presented here (figure 8), the pumping driven by unsteady Reynolds stresses
is likely to have wider significance in the broader context of collapsible-tube flows.
First, the capacity of a small oscillation to increase the mean flow through the tube,
thereby increasing the potential source of energy to drive further oscillations, has
been shown to be responsible for causing oscillations to arise subcritically (through
essentially the same mechanism of energy transfer as described herein) in a one-
dimensional model of a collapsible-channel flow (Stewart et al. 2009). The presence
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of an additional slow time scale in the problem (figure 8) raises interesting questions
about the nature of the bifurcation to instability in the full collapsible-tube problem.
Second, adjustments to the mean flow (or mean pressure gradient) also have the
capacity to increase the energy derived by work done by pressure forces at the
channel inlet and therefore may play a key role in other mechanisms for self-excited
oscillations. However, it should be noted that these theoretical predictions apply only
in the specific regime considered here. Further calculations would be required to
quantify the effects of changes to the steady flux in other regimes.

We also considered axially non-uniform tubes (§ 6) and again obtained good
agreement between the asymptotic theory and numerical simulations. The chosen
axial non-uniformity was found to increase the viscous dissipation. This reduces the
rate at which energy is transferred to the wall and so increases the critical inverse
Strouhal number St−1

c . Figure 11(b) shows that even for moderate degrees of non-
uniformity, St−1

c does not change much from its value for a uniform tube (Σ1 = 0).
The asymptotic theory of Part 1 is a critical step towards enabling the development

of a fully rational theory for this class of instability in collapsible-tube flows. Having
validated the theory against numerical simulations, we are currently extending the
analysis to the case with full fluid–structure interaction. Normal modes of oscillation
will be calculated, and the theory developed in Part 1 can then be used to determine
the stability criterion for each mode. Results will be reported in future papers.
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the EPSRC for funding in the form of an Advanced Research Fellowship. Helpful
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Appendix A. Coordinate system and geometry
For the calculations within the core region, we employ dimensionless elliptic

cylindrical coordinates (σ, τ, z̆), related to the previous dimensional Cartesian
coordinates by

x

a
= c cosh σ cos τ,

y

a
= c sinh σ sin τ,

z

L
= z̆, (A 1a–c)

where c was defined in terms of σ0(z) in (3.2). Following (3.1) the tube occupies

{(σ, τ, z̆) : σ ∈ [0, σ0(z̆)], τ ∈ [0, 2π), z̆ ∈ [0, 1]} (A 2)

in the steady configuration. The elliptic coordinate system (A 1) has a single scale
factor h, where

h(σ, τ ) = c(sinh2 σ + sin2 τ )1/2 = c

(
cosh 2σ − cos 2τ

2

)1/2

, (A 3)

which applies to both the σ and τ coordinates.
Unit vectors in the σ and τ directions respectively are given by

σ̂ =
c

h
(sinh σ cos τ x̂ + cosh σ sin τ ŷ), (A 4a)

τ̂ =
c

h
(− cosh σ sin τ x̂ + sinh σ cos τ ŷ). (A 4b)
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The triad of unit vectors aligned with the tube wall W0 in the steady configuration
are related to (σ̂ , τ̂ ), by

n̂ = τ̂ cos θ + ẑ sin θ, t̂ = σ̂ , b̂ = ẑ cos θ − τ̂ sin θ, (A 5a–c)

where θ is the angle of the wall to the tube axis. (The angle θ is related to the factor
G defined in Part 1 by G = � sin θ .) For the elliptical cross-sections considered here,
θ can be determined by

tan θ =

t̂ · ∂ r0

∂Z̆

∣∣∣∣
Y̆

ẑ · ∂ r0

∂Z̆

∣∣∣∣
Y̆

=
ac

2h�

dc

dz̆
sinh 2σ0 +

ac2

h�

dσ0

dz̆
(cosh2 σ0 − cos2 Y̆ ). (A 6)

Since the axial variation is slow, θ � 1, and near the tube wall, the boundary-
layer coordinates (X̆, Y̆ , Z̆) introduced in Part 1 are almost aligned with the elliptical
coordinates used in the cross-section. The surface scale factor H s

