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The free monoid X ∗

X : set (alphabet)

X ∗: the set of �nite sequences (words) of elements of X
ε : the word of length 0

X ∗ is a monoid with respect to juxtaposition:

w · v = wv

Xω: the set of in�nite sequences (words) of elements of X
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Regular rooted trees

X : �nite set with |X | ≥ 2, TX : |X |-regular rooted tree

ε

x y

xx yxxy yy

vertices ←→ X ∗

Aut(TX ):
automorphisms of TX

Aut(TX ) ↪→ SX∗

Let g ∈ Aut(TX ).

▶ |g(w)| = |w | for all
w ∈ X ∗

▶ g |w ∈ Aut(TX ): the
restriction of g to the

subtree at w

▶ g(wu) = g(w)g |w (u)
for all u,w ∈ X ∗Nóra Szakács Simplicity of Nekrashevych algebras
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The Grigorchuk group

The Grigorchuk group is generated by the following elements:

s:

id id

b:

s c

c:

s d

d:

id b
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Contracting groups

A self-similar group G ≤ Aut(TX ) is called contracting if there

exists a �nite set N ⊆ G such that

for all g ∈ G there exists k with g |w ∈ N whenever |w | ≥ k .

The minimal such N is called the nucleus.

Contracting self-similar groups include a lot of the famous classes

(such as the Grigorchuk group and the Gupta-Sidki p-groups).

If G is contracting, and generated by a �nite set closed under

sections, then there is an algorithm that computes N.
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The Nekrashevych algebra

G : self-similar group, X : set with |X | > 2.

The Nekrashevych algebra NK (G ,X ) is the K -algebra generated by

the set G and {x , x∗ : x ∈ X}, subject to the relations

▶ g · h = gh,

▶ gx = g(x)g |x ,
▶ x∗g = g |g−1(x)(g

−1(x))∗,

▶ x∗y = δx ,y ,

▶
∑
x∈X

xx∗ = 1.

Nekrashevych �rst de�ned a C ∗-algebra de�ned by these relations,

and later studied this discrete counterpart.

If G is contracting, G can be replaced by N, and NK (G ,X ) is
�nitely presented.
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Nekrashevych algebras and inverse semigroups
S : monoid with zero, generated by G and {x , x∗ : x ∈ X ∗}, subject
to the relations
▶ g · h = gh,
▶ gx = g(x)g |x ,
▶ x∗g = g |g−1(x)(g

−1(x))∗,
▶ x∗y = δx ,y .

S is called the inverse semigroup associated to G ,

S = {ugv∗ : g ∈ G , u, v ∈ X ∗} ∪ {0}.

NK (G ,X ) in the Steinberg algebra of the tight groupoid of S , or
algebraically,

NK (G ,X ) = K0S/(1−
∑
x∈X

xx∗),

where (1−
∑

x∈X xx∗) is the tight ideal TK (S) of S .
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Simplicity of Nekrashevych algebras
The question we were interested in is

when is NK (G ,X ) simple?

NC(G ,X ) not simple =⇒ the C ∗-algebra is not simple

▶ Brown, Clark, Farthing, Sims (2015): if the ample groupoid

associated to G is Hausdor�, NK (G ,X ) is simple for any K

▶ Nekrashevych (2015): the Nekrashevych algebra of the

Grigorchuk group is not simple over characteristic 2

▶ Clark, Exel, Pardo, Sims, Starling (2018): characterize

simplicity in terms of the groupoid, and prove that the

Nekrashevych algebra of the Grigorchuk group is simple over

all other characteristics

▶ Nekrashevych (2019): the Nekrashevych algebra of the

Grigorchuk-Erschler group is simple over no �eld
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Main results

Theorem (Steinberg, Sz.)

Let G be a contracting group with nucleus N.

▶ Either NK (G , S) is simple over no �eld or simple over all but

�nitely many positive characteristics.

▶ There is an algorithm which on input N outputs the set of

characteristics over which NK (G , S) is non-simple.

The result gives a hands-on description of simplicity for several

well-known in�nite families of contracting self-similar groups.

For any �nite set of primes P, we give a contracting self-similar

group G such that NK (G ,X ) fails to be simple exactly over

characteristics in P.
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A nice characterization

NK (G ,X ) can be represented on the vector space KXω:

For x ∈ X and w ∈ Xω we can de�ne

x · w = xw ,

x∗ · yw =

{
w if x = y

0 otherwise

and any g ∈ G acts on in�nite words by a natural extension of the

action on X ∗.

