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Most of the elastic tubes found in the mammalian body will collapse from a distended 
circular cross section and when collapsed may undergo flow-induced oscillations. A mathe- 
matical model describing fluid flow in a collapsible tube is analysed using the software 
package AUTO-86. AUTO-86 is used for continuation and bifurcation problems in systems 
of non-linear ordinary differential equations. The model is a third-order lumped-parameter 
type and is based on the classical "Starling resistor"; it describes the unsteady flow 
behaviour and, in particular, the experimentally observed self-excited oscillations, in a way 
which is simple enough to give physical understanding, yet still firmly based on fluid 
mechanical principles. Some of the bifurcation types found in this model bear close 
resemblance to the types suggested by experimental observations of self-excited oscillations 
in collapsible tubes; they thus shed some light on the various topological changes which 
occur in practice, particularly in view of the fact that some of the points found numerically 
are difficult to achieve experimentally, while the existence of others can only be inferred 
indirectly and uncertainly from experiment. 

Introduction. Most organisms of over a few dozen cells have come to 
possess systems which incorporate some form of "conduit" for the distribu- 
tion and collection of fluids and some means of eliciting bulk flow within 
the conduit. Examples of such systems within the human body include the 
cardiovascular system, the gastrointestinal system and the respiratory sys- 
tem (Guyton, 1986). In mammals these conduits take on the form of elastic 
tubes of nearly circular cross section when distended. 

It is of considerable interest, both theoretically and practically, that 
under  certain flow and external pressure conditions, most of the elastic 
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tubes found in the mammalian body will collapse from a distended circular 
cross section. Further, as a particular subset of this behaviour, tubes of this 
kind may undergo self-excited oscillations in which the cross section varies 
between an oval and a more complex double-chambered figure-eight shape 
(Conrad, 1969). Examples of both collapse and self-excited oscillations have 
been observed in the human body. In general, veins above the level of the 
heart are collapsed due to a normally negative transmural (inside minus 
outside) pressure. Other examples of simple collapse occur in the urethra 
during micturition and in the pulmonary airways (Shapiro, 1977). Examples 
of oscillations may include those in systemic arteries when a sufficiently 
negative transmural pressure is applied during clinical sphygmomanometry 
(Ur and Gordon, 1970). Other in vivo examples of oscillations include 
those in the veins near the heart (only occasionally recorded) (Matsuzaki, 
1986), the collapse and oscillation of the specialised airways of the larynx 
during vocalisation, the similar oscillation of the avian syrinx during calling 
(King and McLelland, 1984) and forced expiratory wheezes (Grotberg and 
Gavriely, 1989). 

Investigation o f  collapsible-tube behaviour. The interesting behaviour as- 
sociated with flow in collapsible tubes has attracted many workers from 
various fields to study it both in vivo and, more typically, on the laboratory 
bench. Among the more recent investigations, both experimental (Bertram 
et al., 1990, 1991) and theoretical (Bertram and Pedley, 1982; Cancelli and 
Pedley, 1985; Morgan and Parker, 1989), most have involved an experimen- 
tal setup known as the Starling resistor (Knowlton and Starling, 1912). 

The Starling resistor (see Fig. 1) has an elastic tube suspended in a 
controllable-pressure chamber between two rigid tubes. The upstream tube 
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Figure 1. The collapsible tube or Starling resistor model. The collapsible section 
of the tube is enclosed in a sealed chamber at pressure Pe and fed from a 
constant pressure head upstream of Pu. Inlet and outlet conditions are deter- 
mined by lumped parameters for resistance and inertance. Flow conditions 
within the collapsible tube are described by three ordinary differential equa- 
tions for the independent dimensionless variables of upstream and downstream 
fluid velocity and the cross-sectional area at the point of maximum collapse (see 
Appendix for details). 
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is connected to an adjustable pressure head, and the flow characteristics 
can be modified by changing the inlet-outlet conditions. 

Two distinctive properties characterise the flow behaviour of collapsible 
tubes: flow limitation and self-excited oscillation (Bertram et aL, 1991). 
Consider the Starling resistor in Fig. 1 with collapsible segment upstream 
pressure Pl, downstream pressure P2 and chamber pressure Pe" Flow 
limitation occurs when the downstream transmural pressure ( P 2 - P e )  is 
negative, that is, chamber pressure is greater than the pressure in the 
downstream collapsible segment of the tube. If the upstream transmural 
pressure (Pl -Pe) is maintained constant, then it is found that flow rate 
through the tube is essentially independent of the driving pressure differ- 
ence (Pl -P2) ,  and hence only depends on the upstream circuit conditions 
(Shapiro, 1977). 

In the flow-limiting range of these negative downstream transmural 
pressures, self-excited oscillations can occur. A full understanding of the 
mechanism of these oscillations has yet to be achieved. More than one 
category of oscillations has been observed experimentally, and indeed 
Bertram et al. (1991) have identified more than six different classes of 
oscillations under different driving conditions. 

Mathematical modelling of collapsible-tube behaviour. Complementing 
the experimental investigation of Starling-resistor-like setups has been a 
parallel attempt to examine collapsible-tube behaviour using purely mathe- 
matical models. These can generally be classified into two groups: lumped- 
parameter models, in which the flow is characterised by a number of 
time-varying spatially invariant parameters such as cross-sectional area at 
the point of collapse, and more complex models in which the selected 
parameters are considered to vary both temporally and over one or two 
spatial dimensions. The former models can be represented by sets of 
autonomous ordinary differential equations, while the latter models require 
sets of partial differential equations in order to account for both spatial and 
temporal variation. In both cases the equations are non-linear due to the 
associated fluid-mechanical principles. Partial differential equations are 
required in order to take into account wave propagation. It has been 
postulated (Kamm and Pedley, 1989) that super-critical flow (fluid speed 
greater than the propagation velocity of small-amplitude waves), which 
leads to "choking", may be a prime mechanism of unsteady flow in 
collapsible tubes. 

Application of the AUTO-86 software package. The object of the work 
discussed here was to analyse a lumped-parameter model, studied by 
Bertram and Pedley (1982), using software called AUTO-86 which was 
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especially designed to be applied to bifurcation and continuation problems 
involving ordinary differential equations. The equations of Bertram and 
Pedley are derived in the Appendix, which also explains the non- 
dimensionalisation scheme. AUTO, developed by Doedel and Kern6vez 
(1986), has the ability to trace out solution branches, both static and 
periodic, over a user-selected range of control space for sets of ordinary 
differential equations. It can also locate bifurcation points of the equilibria 
and flag them for subsequent tracing out of any new branch thence 
emanating. Finally, it can continue bifurcation points in two-parameter 
space. Thus, for example, the location of a Hopf bifurcation point can be 
traced out for two independent variables. The independent variables inves- 
tigated in this study were upstream pressure Pu and chamber pressure Pe" 
A new version, AUTO-94, is now available. 