Y is related to h by

H s
Y (Y̆ , Z̆) = h(σ0, Y̆ ). At leading order, we have

X̆ =
h(σ0, τ )

ε
(σ0 − σ ), Y̆ = τ, Z̆ = z̆. (A 7a–c)

In the steady configuration, the tube has cross-sectional area

A0 = a2

∫ 2π

0

∫ σ0

0

h2 dσ dτ =
1

2
πa2c2 sinh 2σ0, (A 8)

and the length of the perimeter of each cross-section is given by

C0 = a

∫ 2π

0

h(σ0, τ ) dτ =
4acEe(sech σ0)

sech σ0

, (A 9)

where Ee is the complete elliptic integral of the second kind, as defined in (3.3).
Using expression (A 8) for A0, the angle θ may be re-expressed as

tan θ =
1

2πah�

dA0

dz̆
− ac2

2h�

dσ0

dz̆
cos(2Y̆ ). (A 10)

Given the deformations (3.6), the dimensionless area change within each cross-
section is

Ã(z̆) =

∫ 2π

0

ξ (Y̆ , z̆) H s
Y H s

Z dY̆ = − 3πd(z̆)

2 cosh 2σ0

. (A 11)

Appendix B. Solution for an elliptical tube with pressure–flux boundary
conditions

In this Appendix we apply the methods developed in Part 1 (Whittaker et al.
2010) to solve the problem studied in § 4 of the present paper, namely that of
flow through an initially uniform elliptical tube with oscillating walls of the form
described in § 3. As well as computing the energy transfer E from the fluid to the
tube walls (2.13a) and the critical Strouhal number at which this vanishes (2.13b), we
calculate the asymptotic solution for the pressure and velocity fields. The notation
used throughout this Appendix is that defined in Part 1.
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B.1. Energy transfer and critical inverse Strouhal number

We note that Ã is given by (A 11) and that χ = Ψ = 0, since we have pressure–flux
boundary conditions. Then, from (2.10) we find that

�̃(z̆) =
3π(z̆2 − z̆1)

4 cosh 2σ0

⎧⎪⎪⎨
⎪⎪⎩

1 : 0 < z̆ < z̆1,
z̆2 − z̆

z̆2 − z̆1

+
1

2π
sin

(
2π(z̆ − z̆1)

z̆2 − z̆1

)
: z̆1 < z̆ < z̆2,

0 : z̆2 < z̆ < 1,

(B 1)

where z̆ = z/L is the dimensionless axial coordinate and z̆i = zi/L are the
dimensionless positions of the joints between the rigid and flexible sections of the
tube.

The mean energy transfer to the wall and critical inverse Strouhal number are then
found from (2.13) to be

E

�
=

9πω̆2(z̆2 − z̆1)
2

32 cosh2 2σ0

(
1

St
− 1

St c

)
, (B 2)

1

St c

=
4�

α

(
ω̆

sinh 2σ0

)1/2
Ee(sech σ0)

π sech σ0

[
1

2
(z̆1 + z̆2) −

(
1

6
− 5

8π2

)
(z̆2 − z̆1)

]
, (B 3)

where ω̆ = ωT is the dimensionless frequency.

B.2. The leading-order steady flow

Since the tube is uniform in z in the steady configuration, we assume that the leading-
order steady flow is a uniform fully developed Poiseuille flow. From Part 1 (4.3)–(4.5)
this must satisfy (

∂2

∂σ 2
+

∂2

∂τ 2

)
w0 = −G [h(σ, τ )]2 in σ < σ0, (B 4)

where G = −(R2/ελ)(dp′/dz̆) is the uniform scaled pressure gradient, subject to

w0(σ0, τ ) = 0, (B 5a)

w0(0, τ ) = w0(0, 2π − τ ), (B 5b)

∂w0

∂σ
(0, τ ) = −∂w0

∂σ
(0, 2π − τ ), (B 5c)

∫ 2π

0

∫ σ0

0

w0 h2 dσ dτ = π. (B 5d )

