On the graph condition regarding the F-inverse cover problem

Nóra Szakács

University of Szeged

AMS-EMS-SPM meeting, Porto 2015. 06. 13.

Table of contents

- 1 The F-inverse cover problem
- 2 The graph condition
- 3 Forbidden minors

Recall the following notions:

■ Inverse monoid: $\forall a \in M \exists ! a^{-1} \in M \text{ with } aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$

Recall the following notions:

- Inverse monoid: $\forall a \in M \exists ! a^{-1} \in M \text{ with } aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$
- natural partial order ≤

Recall the following notions:

- Inverse monoid: $\forall a \in M \exists ! a^{-1} \in M \text{ with } aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$
- natural partial order ≤
- \blacksquare smallest group congruence σ

Recall the following notions:

- Inverse monoid: $\forall a \in M \exists ! a^{-1} \in M \text{ with } aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$
- natural partial order ≤
- \blacksquare smallest group congruence σ

Definition

An inverse monoid is called *F*-inverse if each σ -class has a greatest element wrt \leq .

Recall the following notions:

- Inverse monoid: $\forall a \in M \exists ! a^{-1} \in M \text{ with } aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$
- natural partial order ≤
- lacksquare smallest group congruence σ

Definition

An inverse monoid is called *F*-inverse if each σ -class has a greatest element wrt \leq .

E.g. free inverse monoids.

Definition

An inverse monoid F is an F-inverse cover of M if there is an idempotent separating, surjective morphism $F \to M$.

Definition

An inverse monoid F is an F-inverse cover of M if there is a surjective morphism $F \to M$.

Definition

An inverse monoid F is an F-inverse cover of M if there is a surjective morphism $F \to M$.

Every inverse monoid has an F-inverse cover — a free inverse monoid.

Definition

An inverse monoid F is an F-inverse cover of M if there is a surjective morphism $F \to M$.

Every inverse monoid has an *F*-inverse cover — a free inverse monoid.

Open problem (Henckell, Rhodes, 1991): Does every finite inverse monoid have a *finite* F-inverse cover?

Table of contents

- 1 The F-inverse cover problem
- 2 The graph condition
- 3 Forbidden minors

└─The graph condition

Graphs: finite, directed

Paths

Paths can go "both directions", traversing a formal inverse edge when going backwards

Paths can go "both directions", traversing a formal inverse edge when going backwards

E.g.
$$p = ad^{-1}c^{-1}$$

te to the total and the total

Paths can go "both directions", traversing a formal inverse edge when going backwards

E.g.
$$p = ad^{-1}c^{-1}$$

Note: **paths** of a graph Γ can be regarded as **words** over the alphabet $E(\Gamma) \cup (E(\Gamma))^{-1}$

 $\langle p \rangle$: the subgraph spanned by the path p

For
$$p = ad^{-1}c^{-1}$$
, $\langle p \rangle$ is:

A group variety is a class of groups defined by identities.

For example

$$Ab: xy = yx$$

A group variety is a class of groups defined by identities.

For example

- \blacksquare **Ab**: xy = yx
- \mathbf{Ab}_n : xy = yx and $x^n = 1$

A group variety is a class of groups defined by identities.

For example

- \blacktriangle **Ab**: xy = yx
- **Ab**_n: xy = yx and $x^n = 1$

Definition

A group variety is **locally finite** if its finitely generated groups are finite.

A group variety is a class of groups defined by identities.

For example

- **Ab**: $xy = yx \varnothing$
- \mathbf{Ab}_n : xy = yx and $x^n = 1$

Definition

A group variety is **locally finite** if its finitely generated groups are finite.

A group variety is a class of groups defined by identities.

For example

- \mathbf{Ab} : $xy = yx \varnothing$
- \mathbf{Ab}_n : xy = yx and $x^n = 1$ \checkmark

Definition

A group variety is **locally finite** if its finitely generated groups are finite.