Methods. AUTO was run on an Apollo DN3000 work station. Hard 
copy of graphics was obtained using programs supplied with AUTO linked 
to in-house graphics routines and various Postscript translation tools. Initial 
model conditions were obtained from a fourth-order Runge-Kutta algo- 
rithm with adaptive step-size control. The Runge-Kutta integrator was also 
used independently, proving useful in the investigation of control space 
which AUTO could not be made to negotiate. 

The algorithms used by AUTO are described in some detail in the 
reference manual (Doedel and Kern6vez, 1986). AUTO is capable of 
solving numerically a system of ordinary differential equations (at discrete 
intervals) as a free parameter is varied for both steady and unsteady 
solutions. Stability is tracked and bifurcation points are detected by moni- 
toring the linearised Jacobian, in the case of steady solutions, and Floquet 
multipliers (a numerical equivalent of the Poincar6 multiplier), in the case 
of unsteady solutions. 

Results. 

Chamber pressure Pe as the control parameter. At low values of Pe the 
model tube is wide open and constant flow conditions are established. 
Figure 2 shows a bifurcation diagram with chamber pressure Pe as the 
control-space parameter, Pu = 295. The ordinate is A, the non-dimensional 
area at the most collapsed part of the tube, or in the case of unsteady 
behaviour, the maximum of A(t).  Stable, steady solutions are indicated by 
full lines; unstable, steady solutions by dotted lines. Filled circles represent 
the path of a stable, unsteady solution; open circles that of an unstable, 
unsteady solution (e.g. Figure 6). Three bifurcation points are indicated on 
Figure 2. A pair of folds or saddle-node bifurcations (marked by open 
squares) are associated with the hysteretic collapse of the tube as Pe is 
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Figure 2. A bifurcation diagram in (Pe, A) space for Pu = 295, which shows the 
topological changes in the model solutions as the control parameter Pe is varied. 
The control parameter is measured on the horizontal axis, while the ordinate 
denotes the maximum value of the dimensionless variable A, the area of the 
most collapsed section of the tube. Solid lines represent stable steady solutions, 
broken lines represent unstable steady solutions, and filled circles represent 
stable unsteady solutions (limit cycles). Bifurcations, or points at which equilib- 
ria change topologically, are represented by symbols. This figure shows a pair of 
folds (marked by open squares) and a Hopf bifurcation (marked by a filled 
square) at which a path of limit cycles is born. Note that the slope discontinuity 
at A = 1 in this and subsequent figures is a consequence of the way the tube 
law is formulated in equation (A13). 

increased. Following along a steady solution branch, each fold marks the 
transition of  a single purely real eigenvalue from the negative domain to 
the positive as stability is lost. It should be  noted that during the analysis of  
the model  (which consists of  three coupled ordinary differential equations),  
at least one purely real and strictly negative eigenvalue was always found; 
this is consistent with our numerical  findings that the dynamics are con- 
strained to that which can be  represented in a two-dimensional phase 
space. The filled square at Pe - -191  denotes  a H o p f  bifurcation where 
stability is lost via the movement  of  a complex conjugate pair of  eigenvalues 
across the imaginary axis into the positive quadrants. A repellor is thus 
created and limit cycles subsequently develop. Each of  the bifurcation 
points can be continued in two-parameter  (Pu,Pe) space. To the right of  
Fig. 2 it can be  seen that the limit cycles increase in amplitude, and 
eventually become unstable at Pe values beyond  those shown. 
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Upstream pressure Pu as the control parameter. Figure 3 shows a bifurca- 
tion diagram in (Pu, A) space. At low p ,  values the tube is completely 
collapsed, steady flow is established and A increases slowly with p~. A 
Hopf bifurcation again indicates the birth of limit cycles at the critical p ,  
value of approximately 140. For this particular value of Pe (200)  the 
solution path of limit cycles emanating from the Hopf bifurcation disap- 
pears at a type of homoclinic connection called a blue-sky catastrophe 
(Thompson and Stewart, 1986) at Pu "" 305. A homoclinic connection in 
general is "a trajectory that approaches the same equilibrium (necessarily a 
saddle) for t --, -oo and for t ~ + o0" (Thompson and Stewart, 1986). The 
tube reopening is again associated with a pair of folds, although the lower 
one is qualitatively different from that in Fig. 2 because it marks the 
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Figure 3. A bifurcation diagram in (p, ,  A) space for Pe = 200. Lines again 
represent solution paths and symbols represent bifurcation points (see Fig. 2). 
The stable steady solution path at the left of the diagram is broken by a Hopf 
bifurcation and two fold bifurcations before reappearing to the right of the 
diagram. A path of limit cycles is born at the Hopf bifurcation and proceeds to 
the right before disappearing at a homoclinic connection (where the path of 
filled circles meets the dashed curve) at p ,  = 305. As Pu is increased toward the 
connection, the period of the limit cycles increases and eventually tends to 
infinity at the connection point itself. Any slight jump across the connection 
results in the disappearance of the limit cycles altogether. (Note that a second 
path of limit cycles exists in this region of control space but is not shown here. 
See Fig. 11, panel VII.) 
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Figure 4. A plot of Pu versus limit-cycle period for Pe = 200 as the homoclinic 
connection shown in Fig. 3 is approached. The period tends to infinity at the 
homoclinic connection point. 

transition between two different unstable, steady solution paths. Figure 4 
shows the period of the limit cycles plotted against Pu. As the homoclinic 
connection is approached, the period rises steeply toward infinity. 

Figure 5 shows two phase-plane plots in (u2, A) space at (pu,Pe)= 
(320, 200), close to the lower fold. Both orbits are captured by the upper 
stable solution (tube open), but they proceed by different routes. The lower 
starting point spirals out from a repellor before entering the basin of 
attraction of the stable solution, while the upper orbit proceeds more 
directly, albeit constrained by the flow associated with the lower orbit. 

Low Pu values with Pe as control parameter. At lower Pu values the tube 
collapses non-hysteretically (i.e. no folds) as chamber pressure Pe is in- 
creased. Figure 6 shows a bifurcation diagram in (Pe, A)  space for Pu = 25. 
A Hopf bifurcation again marks the start of a path of limit cycles at 
Pe = 380, but the fate of this solution path is markedly different. At around 
Pe - - - -  530 a cyclic fold (analogous to a fold for equilibria, as met above, but 
for limit cycles) is encountered where an unstable and a stable solution 
path meet and annihilate each other. The solution path of unstable limit 
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Figure 5. A (u2, A) phase-plane plot of two integrations forward in time for 
Pu = 320 and Pe = 200. The starting points for the two runs are the two points 
on Fig. 3 where a vertical line at pu = 320 (not drawn) would intersect the 
dashed curves for unstable steady equilibria. The first integration (originating 
near u2 = 2.1) starts from the lower unstable equilibrium (repellor) curve of Fig. 
3; the second (originating near u 2 = 2.55) starts from the upper unstable 
equilibrium curve (saddle). Both solutions are captured by the upper (tube 
open) stable equilibrium point, although the trajectories they follow to get there 
are qualitatively different. Both equilibrium points have associated with them 
one eigenvalue out of three which is purely real and negative; the other two 
eigenvalues are, in the first case, a complex conjugate pair with positive real 
parts describing a repellor and, in the second case, two purely real and positive 
eigenvalues describing a saddle. These eigenvalues only describe behaviour local 
to the equilibrium point, not the ultimate capture by the solution at A > 1. 
Thus the repellor trajectory initially spirals out before being captured, while 
that of the saddle does not. The saddle trajectory is, however, additionally 
forced to curve around the repellor once away from the local environment of its 
equilibrium point. 
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cycles p r o c e e d s  to  the  lef t  and  expands  indef ini te ly  at  a r o u n d  Pe = 200. F o r  
Pe > 530 t h e r e  is thus  a p p a r e n t l y  no  s tab le  solut ion,  a physical ly  unl ikely  
scenar io .  T h e  full l ikely t o p o l o g y  o f  the  s i tua t ion  is p o s t u l a t e d  below.  