We obtain the solution

w0 = 2 coth2 2σ0

(
1 − cosh 2σ

cosh 2σ0

) (
1 − cos 2τ

cosh 2σ0

)
, (B 6)

with G = 8 coth 2σ0. Equation (B 6) can also be expressed more simply in terms of
the Cartesian coordinates as

w0 = 2

[
1 −

(
x̆

c cosh σ0

)2

−
(

y̆

c sinh σ0

)2
]

. (B 7)

Since we have a flux boundary condition at one end of the tube, we have w0+= w0.
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Following § 7 of Part I, the leading-order axial pressure in the core is given by
p0+= Π + p′, where

p′ = −8ελ coth 2σ0

R2
z, (B 8a)

Π = −1

4
(λδ)2(|w̃00(z̆)|2 − |w̃00(0)|2), (B 8b)

and the expression for w̃00(z̆) is given in (B 9).

B.3. The leading-order oscillatory flow in the core

Part 1 equations (5.13a) and (5.13b) give the expressions for the leading-order axial
velocity and pressure in the core in terms of �̃(z̆). Using (B 1), we find that

w̃00 = −3iω̆(z̆2 − z̆1)

4 cosh 2σ0

⎧⎪⎪⎨
⎪⎪⎩

1 : 0 < z̆ < z̆1,
z̆2 − z̆

z̆2 − z̆1

+
1

2π
sin

(
2π(z̆ − z̆1)

z̆2 − z̆1

)
: z̆1 < z̆ < z̆2,

0 : z̆2 < z̆ < 1

(B 9)

and

p̃00 = − 3ω̆2

8 cosh 2σ0

×

⎧⎪⎪⎨
⎪⎪⎩

2z(z̆2 − z̆1) : 0 < z̆ < z̆1,

−(z̆ − z̆2)
2 +

(
z̆2

2 − z̆2
1

)
+

(
z̆2 − z̆1

π

)2

sin2

(
π(z̆ − z̆1)

z̆2 − z̆1

)
: z̆1 < z̆ < z̆2,

z̆2
2 − z̆2

1 : z̆2 < z̆ < 1.

(B 10)

From Part 1 (5.19)–(5.22) and Part 2 (2.9), the Poisson problem for p̃�
01 is

∇̆2
⊥ p̃�

01 =
ω̆2β Ã(z̆)

π
= − 3ω̆2β d(z̆)

4 cosh 2σ0

, (B 11)

and hence (
∂2

∂σ 2
+

∂2

∂τ 2

)
p̃�

01 = −3ω̆2β d(z̆)

sinh 4σ0

(
cosh 2σ − cos 2τ

)
, (B 12)

subject to

∂ p̃�
01

∂σ
(σ0, τ ) = ω̆2β d(z̆)

(
−3 sech 2σ0

4
+ cos 2τ − sech 2σ0

4
cos 4τ

)
, (B 13)

p̃�
01(0, τ ) = p̃�

01(0, 2π − τ ),
∂ p̃�

01

∂σ
(0, τ ) = −∂ p̃�

01

∂σ
(0, 2π − τ ), (B 14a,b)

∫ 2π

0

∫ σ0

0

p̃�
01 h2 dσ dτ = 0. (B 15)
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The solution to (B 12)–(B 15) is

p̃�
01(σ, τ, z) = − 3ω̆2βd(z̆)

4 sinh 4σ0

(
cosh 2σ + cos 2τ − 1

2
cosh 2σ0

)

+
ω̆2βd(z̆)

2 sinh 2σ0

(
cosh 2σ cos 2τ +

1

2

)

− ω̆2βd(z̆)

16 cosh 2σ0 sinh 4σ0

cosh 4σ cos 4τ. (B 16)

The three parts correspond precisely to the three terms in the normal boundary
displacement ξ and hence in the boundary condition (B 13). The first part is a
particular integral for (B 12), and the other two parts satisfy the homogeneous
equation. All three parts individually satisfy the remaining three constraints (B 14)–
(B 15).