Fix a graph Γ and a (locally finite) group variety U. For every path p of Γ , let

$$C_0(p) = \bigcap \{\langle q \rangle : q \text{ is a path } \}$$

Fix a graph Γ and a (locally finite) group variety U. For every path p of Γ , let

$$\mathcal{C}_0(p) = \bigcap \{\langle q \rangle : q \text{ is a path coterminal to } p, \ p \equiv_{\mathsf{U}} q \}$$

Fix a graph Γ and a (locally finite) group variety U. For every path p of Γ , let

$$C_0(p) = \bigcap \{\langle q \rangle : q \text{ is a path coterminal to } p, \ p \equiv_{\mathbf{U}} q \}$$
 \downarrow $q \text{ can be obtained}$ from $p \text{ using}$ identities of \mathbf{U}

Fix a graph Γ and a (locally finite) group variety U. For every path p of Γ , let

$$C_0(p) = \bigcap \{\langle q \rangle : q \text{ is a path coterminal to } p, \ p \equiv_{\mathbf{U}} q \}$$
 \downarrow $q \text{ can be obtained}$ from $p \text{ using}$ identities of \mathbf{U}

Note: if Γ is a two-edge-connected graph, then $C_0(p)$ is just the graph spanned by the **U**-content of p together with ιp .

Fix a graph Γ and a (locally finite) group variety U. For every path p of Γ , let

$$C_0(p) = \bigcap \{\langle q \rangle : q \text{ is a path coterminal to } p, \ p \equiv_{\mathbf{U}} q \}$$
 \downarrow $q \text{ can be obtained}$ from $p \text{ using}$ identities of \mathbf{U}

Note: if Γ is a two-edge-connected graph, then $C_0(p)$ is just the graph spanned by the **U**-content of p together with ιp .

Let $P_0(p)$ be the connected component of $C_0(p)$ containing ιp .

If C_n, P_n are definied for all paths of Γ , let

$$C_{n+1}(p) = \bigcap \{P_n(q_1) \cup \dots \cup P_n(q_k) : k \in \mathbb{N},$$
 $q_1 \dots q_k$ is a path coterminal to $p, \ p \equiv_{\mathsf{U}} q_1 \dots q_k\}$

If C_n, P_n are definied for all paths of Γ , let

$$C_{n+1}(p) = \bigcap \{P_n(q_1) \cup \dots \cup P_n(q_k) : k \in \mathbb{N},$$
 $q_1 \dots q_k \text{ is a path coterminal to } p, \ p \equiv_{\mathsf{U}} q_1 \dots q_k\}$

And let again $P_{n+1}(p)$ be the connected component of $C_{n+1}(p)$ containing ιp .

Put $\mathbf{U} = \mathbf{Ab}$ and p = a in the graph

$$C_0(a) =$$

$$C_0(a) = P_0(a) =$$

$$C_0(a) = P_0(a) =$$

$$C_1(a)$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a)$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a) \subseteq P_0(a) \cap (P_0(c^{-1}) \cup P_0(cab^{-1}c^{-1}) \cup P_0(cb))$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a) \subseteq P_0(a) \cap (P_0(c^{-1}) \cup P_0(cab^{-1}c^{-1}) \cup P_0(cb))$$

 $C_0(c^{-1}) =$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a) \subseteq P_0(a) \cap (P_0(c^{-1}) \cup P_0(cab^{-1}c^{-1}) \cup P_0(cb))$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_{1}(a) \subseteq P_{0}(a) \cap (P_{0}(c^{-1}) \cup P_{0}(cab^{-1}c^{-1}) \cup P_{0}(cb))$$

$$C_{0}(cab^{-1}c^{-1}) =$$

$$C_{0}(cab^{-1}c^{-1}) = C_{0}(cab^{-1}c^{-1})$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_{1}(a) \subseteq P_{0}(a) \cap (P_{0}(c^{-1}) \cup P_{0}(cab^{-1}c^{-1}) \cup P_{0}(cb))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_{1}(a) \subseteq P_{0}(a) \cap (P_{0}(c^{-1}) \cup P_{0}(cab^{-1}c^{-1}) \cup P_{0}(cb))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a) \subseteq P_0(a) \cap (P_0(c^{-1}) \cup P_0(cab^{-1}c^{-1}) \cup P_0(cb))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a) \subseteq P_0(a) \cap \underbrace{\left(P_0(c^{-1}) \cup P_0(cab^{-1}c^{-1}) \cup P_0(cb)\right)}_{c}$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a) \subseteq \underbrace{P_0(a) \cap (P_0(c^{-1}) \cup P_0(cab^{-1}c^{-1}) \cup P_0(cb))}_{c}$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a) \subseteq P_0(a) \cap (P_0(c^{-1}) \cup P_0(cab^{-1}c^{-1}) \cup P_0(cb))$$

