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Inverse monoids

Recall the following notions:
m Inverse monoid: Yae M JFla~! € M with aa—'a=a
and a laa ! = a7t
m natural partial order <

m smallest group congruence o

Definition
An inverse monoid is called F-inverse if each o-class has a
greatest element wrt <.

E.g. free inverse monoids.
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F-inverse covers

Definition
An inverse monoid F is an F-inverse cover of M if there is
a surjective morphism F — M.

Every inverse monoid has an F-inverse cover — a free inverse
monoid.

Open problem (Henckell, Rhodes, 1991):
Does every finite inverse monoid have a finite
F-inverse cover?
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e

Graphs: finite, directed /\
e TEe

Paths can go "both
directions", traversing a
formal inverse edge when
going backwards

Eg p=adict!

Note: paths of a graph I' can be regarded as words over the
alphabet E(I') U (E(T"))™?
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For p=adlc!, (p) is:
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For example
mAb: xy =yx &
m Ab,: xy =yxand x" =1 v

Definition
A group variety is locally finite if its finitely generated groups
are finite.
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Two sequences of subgraphs

Fix a graph I' and a (locally finite) group variety U.
For every path p of T, let

G(p) = m{(q> : g is a path coterminal to p, p =y ¢}
1

g can be obtained
from p using
identities of U

Note: if I' is a two-edge-connected graph, then Gy(p) is just
the graph spanned by the U-content of p together with ¢p.

Let Py(p) be the connected component of Cy(p) containing ¢p.
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Two sequences of subgraphs

If C,, P, are definied for all paths of T, let

Cn+1(p) = ﬂ{Pn(ql) U---u Pn(qk) 1k € N7
Q1 --.qx is a path coterminal to p, p=y g1 ... qx}

And let again P,.1(p) be the connected component of
Coi1(p) containing ¢p.
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The graph condition

Theorem (Auinger, Szendrei, 2006)

All finite inverse monoids admit a finite F-inverse cover if and
only if for each graph T there is a locally finite group variety U
such that Tp € P,(p) for all n and all paths p of T

A path p with 7p ¢ P,(p) for some n: breaking path

How to solve the F-inverse cover problem: find "good"
varieties for graphs



On the graph condition regarding the F-inverse cover problem

L Forbidden minors

Table of contents

Forbidden minors



On the graph condition regarding the F-inverse cover problem

L Forbidden minors

The property (Suy)

The set of graphs for which U is "good" (they contain no
breaking paths over U): (Sy)



On the graph condition regarding the F-inverse cover problem

L Forbidden minors

The property (Suy)

The set of graphs for which U is "good" (they contain no
breaking paths over U): (Sy)

Proposition

IfU CcV, then (Su) - (5\/)

Bigger varieties are "good" for more graphs.
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Minors

Definition

We call A a minor of T if it can be obtained from [ by
edge-contraction, omitting vertices and edges, and redirecting
edges.

Theorem

If A is a minor of T and A contains a breaking path over U,
then so does T.

Proof: the breaking path in the small graph can be lifted.
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Another way of putting this: the set of non-(Sy) graphs
(=those containing breaking paths over U) are closed
upwards in the minor ordering:

Hence the set of non-(Sy) graphs can be described by their
minimal elements called forbidden minors.
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Abelian varieties

Theorem

Let U be any nontrivial Abelian group variety. The forbidden
minors for U are the graphs below:

¢ d
¢ a
b d b

Proof (part 1): the path "a" is a breaking one in both cases.
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Other varieties?

Ab,Ab,:
m locally finite
m larger than Ab,
m the relatively free group has a polynomial word problem

m ...and is double exponential in rank

All we know is that if ' conatins a breaking path, then it has

m at least one of the Abelian minors

as minors.
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Thank you for your attention!
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