The flow in the cross-section can then be recovered from Part 1 (5.7b), which gives

σ̂ · ũ00 =
iω̆d(z̆)

h(σ, τ )

(
− 3 sinh 2σ

2 sinh 4σ0

+
sinh 2σ cos 2τ

sinh 2σ0

− sinh 4σ cos 4τ

4 cosh 2σ0 sinh 4σ0

)
, (B 17a)

τ̂ · ũ00 =
iω̆d(z̆)

h(σ, τ )

(
3 sin 2τ

2 sinh 4σ0

− cosh 2σ sin 2τ

sinh 2σ0

+
cosh 4σ sin 4τ

4 cosh 2σ0 sinh 4σ0

)
. (B 17b)

B.4. The leading-order oscillatory flow in the Stokes layer

Expressions for the boundary-layer velocities are given in Part 1 (5.6a) and Part 1
(5.27), in terms of the wall displacements (ξ, η, ζ ), the outer limit of the core flow
ũ00(σ0, Y, Z) and the scaled normal coordinate X. These can be re-expressed in terms
of the elliptic coordinates in the core, using (A 7). We obtain

Ũ00 = iω̆ ξ (τ, z̆) = σ̂ (σ0, τ ) · ũ00(σ0, τ, z̆), (B 18a)

Ṽ00 = τ̂ (σ0, τ ) · ũ00(σ0, τ, z̆) [1 − E(σ, τ )] + iω̆ η(τ, z̆) E(σ, τ ), (B 18b)

W̃00 = w̃00(σ0, τ, z̆) [1 − E(σ, τ )], (B 18c)

where, from Part 1 (5.28), the boundary-layer decay function is given by

E(σ, τ ) = exp

[
−

(
ω̆

2

)1/2
(1 + i)R

ε
h(σ0, τ ) (σ0 − σ )

]
. (B 19)

B.5. The first-order corrections to the oscillatory flow in the core

The first-order correction to the pressure in the core is given by p̃01 = p̃∗
01 + p̃�

01. The
second term has already been calculated above; the first term is found by integrating
Part 1 (5.37) and applying the boundary conditions p̃∗

01(0) = 0 and dp̃∗
01/dz̆(1) = 0.

We obtain

p̃∗
01(z̆) =

(1 − i)C0

π(2ω̆)1/2R
p̃00(z) − 2

λ
(w̃00(z̆) − w̃00(0)). (B 20)

The pressure is closely linked to the axial velocity. At leading order, this was seen
to be plug flow with a flux set by continuity. The first term in (B 20) adjusts the
plug-flow flux by O(ε) to correct for the reduction of the axial velocity in the Stokes
layer. The second term in (B 20) represents the additional pressure gradient required
to balance the Reynolds stresses in the core. The additional flow it induces has zero
cross-sectional average at this order.
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The associated axial velocity is then recovered from (B 20) using Part 1 (5.31c). We
obtain

w̃01 =
(1 − i)C0

π(2ω̆)1/2R
w̃00 +

i

ω̆λ

(
ũ⊥

00 · ∇̆⊥w0++
(
w0+− 2

) dw̃00

dz̆

)
+

i

ω̆

∂ p̃�
01

∂z̆
. (B 21)

The first term represents the change in the magnitude of the plug-flow component to
account for the reduced flux in the Stokes layer. The second group of terms is the
response to the Reynolds stresses. The final term is the response to axial variations
in deviations from the mean pressure in each cross-section.

Similar corrections can also be calculated for the cross-sectional transverse velocity
ũ⊥

01 in the core and the O(ε) velocity in the Stokes boundary layers. However,
satisfactory agreement with the numerical calculations has been obtained without the
need for these corrections.

B.6. Composite expansions

We have now computed the oscillatory axial velocity and pressure in the core to O(ε),
and the oscillatory transverse velocity in the core and all the boundary-layer variables
to O(1).

The O(ε) oscillatory pressure is uniform across the boundary layer; so we are able
to form a composite expansion accurate to O(ε) in the oscillatory component. We
have

Tpcomp

ρLU
= p̆comp =

ε

λ
(p′

0 + Π) + λδ Re{eiω̆t̆ [p̃00 + ε(p̃∗
01 + p̃�

01)]} + · · · , (B 22)

where the steady components are given by (B 8b) and (B 8a) and the oscillatory
components by (B 10), (B 16) and (B 20).