Two-parameter continuation in ( P u , P e )  space. E a c h  o f  the  b i fu rca t ion  
po in t s  shown  so f a r - - t h e  fold,  the  H o p f  b i furca t ion ,  the  cyclic fold  a n d  the  
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Figure 6. A bifurcation diagram in (Pe, A) space for Pu = 25. As the control 
parameter Pe is increased, the stable steady solution to the left of the diagram 
rapidly falls to a markedly lower A value, but not through a fold bifurcation. At 
no Pe value in this region is there an instability. Two types of unsteady solution 
paths are shown in this diagram: a stable path marked by filled circles and an 
unstable path marked by open circles. As Pe is increased to the right of the 
diagram, the two unsteady solution paths meet and are annihilated (cyclic-fold 
bifurcation). To the right of this bifurcation all trajectories leave the neighbour- 
hood, i.e. there is no local stable solution. (Note that a second path of stable 
limit cycles exists in this region of control space, but was too steep to be 
detected. See Fig. 9, panel B.) 

homoclinic connect ion--was continued in two-parameter (Pu,Pe) space. 
(The homoclinic connection is traced out by considering a limit cycle of 
very large fixed period as being an approximation to an orbit of infinite 
period.) This is most instructive in determining the overall dynamical 
behaviour of the model as p ,  and Pe are varied. For example, the 
two-parameter continuation of homoclinic connections suggested that the 
curve was double-valued in Pe" Figure 7, with p ,  = 306, shows this to be the 
case. Two homoclinic connections are shown in (Pe,  A )  space at Pe = 196 
and 198. The unsteady solution path at Pe > 198 was traced out "manually" 
using the Runge-Kutta algorithm. 

Figure 8 shows a composite of all two-parameter continuation loci. The 
diagram has been divided up into segments, each having a specific topology, 
by vertical lines at values of Pu corresponding to critical points. The latter 
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Figure 7. A bifurcation diagram in (Pe, A) space for Pu = 306 containing two 
fold bifurcations, a Hopf bifurcation and two homoclinic connections. The path 
of steady limit cycles born at the Hopf bifurcation is "split" by the homoclinic 
connections before continuing its march to the right. As Pe is increased, the 
limit cycles eventually attain maxima greater than the value of the stable (tube 
open) solution at the left of the diagram. 

mark qualitative transitions in the one-parameter  bifurcation diagrams 
considered so far. Diagrammatically, each line marks a curve intersection 
point or  a curve maximum or minimum. In this diagram, the curves marked 
f l ,  f2 represent  the fold loci, H the Hopf  locus, cfl, cf2 the cyclic-fold loci 
and hcl, hc 2 the homoclinic loci. The regions are labelled from A to K 
(excluding I for the sake of clarity); schematic bifurcation diagrams repre- 
sentative of the regions are shown in Fig. 9. Each of these schematic 
representations was sketched after considering a "slice" through the middle 
of the region and combining the result with general knowledge of the 
bifurcation behaviour of the model  obtained from the various A U T O  runs 
performed.  Figure 10 shows the same composite diagram now dissected 
into regions of Pe; Fig. 11 contains schematic representations of the 
(Pu, A)-space bifurcation diagram in each region. 

Discussion. The analysis of  the tube model  demonst ra ted  a variety of flow 
behaviours associated with a number  of modalities of stability loss. Both 



BIFURCATION BEHAVIOUR OF FLOW THROUGH A COLLAPSIBLE TUBE 621 

R e  

300. 

275 .  

250. 

225 .  

288. 

175. 

i50. 

C 

D E  

f i 

i 

388. 

G H / / "  

F ~ /  J K 

1 
I 

fi i 

i 
! 

/Z 
/ 

l I I 
8. 180. 208. 488. 508. 088, 700. 

Pu 
Figure 8. The composite two-dimensional bifurcation diagram sectioned into 
different regions A - K  bounded by values of p ,  at which topological changes in 
the model occur. A slice through any region results in a topologically distinct 
one-dimensional bifurcation diagram with control parameter Pe" Curve identi- 
fiers: H, Hopf; f, fold; cf, cyclic fold; hc, homoclinic connection. 

local bifurcations (Hopf, fold, cyclic fold) and a global bifurcation (homo- 
clinic connection) were identified. Global bifurcations are characterised by 
large-scale changes in phase-space flow and subsequent changes in the 
basins of attraction of equilibria. Local bifurcations, by contrast, do not 
affect the flow in phase space far from the site of the bifurcating equilibria; 
they are mathematically characterised by fundamental changes in the 
eigenvalues of the linearised Jacobian, in the case of steady equilibria, and 
changes in the Poincar6 multipliers, in the case of limit cycles. Global 
bifurcations such as homoclinic connections do not involve changes in these 
characteristic components; rather, they involve changes in the topological 
configuration. 

The only local bifurcation of unsteady equilibria identified--the cyclic 
fold--was a co-dimension-1 bifurcation (i.e. obtained through variation of 
one control parameter) in which one Poincar6 multiplier crosses the unit 
circle. Phase-plane analysis of the stable and unstable limit cycles associ- 
ated with the cyclic fold failed to find any "spiralling" orbits approaching 



622 J.P. ARMITSTEAD et al. 

A, 

I 

~,~, "~ oo. 
o �9  

cl 
o 

:;.oo,." I 
l0 o ~ 

El 
' - ' - - " - - ' t 5  �9 ! 

