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Immersions

De�nition
A continous map f : Y → X between topological spaces is called a

(topological) immersion if every point y ∈ Y has a neighborhood U
that is mapped homeomorphically onto f (U) by f .

Example: immersions between (directed) graphs
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Additional restriction: respect the structure of the graph
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Covering spaces

De�nition
A covering is a continous map f : Y → X for which there exists an

open cover Uα of X such that for each α, f −1(Uα) is a disjoint

union of open sets in Y , each of which is mapped

homeomorphically onto Uα by f .

Every covering is an immersion.

Fact: connected covers of a topological space ←→ conjugacy

classes of subgroups of its fundamental group.

Fundamental group: homotopy classes of closed paths around a

given point, equipped with concatenation

The idea is to characterize immersions by replacing the

fundamental group with an appropriate inverse monoid.
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Inverse monoids

De�nition
A monoid (S , ·) is called an inverse monoid if for all s ∈ S there

exists an element s−1 ∈ S such that ss−1s = s and s−1ss−1 = s−1,
furthermore idempotents commute.

The typical example: the symmetric inverse monoid on a set X :

X → X partial injective maps under partial multiplication.

(Notation: SIM(X ))

Natural partial order: a ≤ b i� there exists an idempotent e with

a = be.

Free inverse monoids exist. (Notation: FIM(X ))
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Inverse monoid actions

De�nition
An inverse monoid S acts on the set X if there is a homomorphism

S → SIM(X ).

Example: let Γ be a graph edge-labeled in a deterministic and

co-deterministic way over a set A, then FIM(A) acts on V (Γ).

a

c

d

d

Note: the stabilizer of a set is always an inverse submonoid, and it

is closed upwards in the natural partial order. Such inverse

submonoids are called closed. (Notation: M ≤ω S)
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The loop monoid of graphs

Fact: the homotopy equivalence on paths of a graph is induced by

pp−1 ≡ α(p) for any path p.

Let ≈ denote the equivalence induced by pp−1p ≈ p and

pp−1qq−1 ≈ qq−1pp−1.

De�nition (Margolis, Meakin)

The loop monoid L(Γ, v) is the inverse monoid consisting of

≈-classes of closed paths around v , with respect to concatenation.

Note: if Γ be a digraph edge-labeled over the set X in a

deterministic and co-deterministic way, then Then paths starting

at v are words over X ∪ X−1, hence L(Γ, v) ≤ FIM(X ).

A key idea: L(Γ, v) is the stabilizer of v under the action of

FIM(X ).
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The theorem classifying graph immersions

Theorem (Margolis, Meakin)

Immersions over a connected graph Γ ←→
conjugacy classes of closed inverse submonoid of L(Γ, v) for any

v ∈ Γ.

Idea of the proof:

I if f : Γ2 → Γ1 is an immersion with f (v2) = v1, then
L(Γ2, v2) ⊆ L(Γ1, v1)

I for any M ≤ω L(Γ1, v1), the ω-coset graph of M immerses into

Γ1

Remarks:

I H,K ⊆ L(Γ1, v1) correspond to the same immersion i� they

are conjugate

I L(Γ, v) and L(Γ, v ′) are conjugate, but not necessarily

isomorphic (unlike in the case of the fundamental group)
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Immersions in higher dimensions

CW-complexes: a class of topological spaces with a combinatorial

structure

A CW-complex is a topological space built iteratively:

1. Start with a discrete set of points (0-cells)

2. Attach open intervals to the 0-skeleton (1-cells)

3. Attach open disks to the 1-skeleton (2-cells)

4. ...

1-dimensional CW-complexes = graphs

In a CW-complex C, every cell has an attaching map ϕ : Sn → C
and a characteristic map σ : Bn → C.
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Immersions in higher dimensions

∆-complexes: CW-complexes with restricted attaching maps:

Each cell has a distinguished characteristic map σ : ∆n → C such

that the restriction to a face of ∆n is also a characteristic map of

some cell.

The standard simplex ∆n = [v0, . . . , vn] comes with a natural

ordering on its vertices. We call the smallest vertex v0 the root of

the simplex, σ(v0) is called the root of the cell, denoted by α(C ).

Digraphs: edges are 2-simplices [v0, v1]; α(e) = σ(v0),
ω(e) = σ(v1).

For higher dimensional cells C , we de�ne ω(C ) = α(C ).

Immersion between ∆-complexes: a continous map which is a

local homeomorphism onto its image and commutes with the

characteristic maps.
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The loop monoid of a ∆-complex

Let C be a ∆-complex.

A generalized path in C is a sequence of cells s1 . . . sn such that

ω(sj) = α(sj+1).

The loop monoid L(C, v) of a ∆-complex C consists of certain

equivalence classes of generalized paths around v .

The idea:

I we label cells over a set X ∪ P , an inv. monoid generated by

X ∪ P acts on the vertices, L(C, v) is the stabilizer

I labels of cells of dimension at least 2 always act identically

I labels of closed generalized paths on the boundary of a cell act

identically wherever the cell lifts
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Labeled ∆-complex

We label the ∆-complex C over a set X ∪ P in a way that cells of

the same label have �boundaries� of the same label.

For any n-cell C (n ≥ 2), we designate the following generalized

path on the boundary of C .

I if n = 2, let bw(C ) be the image of the path (v0, v1, v2, v0)
under σ;

I if n > 2, let Ci = [v0, . . . , vi−1, vi+1, . . . , vn], and let bw(C )
be the image of CnCn−1 . . .C1(v0, v1)C0(v1, v0) under σ.

Note: bw(ρ) := `(bw(C )), where `(C ) = ρ, is well-de�ned.
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The loop monoid

Take a ∆-complex labeled over X ∪ P , and consider the inverse

monoid MX ,P = 〈X ∪ P〉, de�ned by the following relations:

for any ρ ∈ P ,

I ρ2 = ρ, and

I ρ ≤ `(bw(ρ)).

Proposition

The inverse monoid MX ,P acts on any complex C labeled over

X ∪ P (consistently with boundaries).

L(C, v) := generalized paths around v wrt the above relations

= the stablizer of v under this action

Note:

I L(C, v) ≤ω MX ,P ;

I the greatest group homomorphic image of L(C, v) is π1(C).
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The main theorem

Theorem (Meakin, Sz.)

1. Let C and D be ∆-complexes labeled over a common set

X ∪ P , and suppose g : D → C is an immersion that

commutes with the labeling, and let v ∈ D(0). Then L(D, v) is

a closed inverse submonoid of L(C, g(v)).

2. Let C be a ∆-complex labeled over X ∪P , let u ∈ C(0), and let

H be any closed inverse submonoid of L(C, u) ⊆ MX ,P . Then

there exists a unique complex CH and a unique immersion

f : CH → C with H = L(CH , v) for some vertex v ∈ CH with

f (v) = u.

Again, H,K ≤ω L(C, u) correspond to the same immersion i� they

are conjugate.

Remark: the above theorem was proven by Meakin and Sz. for

arbitrary CW -complexes in the 2-dimensional case.
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Examples of immersions over D ∨ S1

MX ,P = Inv〈a, b, ρ | ρ2 = ρ, ρ ≤ b〉

〈ak , anρa−n : n ∈ {1, . . . , k}〉ω
k ∈ N, (k = 4)

〈(ab)nab2a−1(ab)−n : n ∈ N〉ω
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Thank you for your attention!
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