For the velocities, we have not computed the O(ε) oscillatory behaviour in the
Stokes layer; so the composite expansions can only be given to leading order in the
oscillatory flow. The axial velocity w̃ is uniform in the core at leading order; so the
composite expansion is simply the boundary-layer expression Part 1 (5.27b). We have

wcomp

U
= w̆comp = w0++ λδ Re{eiω̆t̆ w̃00[1 − E(σ, τ )]} + · · · , (B 23)

where E(σ, τ ) is given (B 19), w0+= w0 by (B 6) and w̃00 by (B 9).

The transverse oscillatory velocity component σ̂ · ũ⊥ is uniform across the boundary
layer at leading order; so the composite expansion is formed using just the expression
that applies in the core. There is no steady component to the transverse velocity; so
we have

�

U
σ̂ · u⊥

comp = σ̂ · ŭ⊥
comp = λδ Re{eiω̆t̆ σ̂ · ũ⊥

00} + · · · , (B 24)

where σ̂ · ũ⊥
00 is given by (B 17a).

For the transverse oscillatory velocity component τ̂ · ũ⊥, we must sum the core and
boundary-layer expressions and then subtract off the common limiting value. Again
there is no steady component. We obtain

�

U
τ̂ · u⊥

comp = τ̂ · ŭ⊥
comp = λδ Re{eiω̆t̆ [τ̂ · ũ⊥

00(1 − E(σ, τ )) + iω̆ η(τ, z) E(σ, τ )]} + · · · ,

(B 25)
where E(σ, τ ) is as defined in (B 19) and τ̂ · ũ⊥

00 is given by (B 17b).
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Finally, we note that the expression for the axial velocity in the core, correct to
O(ε) in the oscillatory component, is given by

w

U
= w̆ = w0++ λδ Re{eiω̆t̆ (w̃00 + εw̃01)} + · · · , (B 26)

where the steady component is given by (B 6) and the unsteady components by (B 9)
and (B 21).

Appendix C. Solution for an elliptical tube with pressure–pressure boundary
conditions

Here we consider the problem studied in § 5, namely that of flow through an initially
uniform elliptical tube with oscillating walls of the form described in § 3. As well as
computing the energy transfer E from the fluid to the tube walls (2.13a), and the
critical Strouhal number at which this vanishes (2.13b), we explicitly calculate the
change in the flux due to the presence of the oscillations. For brevity, we do not
present the calculations for the velocity and pressure fields.

The tube is uniform with A0 = πa2 and Ã(z) given by (A 11). From (2.11) we have
χ = z/L ≡ z̆, and then using (2.10) we obtain

�̃(z̆) =
3π(z̆2 − z̆1)

4 cosh 2σ0

f (z̆), (C 1)

where

f (z̆) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − z̆2 + z̆1

2
: 0 < z̆ < z̆1,

− z̆2 + z̆1

2
+

z̆2 − z

z̆2 − z̆1

+
z̆2 − z̆1

2π
sin

(
2π(z − z̆1)

z̆2 − z̆1

)
: z̆1 < z̆ < z̆2,

− z̆2 + z̆1

2
: z̆2 < z̆ < 1,

(C 2)

and z̆i = zi/L as before.
We now calculate the flux correction factor Ψ from (2.14) and the energy flux

and critical Strouhal number using (2.13). From the definition in (2.15) and the
calculations in § B.2, we find that k−1 = 8 coth 2σ0. We then obtain

Ψ =
9α2�Δ2ω̆2(z̆2 − z̆1)

2

512 coth 2σ0 cosh2 2σ0

[1 − (z̆1 + z̆2)], (C 3)

E

�
=

9πω̆2(z̆2 − z̆1)
2

32 cosh2 2σ0

(1 − (z̆1 + z̆2))

(
1

St
− 1

St c

)
, (C 4)