~ o" 

GI 
~ � 9  go~176 

8 t 

i-:_ . . . . . . . . . . . . . . . . .  

k 

a o ~ 
s~o  � 9 1 7 6  

phil 

Figure 9. Sketches of the topologically distinct one-dimensional bifurcation 
diagrams representative of each region delineated in Fig. 8. The control param- 
eter for each is Pe and the ordinate again denotes the maximum value of the 
dimensionless variable A. The sketches are arrived at by considering that there 
must be a topologically smooth transition from each region to adjoining ones. 
Symbols correspond to those in the diagrams generated by the continuation 
software (e.g. Figs. 2 and 3). Note that homoclinic connections are not marked 
with a special symbol, but occur where stable oscillatory paths (filled circles) 
meet unstable steady paths (dashed curves), in panels F-K. 

the limit cycles and no evidence was found of bifurcation to an invariant 
torus either by phase-plane analysis or as flagged by AUTO. In fact, the 
model dynamics were found to be constrained to a two-dimensional centre 
manifold; i.e. the phase portrait is generally organised by those eigenvalues 
with zero real parts. As stated previously, in the analysis of this third-order 
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Figure 10. The composite two-dimensional bifurcation diagram of Fig. 8, this 
time sectioned into regions I-XI bounded by topologically critical values of Pe" 
A slice through any region now results in a topologically distinct bifurcation 
diagram with control parameter Pu. 

model one purely real and negative eigenvalue was always observed, and so 
the interesting flow in phase space always reduced to two dimensions. 

Any dynamical system constrained to a two-dimensional, planar centre 
manifold can be expected to display only simple limit cycles. No evidence 
was found of higher-dimensional attractors that would represent, for exam- 
ple, quasi-periodic or mode-locked interactions of distinct oscillations or 
dynamical chaos. 

A further important observation regarding the model  was that the 
homoclinic connection found was not transverse. A transverse homoclinic 
connection requires that the dimension of its stable manifold (containing 
the part of the orbit approaching the saddle) and the dimension of its 
unstable manifold (containing the part of the orbit leaving the saddle) sum 
to a value greater than the dimension of phase space. Careful inspection of 
the homoclinic connection revealed a maximum sum of dimensions of only 
3. Transverse homoclinic connections have been identified as key features 
of systems containing regions of chaotic behaviour, and they can lead to 
complex structures such as homoclinic tangles (Abraham and Shaw, 1984; 
Guckenheimer and Holmes, 1986). The lack of any transverse homoclinic 
connection in this model  analysis and the fact that the dynamics are 
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Figure l l .  Sketches representative of the bifurcation diagrams in each region 
delineated in Fig.  10. The control parameter for each diagram in this case is Pu, 
while the ordinate again represents A.  

constrained to a centre manifold of dimension 2, have implications for the 
types of behaviour observed and would certainly preclude any dynamical 
chaos. 

Behaviour in regions of (Pu, Pe) space delimited by Pu value. The two- 
parameter composite bifurcation diagram can now be explained in terms of 
changes in bifurcation behaviour. The first stage in this process is the 



BIFURCATION BEHAVIOUR OF FLOW THROUGH A COLLAPSIBLE TUBE 625 

identification of critical points, which delineate different regions of the 
diagram. Such points include the intersection of different loci of bifurcation 
points and geometrical maxima and minima of locus curves with respect to 
the control parameters. The intersections of bifurcation loci are also known 
as co-dimension-2 points, which can only be reached by adjusting both of 
the control parameters, Pu and Pe, simultaneously. The critical points were 
shown in Fig. 8 along with lines which sectioned the diagram into different 
regions of Pu and passed through these points. 

Consider Figs. 8 and 9 in detail. Starting at the far left of the two-param- 
eter diagram with a low value of Pu, region A has three bifurcation points: 
a Hopf bifurcation and two cyclic-fold points. As p~ is increased and region 
B is entered, the cyclic fold with larger A value moves to a position in Pe to 
the right of the Hopf bifurcation. On entering region C, the vertex of the 
cyclic-fold locus has been passed, and hence the cyclic folds have moved 
together and disappeared. While Pu is increased, the gradient associated 
with the collapse of the tube in the bifurcation diagram is getting steeper, 
and finally a pair of folds (saddle-node bifurcations) is introduced at the 
beginning of region D. 

There is now hysteresis involved in the steady solution path because of 
these folds, which steadily separate with increasing Pu. As Pu is increased 
further, the Hopf bifurcation marches leftward in the bifurcation diagram 
until it reaches a point where it is between the folds in terms of Pe, as seen 
in region E. Region F shows the emergence of two homoclinic connections 
in the unsteady solution path. This occurrence is brought on by two factors. 
First, the unsteady solution path is steepening with increasing Pu, bringing 
it closer to the unstable steady solution path. Second, the two folds are 
separating and the Hopf bifurcation is also moving back toward the lower 
fold. This results in the unsteady solution path touching the saddle path, 
creating a single homoclinic connection from which two unsteady solution 
paths emanate. This situation exists only on the boundary between region E 
and region F. Inside region F the homoclinic connection has become two. 

Following the upper branch of the locus of homoclinic points in region F 
in Fig. 8, it can be seen that it approaches the upper fold locus. One of two 
scenarios is then possible: either (a) the two curves meet and a bifurcation 
occurs or (b) the two curves do not touch and no bifurcation exists. As 
discussed below, fundamental differences were found in the homoclinic 
connections on either side of this postulated meeting point, thus indicating 
scenario (a). Therefore the homoclinic locus just touches the upper fold 
locus at one point (situation G) before receding. This is consistent with the 
homoclinic connection running up the unstable steady solution to the top 
fold, beyond which it cannot proceed. Thus the bifurcation diagram for 
region H is identical to that for region F. 
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The co-dimension-2 point which turns region H into region J is particu- 
larly interesting because it involves the intersection of the lower fold and 
Hopf and homoclinic loci. (The two-parameter diagram does not show this 
intersection precisely because AUTO was unable to advance the approxi- 
mate homoclinic locus far enough. The location of the point itself was 
determined as the intersection of the fold locus with the endpoint of the 
Hopf locus at (Pu,Pe) = (328,200).) In terms of the bifurcation diagram 
(Fig. 9) this results in the convergence of the two ends of the lower 
unsteady solution path at the lower fold point, and hence the disappearance 
of this branch. This leaves only the upper branch emanating from the other 
homoclinic connection as shown in region J. Region H reflects the situation 
before this happens, with the upper homoclinic branch having receded from 
the upper fold point and the lower homoclinic branch still extant; hence, 
region H has qualitatively the same bifurcation diagram as region F. 

If the homoclinic locus is followed further into region J, the unsteady 
solution path becomes extremely steep, with the homoclinic connection 
continuing to move toward the lower fold on the bifurcation diagram. This 
is evident at the right-hand end of Fig. 8, where the fold and homoclinic 
loci appear to coalesce or, perhaps, even cross at the start of region K. 
Topological consistency would ordinarily demand the creation of a new 
locus of Hopf bifurcations at such a meeting point, but no evidence of this 
was found. Inspection of the relevant data files revealed that as far out as at 
pu = 780 the two curves differ in Pe value only at the fourth decimal place. 
This suggests that, in fact, the two true loci neither cross nor coalesce, in 
which case there is no region K. 