$$P_1(a) \subseteq \bigcup_{d=1}^{c} \bigcap_{b=1}^{d} \bigcap_{d=1}^{d} \bigcap_{d=1}$$

$$C_0(a) = P_0(a) =$$

$$a \equiv_{\mathbf{Ab}} c^{-1} \cdot cab^{-1}c^{-1} \cdot cb$$

$$C_1(a) \subseteq P_0(a) \cap (P_0(c^{-1}) \cup P_0(cab^{-1}c^{-1}) \cup P_0(cb))$$

The graph condition

Theorem (Auinger, Szendrei, 2006)

All finite inverse monoids admit a finite F-inverse cover if and only if for each graph Γ there is a locally finite group variety \mathbf{U} such that $\tau p \in P_n(p)$ for all n and all paths p of Γ .

The graph condition

Theorem (Auinger, Szendrei, 2006)

All finite inverse monoids admit a finite F-inverse cover if and only if for each graph Γ there is a locally finite group variety \mathbf{U} such that $\tau p \in P_n(p)$ for all n and all paths p of Γ .

A path p with $\tau p \notin P_n(p)$ for some n: breaking path

The graph condition

Theorem (Auinger, Szendrei, 2006)

All finite inverse monoids admit a finite F-inverse cover if and only if for each graph Γ there is a locally finite group variety \mathbf{U} such that $\tau p \in P_n(p)$ for all n and all paths p of Γ .

A path p with $\tau p \notin P_n(p)$ for some n: breaking path

How to solve the F-inverse cover problem: find "good" varieties for graphs

Table of contents

- 1 The F-inverse cover problem
- 2 The graph condition
- 3 Forbidden minors

The property (S_U)

The set of graphs for which U is "good" (they contain no breaking paths over U): (S_U)

The property (S_U)

The set of graphs for which U is "good" (they contain no breaking paths over U): (S_U)

Proposition

If
$$U \subseteq V$$
, then $(S_U) \subseteq (S_V)$.

Bigger varieties are "good" for more graphs.

Minors

Definition

We call Δ a **minor** of Γ if it can be obtained from Γ by edge-contraction, omitting vertices and edges, and redirecting edges.

Minors

Definition

We call Δ a **minor** of Γ if it can be obtained from Γ by edge-contraction, omitting vertices and edges, and redirecting edges.

Theorem

If Δ is a minor of Γ and Δ contains a breaking path over \mathbf{U} , then so does Γ .

Minors

Definition

We call Δ a **minor** of Γ if it can be obtained from Γ by edge-contraction, omitting vertices and edges, and redirecting edges.

Theorem

If Δ is a minor of Γ and Δ contains a breaking path over \mathbf{U} , then so does Γ .

Proof: the breaking path in the small graph can be lifted.

Another way of putting this: the set of non- (S_U) graphs (=those containing breaking paths over U) are closed upwards in the minor ordering:

Forbidden minors

Another way of putting this: the set of non- (S_U) graphs (=those containing breaking paths over U) are closed upwards in the minor ordering:

Hence the set of non- (S_U) graphs can be described by their minimal elements called **forbidden minors**.

Abelian varieties

Theorem

Let **U** be any nontrivial Abelian group variety. The forbidden minors for **U** are the graphs below:

Abelian varieties

Theorem

Let **U** be any nontrivial Abelian group variety. The forbidden minors for **U** are the graphs below:

Proof (part 1): the path "a" is a breaking one in both cases.

Other varieties?

Ab_nAb_m :

- locally finite
- larger than Ab_n
- the relatively free group has a polynomial word problem

Other varieties?

Ab_nAb_m :

- locally finite
- larger than Ab_n
- the relatively free group has a polynomial word problem
- ...and is double exponential in rank

Other varieties?

Ab_nAb_m

- locally finite
- larger than Ab_n
- the relatively free group has a polynomial word problem
- ...and is double exponential in rank

All we know is that if Γ conatins a breaking path, then it has

- at least one of the Abelian minors
- and

as minors

Thank you for your attention!