Theorem (Steinberg, Sz.)

NK (G ,X ) is simple if and only if its representation on KXω is

faithful. Moreover, the image of the representation is the unique

simple quotient of NK (G ,X ).
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Simplicity of inverse semigroup algebras

Theorem (Steinberg, Sz.)

If S is a congruence-free inverse semigroup, then there is a unique

maximal ideal of K0S containing TK (S), called the singular ideal

IK (S).

▶ K0S/TK (S) has a unique maximal ideal: IK (S)/TK (S).
▶ K0S/TK (S) is simple ⇐⇒ IK (S) = TK (S)

If G is self-similar over X , then the associated semigroup S is

congruence-free. The singular ideal of K0S is

IK (S) = {a ∈ K0S : for all u ∈ X ∗ there is w ∈ X ∗ with auw = 0}.

So the unique maximal ideal of NK (G ,X ) is

IK (S)/(1−
∑
x∈X

xx∗).
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The singular ideal minus the tight ideal

Let G be a self-similar over X and S the inverse semigroup. We

have established:

NK (G ,X ) is simple ⇐⇒ IK (S) \ (1−
∑

x∈X xx∗) = ∅.

IK (S) = {a ∈ K0S : for all u ∈ X ∗ there is w ∈ X ∗ with auw = 0}.

Step 1:

For any a ∈ K0S , we have a ∈ (1−
∑

x∈X xx∗) if there are �nitely

many words w ∈ X ∗ with aw ̸= 0.

Step 2:

If IK (S) \ (1−
∑

x∈X xx∗) ̸= ∅, then IK (S) \ (1−
∑

x∈X xx∗)
intersects KG . If G is contracting with nucleus N, it intersects KN.
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Understanding aw = 0
Let a =

∑
g∈N agg ∈ KN. Then

aw =
∑
g∈N

aggw .

≡w : equivalence on N de�ned by g ≡w h i� gw = hw . Then

aw = 0⇐⇒ ∀h ∈ N,
∑
g≡wh

ag = 0

For any equivalence ≡ on N, consider the following linear system in

variables xg , g ∈ N: ∑
g≡h

xg = 0, h ∈ N.

We say a ∈ KN satis�es ≡ if ag = xg is a solution over K .
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Understanding aw = 0

N is �nite =⇒ there are �nitely many equivalences and

corresponding linear systems.

The key: to understand

▶ which of these must be satis�ed for a to be singular,

▶ and which of these must not be satis�ed for

a /∈ (1−
∑

x∈X xx∗).
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The simplicity graph

Recall: gx = g(x)g |x for g ∈ G , x ∈ X , furthermore, if g ∈ N,

then g |x ∈ N.

So g ≡xw h⇐⇒ gxw = hxw ⇐⇒ g(x)g |xw = h(x)h|xw ⇐⇒
g(x) = h(x) and g |xw = h|xw ⇐⇒ g(x) = h(x) and g |x ≡w h|x .

X ∗ has a left action on equivalences on N given by

g x · ≡ h⇐⇒ g(x) = h(x) and g |x ≡ h|x .

{≡w : w ∈ X ∗} is the orbit of the equality.

The simplicity graph: the Schreier graph of the action on

{≡w : w ∈ X ∗}
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An example: the Grigorchuk-Erschler group

The nucleus (also a generating set):

id:

id id

s:

id id

b:

s c

c:

id b

d:

s d

Note: s(w) ̸= g(w) if s ̸= g , so s is its own ≡w -class for any w .
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id:

id id

b:

s c

c:

id b

d:

s d

= ≡x ≡yx

x

y

y

x

x , y
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Reading the ideals from the simplicity graph

▶ a /∈ (1−
∑

x∈X xx∗) ⇐⇒ there is an equivalence ≡ not

satis�ed by a, reachable from a cycle.

▶ a ∈ IK (S) ⇐⇒ satis�es all the equations in the minimal

strongly connected components.
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The Grigorchuk-Erschler group

= ≡x ≡yx

x

y

y

x

x , y

The minimal component:

≡x : {s}, {b, d}, {id , c}
≡yx : {s}, {c , d}, {id , b}

The equations:

xs = 0, xd = −xb, xid = −xc
xs = 0, xd = −xc , xid = −xb

a = id−b − c + d is a solution over any �eld =⇒ a ∈ IK (S)
a does not satisfy `=' which is reachable from a cycle, so

a /∈ (1−
∑

x∈X xx∗)
=⇒ the Nekrashevych algebra is simple over no �eld.
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Thanks for your attention!
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