The sketches in Fig. 9 reflect the amplitude of oscillations as found by 
the continuation software. The result is that the paths of stable oscillatory 
solutions in many cases climb rapidly out of the top of the diagram, leaving 
a region on the right-hand side where apparently no stable solution exists. 
Experimentally, one would expect a high value of Pe to lead to the eventual 
abolition of oscillations. Dynamically, it is believed that a stable solution 
should exist, implying that at some extremely high A value the stable 
oscillatory path eventually lies over the "uncovered" unstable steady path. 

Behaviour in regions of (Pu, Pe) space delimited by Pe value. Considering 
now Figs. 10 and 11. Beginning at a low value of Pe, the only locus crossed 
by a slice in p ,  is the cyclic-fold line. Thus, the only bifurcation point is a 
cyclic fold and the tube opens non-hysteretically as shown in region I. At 
increased Pe the vertex of the fold locus is crossed and two folds appear in 
the steady solution path in region II. The cyclic fold moves toward the right 
of the bifurcation diagram. 
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With little further increase in Pe, the minimum of the Hopf bifurcation 
locus is passed and two Hopf bifurcation points are born, as seen in region 
III. These two points are joined by a single unsteady solution branch, 
which, in the beginning, is quite shallow. As Pe is increased further, the 
unsteady solution path "inflates", the Hopf bifurcation points move further 
apart and eventually the right-hand Hopf moves between the folds as seen 
in region IV. 

While this has been happening, the cyclic fold has continued to move to 
the right of the bifurcation diagram, until it in fact passes the left-hand 
Hopf bifurcation at the beginning of region V. The value of Pe at which this 
happens corresponds to the intersection of the Hopf and cyclic-fold loci in 
Fig. 10. There are now two limit cycles which exist for a single value of p,,  
and an unstable limit cycle. This unstable limit cycle is the separatrix 
between the basins of attraction of the two stable limit cycles. 

Region VI begins at the lowest point (in terms of Pe) of the homoclinic 
locus, which, since the gradient of the curve with respect to Pe at that point 
is approximately zero, is assumed to be a minimum. The homoclinic locus is 
indeed double-valued in Pe, since the curve attains a positive gradient 
before terminating at the Hopf-saddle-homoclinic collision point. This 
point was determined as the endpoint of the Hopf locus, which is contained 
in the fold locus and has a Pe ordinate greater than the minimum in the 
homoclinic locus. Topologically this means that the Hopf-terminated un- 
steady solution path has inflated to the point where it has touched the 
unstable branch of the steady solution path. At this single value of Pe both 
of the unsteady paths emanating from the Hopf bifurcations terminate at 
the one homoclinic connection. As Pe is increased further, the two paths 
separate and two homoclinic connections result. 

The Hopf-saddle-homoclinic collision marks the beginning of region VII. 
The right-hand homoclinic connection has disappeared at the collision, as 
has the right-hand Hopf bifurcation and its associated path of limit cycles. 
This leaves a single branch of limit cycles beginning at a Hopf bifurcation. 
The right end of this branch now begins to climb the unstable steady 
solution path with increasing Pe, bringing the two remaining unsteady 
solution paths closer together; they finally meet at the beginning of region 
VIII, at the cusp of the cyclic-fold locus on Fig. 10, resulting in an 
interchange of solution branches. 

After this collision, the cyclic fold begins to recede to the left and the 
homoclinic connection again moves up toward the upper fold bifurcation. 
Region (or line) IX represents the single value of Pe at which the homo- 
clinic connection co-resides with the upper fold point. The homoclinic 
bifurcation point then recedes from the fold locus and the bifurcation 
diagram (region X) again looks like region VIII. The unsteady solution 
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branch emanating from the homoclinic connection is now extremely steep, 
as alluded to previously. Finally, region XI corresponds to region K as 
discussed above. 

Topologies of the (pu,Pe)-Space diagram. Now that the (pu,Pe)-Space 
diagram has been examined in terms of the logical progression through the 
various bifurcation diagrams described, the regions of different topological 
behaviour of the equilibria can be determined. Figure 12 shows the differ- 
ent regions of topological behaviour of the model and Fig. 13 shows 
sketches of the topological behaviour representative of each region. The 
sketch for the topology of the homoclinic connection is a special case in 
that it does not represent behaviour in a two-dimensional region of the 
two-parameter diagram; rather, this topology only exists for any point lying 
exactly on the homoclinic locus (remembering that the homoclinic locus, as 
plotted by AUTO, is an approximation to the true homoclinic locus). 

These sketches can only represent the behaviour of the model in the 
local neighbourhood of the various equilibria. The exact basin of attraction 
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Figure 12. The composite two-dimensional bifurcation diagram, or control-space 
diagram, shown with the different areas of topological behaviour marked with 
lowercase roman numerals. Each area is bounded by the loci of bifurcation 
points. Each corresponds to a qualitatively distinct flow in phase space; see 
Fig. 13. 

I I I I I I 
8. 188. 288. 388. 408. 508, 680. 708. 



BIFURCATION BEHAVIOUR OF FLOW THROUGH A COLLAPSIBLE TUBE 629 

r 

( 

Pe  2 0 5  
pu=312 

(ii)] 
P 

i 

(vi) I 

~,) , 
(viii) ] ~ 

hc, j 

Figure 13. The different equilibria in two-dimensional control space, as marked 
in Fig. 12, shown sketched in phase space with their associated flows. Filled 
circles denote stable steady solutions (foci); open circles denote unstable ones 
(saddles). Dashed lines show unstable limit cycles, which are also sections 
through separatrices. 

for each equilibrium could only be determined after rigorous phase-plane 
analysis. What can be determined here is the nature of the flow around the 
equilibria and the separatrices which might be expected for a consistent 
phase-plane diagram. 
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Region (i) represents the simplest behaviour the model exhibits, where 
all solutions converge to a single, stable equilibrium point. Since two of the 
eigenvalues associated with this point (at all equilibria of this type investi- 
gated) are part of an imaginary pair, its three-dimensional inset is as shown 
in Fig. 13. This depiction is consistent with the spiralling seen around this 
point (wherever investigated) and it can be characterised as a focus rather 
than a node and as an attractor of index zero. (Note that the index of a 
characteristic point is the name given to the dimension of its "outset". 
Attractors have only insets, saddle points have insets and outsets and 
repellors have only outsets.) 

As region (ii) is entered the cyclic-fold locus is crossed, and a stable and 
an unstable limit cycle are simultaneously born. Further into region (ii) 
these limit cycles have separated: the unstable limit cycle becomes a 
separatrix between the stable point and the stable limit cycle. Although 
these limit cycles are three dimensional, they can be treated as two 
dimensional insofar as concerns their interactions with characteristic points 
and other limit cycles. Nevertheless, an attempt has been made in Fig. 13 to 
indicate the three-dimensional curvature and relative placement of the 
critical points in a way which is consistent with Fig. 12. 