1

St c

=
4�

α

(
ω̆

sinh 2σ0

)1/2
Ee(sech σ0)

sech σ0

1

1 − (z̆1 + z̆2)

×
{

1

2
(z̆1 + z̆2)

[
1 − 1

2
(z̆1 + z̆2)

]
−

(
1

6
− 5

8π2

)
(z̆2 − z̆1)

}

− 9α2�Δ2ω̆2(z̆2 − z̆1)
2

512 coth 2σ0 cosh2 2σ0

[1 − (z̆1 + z̆2)], (C 5)

where ω̆ = ωT is the dimensionless frequency.
Finally, we can compute the steady flux from (2.16) as

Q = πa2U

{
1 +

9α2�StΔ2ω̆2(z̆2 − z̆1)
2

512 coth 2σ0 cosh2 2σ0

[1 − (z̆1 + z̆2)]

}
. (C 6)
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Observe that in the limit � → ∞, z̆1, z̆2 → 0 with �z̆1 and �z̆2 held fixed, the pair of
expressions (C 4) and (C 5) become identical with the corresponding expressions (B 2)
and (B 3) for the pressure–flux case. Physically, this limit corresponds to lengthening
the downstream rigid section of the tube while keeping the other dimensions fixed.
In this limit the two different downstream boundary conditions become equivalent,
as both have the effect of suppressing the oscillatory axial flow at the downstream
end. In the case of the flux condition, this suppression is achieved directly by the
flux condition itself. With the pressure condition, it is the large inertance (resistance
to oscillatory flow) of the fluid in the long downstream section that suppresses the
oscillations there.

Appendix D. Solution for axially non-uniform steady configuration
Here we consider the problem studied in § 5, namely flow through an initially non-

uniform elliptical tube with oscillating walls of the form described in § 3. For brevity,
we just present the calculations for the energy transfer E from the fluid to the tube
walls, and the critical Strouhal number St−1

c at which this vanishes, for the case of
pressure–flux boundary conditions with oscillations of frequency ω = 2π/T .

From (2.18) and (A 11) we have that the oscillatory volume flux is given by

�̃(z̆) =
3π

2

∫ 1

z̆

d(z̆′)

cosh[2σ0(z̆′)]
dz̆′ , (D 1)

where the axial variations of d and σ0 are given by (3.7) and (3.5); �̃(z̆) can only be
evaluated numerically.

From (A 8) and (3.2), the cross-sectional area in the steady configuration is given
by

A0(z̆) = πa2 tanh[σ0(z̆)]

tanhΣ0

(
Ee[sechΣ0]

Ee[sech σ0(z̆)]

)2

, (D 2)

and using (A 9) and (2.8) the relative perimeter is found to be

�(z̆) =
2Ee(sech[σ0(z̆)])

π(tanh[σ0(z̆)])1/2
. (D 3)

Expressions (D 1)–(D 3) along with expressions (3.5) and (3.7) for σ0(z̆) and d(z̆)
are then substituted into (2.17), to obtain the required results for E and St c. The
integration required must again be completed numerically, and we obtain

E

�
= 2π(z̆2 − z̆1)

2f (Σ0, Σ1; 0)2
(

1

St
− 1

St c

)
, (D 4a)

1

St c

=
�

α

4 Ee(sechΣ0)

(π tanh Σ0)1/2

[
z̆1 + (z̆2 − z̆1)

∫ 1

0

1

Θ2(Σ0, Σ1; υ)2
Θ1(Σ0, Σ1; υ)2

Θ1(Σ0, Σ1; 0)2
dυ

]
, (D 4b)

where

Θ1(Σ0, Σ1; υ) =
3π

2

∫ 1

υ

sin2 πυ ′

cosh 2(Σ0 − Σ1 sin2 πυ ′)
dυ ′, (D 5a)

Θ2(Σ0, Σ1; υ) =
tanh(Σ0 − Σ1 sin2 πυ)

tanh Σ0

(
Ee[sechΣ0]

Ee[sech(Σ0 − Σ1 sin2 πυ)]

)2

(D 5b)

and z̆i = zi/L as before.
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