In order to move into region (iii), the Hopf locus must be crossed. This 
results in the stable point becoming unstable due to the crossing of the 
imaginary axis by a complex pair of eigenvalues associated with the point. 
The stable focus is thus replaced by an unstable focus (a repellor) and a 
stable limit cycle which grows out from the point of its birth. The phase 
plane as sketched in Fig. 13 now contains three limit cycles; the unstable 
limit cycle acts as a separatrix between the two stable ones. The view is 
again two dimensional and may be considered a cross section through a 
three-dimensional tubular separatrix. 

Moving into region (iv) from region (iii), the cyclic-fold locus is crossed 
for a second time. This results in the annihilation of the inner two limit 
cycles as they move toward coincidence. This then leaves the unstable focus 
as the only characteristic point and the outer limit cycle as the only 
attractor. 

In order to reach region (v), it is first necessary to recross the Hopf locus, 
thus returning to region (i). This results in the limit cycle shrinking into the 
unstable focus until it disappears, and the focus again becomes a stable 
equilibrium point. On now entering region (v) the fold locus is crossed and, 
for the first time, more than one characteristic point is extant. As the fold 
occurs, two new characteristic points are born: one is stable; the other 
unstable. The points are shown sketched with their associated insets and 
outsets in Fig. 13. The two stable points are foci of the same type, while the 
unstable point is a saddle of index 1. (Either one of the stable equilibrium 
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points can be annihilated with the saddle, corresponding to the two branches 
of the fold locus.) 

The stable equilibrium points always have associated with them a com- 
plex pair of eigenvalues; in other words, they are always "focal" in nature 
rather than "nodal". This means that at a fold bifurcation, two of the 
eigenvalues must always be coincident at the origin of the eigenvalue plane, 
while the other is confined to the negative real domain. The two coincident 
eigenvalues then separate in one of three ways corresponding to three 
different equilibrium points: (1) the eigenvalues split into a complex pair 
with positive real parts (unstable focus or saddle of index 2); (2) one 
eigenvalue moves along the real axis in a positive direction, the other in a 
negative direction (saddle of index 1); (3) the eigenvalues split into a 
complex pair with negative real parts (stable focus or attractor, of index 0). 
All three outcomes are seen in region (vi): from left to right the critical 
points are a saddle of index 2, a saddle of index 1 and an attractor. 

As region (vi) is entered, the Hopf locus is yet again recrossed, resulting 
in the birth of another limit cycle from the "lower" focus. The unstable 
focus which the limit cycle now surrounds is an index-2 saddle. This is 
consistent with the phase-plane results obtained by numerical integration, 
but again the exact nature of the whole three-dimensional phase space is 
not known. The insets of the middle saddle now form separatrices dividing 
the flow between the upper stable focus and the limit cycle. 

Region (vii) is reached by crossing the (approximate) locus of the 
homoclinic connection. The limit cycle disappears via a "blue-sky catastro- 
phe" (Thompson and Stewart, 1986), leaving just the three characteristic 
points. This situation is similar to that of region (v), except that the lower 
characteristic point is an unstable focus rather than a stable one. All 
solutions will now converge to the one stable equilibrium. A sketch (hcl) is 
included in Fig. 13 to show the situation which occurs exactly at the 
homoclinic connection. An inset and outset of the saddle are connected via 
an orbit of infinite period which encloses the unstable focus. 

I f  the homoclinic locus is again crossed, a new region (viii) is entered, 
which, although separate from region (vi), is identical to it in terms of the 
equilibria present. The main difference between these two regions is in the 
behaviour of the limit cycle, which will be looked at in more detail below. 
The remaining panels in Fig. 13 will be discussed in this context. 

The far right of the ( pu, Pe)-Space diagram. At the far right of the 
(Pu, Pe)-SP ace diagram (Fig. 8), the homoclinic locus and the f2 branch of 
the fold locus appear to coalesce. While trying to determine the exact 
location of the homoclinic connection, limit cycles were studied in region 
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(viii) of Fig. 12 very close to the connection itself, to the right of (Pu, Pe) 
space. This area of the two-parameter diagram contains equilibria equiva- 
lent to those of region (vi) (a stable focus, a saddle and a repeUor 
surrounded by a limit cycle) and spans the region J-region K boundary at 
which the fold locus and the homoclinic locus begin to be indistinguishable. 
These region-(viii) limit cycles have a large maximum value which exceeds 
the dimensionless throat-area value for the stable steady solution of ap- 
proximately 1. Thus, if the AUTO convention of plotting unsteady solution 
paths on bifurcation diagrams with their maximum value as the y ordinate 
is followed, this is a very steep path indeed. Further investigation being 
deemed necessary, the limit cycles were recalculated and plotted as phase 
planes. An example is shown in Fig. 14. The stable steady solution is shown 
as a filled circle, while the "upper" unstable steady solution (the saddle) is 
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Figure 14. A (A,u  2) phase-plane plot of an integration for Pu = 350 and 
Pe = 226.6 started from the equilibrium point on the lower branch of the 
unstable steady solution path. This corresponds, for example, to a trajectory 
beginning just to the right of the homoclinic connection on the lower solution 
path of Fig. 9, panel K. The solution spirals out, approaches the saddle point 
(open circle) very closely and subsequently becomes a limit cycle with a large 
amplitude. The location of the stable equilibrium point (tube open) is shown as 
a filled circle. 
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shown as an open circle. The solution was started from the lower unstable 
steady solution (the repeUor). 

Examination of the plot shows the trajectory spiralling out until a close 
interaction occurs with the saddle point. The solution approaches the 
saddle with a fairly high speed and then almost stops there. The solution 
then recedes from the saddle point and the area of the tube drops almost to 
zero. The solution is subsequently driven into large-amplitude limit-cycle 
oscillations where the A -1 terms again drive the model close to an 
integrator "crash". 

This limit cycle is fundamentally different from others encountered, in 
that its excursions reach a value greater than the value of the stable 
equilibrium (i.e. the tube-open condition). When this limit cycle was plotted 
while slowly reducing Pe, the system was seen to exhibit a blue-sky 
catastrophe; i.e. the limit cycle disappeared via a homoclinic connection. 
Thus, two fundamentally different homoclinic orbits have been identified 
(neither transverse) and are shown in panels hcl and hc2 of Fig. 13. 

Panel (viii) of Fig. 13 represents the topological behaviour of region (viii) 
which fits consistently with the behaviour in neighbouring regions. The 
osculatory point at (Pu, Pe) • (324, 217) is thus a co-dimension-2 bifurcation 
point which links the topologies of regions (vi), (vi), (vii) and (viii). 

The last schematic bifurcation diagrams shown in Figs. 9 and 11 were 
postulated for values of Pu to the far right of the (Pu, Pe)'SP ace diagram, 
corresponding to regions J and K and regions IX and XI of Figs. 8 and 10, 
respectively. These sketches in each case show the connection point of the 
unsteady solution path moving toward the lower fold point, and at the same 
time becoming steep. (Such a path would look different, and perhaps more 
sensible, if the time-averaged value of a limit cycle were used as the y 
ordinate instead of the limit-cycle maximum value.) The main point to be 
made here is that the limit cycles grow to a large amplitude quickly as one 
follows the unsteady solution path away from the homoclinic connection. In 
fact, the limit cycles soon develop to the point where they are not follow- 
able with a Runge-Kutta integrator; the amplitude appears to grow without 
bound. 

This explanation of the far right of (Pu, Pe) space is put forward as a 
suggestion rather than a rigorous explanation. The development of an 
explanation is hindered by the fact that the limit cycles which emanate from 
the homoclinic connection to the right of (pu, Pe) space are very difficult to 
study. They exist in only a very small region (of either Pu or  Pe) near the 
connection, outside which the oscillations tend to grow without bound. 

Comparison with experiment. Comparison between the numerical analy- 
sis of the model and actual experimental results must be approached by 
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remembering that the model is of lumped-parameter type, while the physi- 
cal situation could be more properly represented with partial differential 
equations. With this in mind, it is still possible to compare results in those 
parts of control space or with those sorts of behaviour which the model 
would be expected to represent well. The paper of Bertram et al. (1991) 
describes the flow through a thick-walled silicone rubber tube and discusses 
the transition between different types of behaviour in terms of bifurcation 
theory. 

The two transitions discussed by Bertram et al. (1991) which show some 
similarity with experiment are the sudden and hysteretic jump from the 
upper stable steady equilibrium of (e.g.) Fig. 9, panel D (A close to one 
corresponding to an open tube), to the lower one (collapsed tube), and the 
suspected loss of limit-cycle oscillations through a homoclinic connection. 

Bertram et al. (1991) suggest that the hysteretic transition between the 
collapsed and open tube states observed experimentally as Pe is increased 
can be represented by a pair of saddle-node bifurcations. This type of 
behaviour has been demonstrated explicitly in the analysis of the model 
here (see Fig. 9, panel D) and was also seen in an analysis of the model of 
Cancelli and Pedley (1985) by Jensen (1990). 

The tube was also seen to vary abruptly between the open state and 
oscillations, with a degree of hysteresis, as Pe was varied. It was noted that 
period-lengthening was occasionally seen as Pe was decreased before the 
abrupt transition to the open tube state. This type of behaviour is quite 
similar to that near the homoclinic connections found in the analysis of the 
model (see Fig. 3). Bertram et al. (1991) suggested several possible topologi- 
cal configurations by which oscillations could disappear in this abrupt 
manner. Their task was made difficult by the fact that not all mathemati- 
cally possible solutions are attainable experimentally. This is where the 
analysis of a model can lend valuable insight into the most likely configura- 
tion, and in this case a homoclinic connection seems quite feasible. 

Bertram et al. (1991) also discuss the experimentally observed transition 
between low-frequency oscillations and high-frequency noise-like oscilla- 
tions. This transition is observed to be either hysteretic or non-hysteretic 
and quasi-periodic during the transition. The proposed explanation for the 
transition is in terms of a four-dimensional manifold, and the specific 
topology describing the quasi-periodicity is a two-torus. This type of be- 
haviour is not displayed by the model, since the dynamics are limited to 
two-dimensional non-toroidal manifolds. 

It has been pointed out by Bertram and Pedley (1983) in a paper 
discussing the experimental separation of flow in an indented channel that 
the Strouhal number (for both theory and experiment) of the self-excited 
oscillations they investigated is somewhat greater than 1. This suggests that 
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the downstream head loss, found to be critical for oscillations, will not be 
quasi-steady (as assumed in the model discussed in this paper). It is 
interesting to speculate on the possibly richer dynamical system (increased 
in dimension by 1) which would result from the inclusion of a realistically 
unsteady term in the formula for downstream head loss. 

Conclusions. The analysis of the model using the AUTO-86 package has 
resulted in a clear picture of its behaviour over the range of values studied 
for the two control parameters Pu and Pe" It should be remembered that 
only two out of a total of eight possible control parameters have been 
investigated, amounting to a two-dimensional slice in eight-dimensional 
control space. Although this is a sobering thought, remember that the two 
parameters studied here (Pu and Pe), along with R a and R 2, would be the 
first parameters likely to be varied in an experimental situation. This makes 
R 1 and R 2 strong candidates for further bifurcation studies. 

The dynamical behaviour exhibited by the model proved to be of surpris- 
ing variety and complexity, considering it was always recognised to be a 
simple and, in some ways, limited model capable of modelling only certain 
types of oscillations. In terms of its bifurcation behaviour, it has exhibited 
the two co-dimension-1 type bifurcations of a steady solution--the Hopf 
and the fold--and the cyclic fold which is a codimension-1 bifurcation of an 
unsteady solution. It has also exhibited a codimension-2 type bifurcation 
point-- the Hopf-fold-homoclinic collision--and a global bifurcation in the 
form of the homoclinic connection responsible for the blue-sky catastrophe. 
An important point that arose from detailed consideration of this homo- 
clinic connection is that the connection is not transverse. This fact 
precludes the model displaying some of the more complex behaviour 
associated with transverse homoclinic connections, such as homoclinic 
tangles and dynamical chaos (Guckenheimer and Holmes, 1986). Related to 
this observation is the fact that the model was found to display dynamical 
behaviour constrained to a two-dimensional centre manifold. This limits the 
kind of oscillatory behaviour possible to simple limit cycles (displayed by 
the model); no evidence was found of quasi-periodicity or mode locking 
(Thompson and Stewart, 1986). 

In terms of the model's relationship to experimentally derived data, the 
detailed bifurcation analysis provided by AUTO has presented topological 
configurations with qualitatively similar bifurcation behaviour to that seen 
in experiment. This may help explain the topological changes responsible 
for the changes seen experimentally, particularly since some of the points in 
control space found here are difficult or impossible to find experimentally. 
The existence of a homoclinic connection is a good example. One can 
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"home-in" on such a point numerically, while experimentally other factors, 
such as noise and a lack of such infinite fine-tuning, serve to blur such a 
bifurcation point. This is important because, as seen in this analysis, the 
period lengthening associated with a homoclinic connection occurs only 
very close to the connection itself. It is thought that further refinement of 
the model will lead to a higher-dimension dynamical system and a possibly 
greatly enriched behaviour. 

The authors would like to thank E. Doedel for use of the software package 
AUTO-86, P. Blennerhassett for advice on its installation and use, and 
M. Myerscough for useful discussions. 

APPENDIX 

The Model Equations. The lumped-parameter model under consideration is described by 
Bertram and Pedley (1982). A brief derivation of the then-proposed equations is given here. 
(Nomenclature is given in Table A1.) Twelve equations can be formed, using the basic laws 
of fluid mechanics, from the intrinsic assumptions of the model. These can then be reduced 
to an autonomous set of three ordinary differential equations. 

The Basic Equations. The model consisted of a "Starling resistor" (an elastic tube 
mounted within a pressurised chamber) and its associated upstream and downstream 

Table At. Nomenclature 

Symbol Meaning 

Pu 

Pe  

Pl 
P2 
R1 
Rz 
11 
12 
l 

P~ 
Rk 
P 

Av 
U 1 

IA 2 
A 

P(A)  
f (A)  
g(A) 

Constant pressure head 
Chamber pressure 
Upstream pressure 
Downstream pressure 
Upstream resistance 
Downstream resistance 
Upstream inertance 
Downstream inertance 
Length of collapsible section of tube 
Constitutive constant 
Resistance constant 
Pressure at the point of maximal collapse 
Average cross-sectional area of collapsed section of tube 
Upstream fluid velocity 
Downstream fluid velocity 
Cross-sectional area at the point of maximal collapse 
Tube constitutive law 
Head-loss expression 
Shape-dependent Poiseuille resistance per unit length 
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conduits (Fig. 1). A variable resistance is situated in both the upstream and downstream 
conduits. The upstream and downstream conduit inertances can also be changed, although 
with more difficulty. 

The system variables are normalised with respect to the uncollapsed cross-sectional 
radius ro, a fluid velocity t~ 0 and the fluid density p. Thus, 

pressure Po = P a2, 

flow rate Qo = u0-Ao, 

area A0 = 7rp2, 

resistance /~0 = P~o 
r 2 '  

inertance 
P?o 

Ao 

and 

A 
Z ~  

A0 

etc. 

Mass Conservation. The first of the 12 basic equations is formed from the laws of mass 
conservation. First, an approximate average area of the collapsed section of the tube is 
denoted A v, where 

Ao = �89 + A ) .  (A1) 

An approximate average velocity within the collapsed section of the tube can also be defined 
by 

= ~ ( u l  + u2) .  ( A 2 )  l t v A  v 1 

The volume of fluid which is accumulating in the collapsed section of the tube over time 
relates to the flows in and out of this section as 

where the overdot denotes differentiation with respect to time. 
Downstream, mass conservation gives the simple relation 

U2 --/AA =0.  

(A3) 

(A4) 
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The Inlet and Outlet Pipes. The Reynolds number of the flow is assumed low enough that 
the flow will be laminar. This means that the flow in the inlet pipe can be characterised by 

Pu - P l  = R l U l  + I1/~1; (AS) 

similarly, downstream 

P 2  = R 2 u 2  + 12U2 �9 (A6) 

Energy in the Upstream Section of the Collapsed Tube. Within the collapsed section of the 
tube the energy loss due to viscous resistance and accumulation of inertia must be 
considered. The former is assumed to be concentrated in the last quarter of the collapsible 
segment and is calculated using the resistance function R(A) .  This function represents the 
Poiseuille resistance per unit length for the tube when circular (A > 1) and approximately 
when elliptical (A < 1). Therefore, in the collapsed section of the tube upstream of the 
constriction, 

1 2 1 2 
Pl + 2bll - -  (P  + gu ) = �88 + lf~v, (A7) 

where 

f o r A  > 1, 

f o r A  < 1, 

(A8) 

and 

4/* 
R k = - -  (A9) 

prop  ~ " 

Momentum in the Downstream Section of the Collapsed Tube. Downstream of the con- 
striction, the fluid is assumed to emerge as a separated jet, resulting in energy dissipation 
and hence less than full pressure recovery. The equation proposed to describe this situation 
is that for quasi-steady jet  head loss, obtained by applying a momentum balance at the 
constriction. Bertram and Pedley (1982) point out that the flow here is likely to be and 
indeed was found to be unsteady (i.e. the Strouhal number is substantial). Thus this is a 
possible source of error in the model predictions. The momentum equation for the 
constriction is then 

P - P 2  = - f (  A )u2 ,  (A10) 
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where 

1 
f ( A ) =  ~ - - 1 ,  for A < 1, 

2 ( ~ 2  - 1), f o r A > - l o r u 2 < O .  

(Al l )  

The latter form of f(A),  applied for a distended tube or reversed flow, yields Bernoulli's 
equation. 

Elastic Behaviour of the Tube. The collapsible-tube constitutive law used describes the 
elastic behaviour of the tube walt in response to the transmural pressure applied to it. 
Bertram and Pedley (1982) made the gross assumptions (1) that the area of the collapsible 
segment could be completely specified by the area at the narrowest point (A) and (2) that 
this area could be related solely to the transmural pressure at this point. Therefore, 

P -P e  = P ( A ) ,  (A12) 

where the authors chose to use a slight modification of a constitutive relationship, developed 
by Shapiro (1977), which is based on static experiments using thin-walled rubber tubes and 
which ignores longitudinal tension: 

P ( A )  = 
Pk(1 -A-3/2), for A < 1, 

(A13) 
100P~(A - 1), for A > 1. 

Reduction of  the equations. The above 12 equations are reduced to a set of three 
autonomous differential equations of the form 

A = f(free parameters, A,  u 1, u2), 

ul = f(free parameters, A, u 1, u2), 

ti 2 =f ( f ree  parameters, A, u 1, u2). 

Area of the constriction. 

A 2(ul - u2) ( A I 4 )  
l 

Downstream fluid velocity. 

P ( A )  +Pe + f ( A ) u ~  - R z u  2 
/~2 (A15) 
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Table A2. Non-dimensional values used originally (Bertram and Pedley, 1982) 

Constant Value 

R 2 50, 75, 150 
12 25 
r 0.5, 1.5 

R a 25, 37.5, 75; 75, 113, 225 
I 1 12.5, 37.5 
Pe 200 
p ,  295 
1 10 

R k 0.00466 
Pk 4 

Upstream fluid velocity. 

[ A + I  ] [  1 u 2 lR (A)u  2 
t J l= l + ( A +  l ) I  1 P u - P ( A ) - p e - R l u l  +-2 u2 2A 2 4A 

2(u 2 -  u~) ~a2 | 
+ A 2 + 2A + 1 A + 1 ] '  (A16) 

Thus, a set of three ordinary differential equations in a suitable form for numerical 
solution--(14), (15) and (16)--has been derived. 

Values Used for the Free Parameters. Bertram and Pedley (1982) chose to examine three 
sets of input data, corresponding to three different values of R e . In each case, the other 
parameters were kept constant. An added simplification was made by making both the 
upstream conduit resistance and inertance related to their downstream equivalents by a 
factor r. The dimensionless parameters which were used are listed in Table A2. 

It is of interest to consider some real physical dimensions, based on the paper of Conrad 
(1969), in relation to test rigs used by Bertram and Pedley since their 1982 paper. For 
example, a typical value of 6.35 mm for r 0 and an arbitrarily chosen value of 0.15 m s -1 for 
u 0 result in the values /~e  = 4.5 kPa,/~, = 6.6 kPa,/~= 63.5 mm, P~ = 90 Pa, R a = 44.4 • 106 
kg m -4 S -1, /~2=88 .8•  kg m -4 s 1, f 1 = 0 . 6 3 •  kg m -4 and 12 1.25)<106 
k g m  -4. 
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