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Partial automorphisms of graphs

De�nition
Graph:

I undirected, simple: Γ = (V ,E ), where E ⊆
(V
2

)

I directed: Γ = (V ,E ), where maps α, ω : E → V are given

I directed, edge-colored: Γ = (V ;E1, · · · ,En)

Graph automorphism: a bijection ϕ : V → V which preserves
edges (with direction/color/multiplicity) and non-edges.

Partial graph automorphism: a partial one-to-one map
ψ : V → V which preserves edges (with
direction/color/multiplicity) and non-edges.
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Why partial automorphisms?

I to have an algebraic tool to understand graphs with trivial
automorphism groups

I the graph reconstruction conjecture:

Let Γ be an undirected, simple graph on n points.
Deck(Γ): multiset of spanned subgraphs of Γ on n − 1 points
Conjecture: Deck(Γ) determines Γ.

The reason this is hard: some partial automorphisms between
subgraphs on n − 1 points don't extend to automorphisms.
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The automorphism group

Aut(Γ): the group of all automorpisms of Γ.

Theorem (Frucht, 1939)

For all �nite groups G , there exists a graph Γ such that

G ∼= Aut(Γ) (moreover, Γ can be chosen to be 3-regular).

A more di�cult question:

If G = Aut(Γ), then G ≤ SV . Given a permutation group G ≤ Sn,
does there exist a graph Γ on n vertices for which G = Aut(Γ)?

There is a necessary and su�cient condition for edge-colored
graphs, in general (to my knowledge) such is not known.
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The inverse monoid of partial automorphisms

PAut(Γ): the inverse monoid of all partial automorphisms of Γ.
Note: PAut(Γ) ≤ IV , the symmetric inverse monoid on V .

Questions:

I For which inverse monoids S does there exist a graph Γ such
that PAut(Γ) ∼= S?

I For which inverse submonoids S of IV does there exist a graph
Γ on V such that PAut(Γ) = S?
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Overview: the structure of IX

Idempotents: partial identical maps

I a L b ⇐⇒ dom(a) = dom(b)

I a R b ⇐⇒ ran(a) = ran(b)

I a H b ⇐⇒ dom(a) = dom(b) ∧ ran(a) = ran(b)

I a D b ⇐⇒ |dom(a)| = |dom(b)|

Rank of a map: cardinality of its domain/image
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Some properties of PAut(Γ)

Suppose Γ is an undirected, �nite graph. Then PAut(Γ) ≤ IV ,

and

I every idempotent of IV is in PAut(Γ),

I every map of rank 1 in IV is in PAut(Γ),

I R-, L- and H −-classes are the same as in IV ,

I D-classes of PAut(Γ) ←→ isomorphism classes of PAut(Γ),

I the group H-classes of a D-class are the isomorphism groups
of the corresponding subgraphs.

Note that the rank ≤ 2 maps of PAut(Γ) determine Γ uniquely up
to taking the complement.

Theorem
If for graphs Γ1, Γ2 we have PAut(Γ1) = PAut(Γ2), then Γ1 = Γ2 or

Γ1 = Γ2.
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Compatible maps

How can one (algebraically) obtain PAut(Γ) from the low-rank
maps?

De�nition
Elements of a, b ∈ IX are called compatible (not.: a ∼ b) if
a ∪ b ∈ IX .

Proposition

a ∼ b ⇐⇒ ab−1 and a−1b are idempotents

Proposition

Suppose a ∈ IV is of rank ≥ 3. Then a ∈ PAut(Γ) if and only if all

its rank 2 restrictions are in PAut(Γ).

Proposition

For all A ⊆ IV pairwise compatible rank 1 maps,
⋃

A ∈ PAut(Γ) i�

for all a1, a2 ∈ A we have a1 ∪ a2 ∈ PAut(Γ).
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The characterization of PAut(Γ) in IV

Theorem
Given an inverse monoid S ⊆ IV (V is �nite), there exists a simple,

undirected graph Γ on V such that PAut(Γ) = S if and only if the

following hold:

1. E (IV ) ⊆ S ,

2. the rank 2 elements of S form at most two D-classes,
3. the rank 2 H-classes of S are nontrivial,

4. for any compatible subset A ⊆ S of rank 1 partial

permutations, if S contains the join of any two elements of A,
then S contains the join of the set A.
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The characterization of PAut(Γ) in IV

Theorem
Given an inverse monoid S ⊆ IV (V is �nite), there exists an

edge-colored digraph Γ on V such that PAut(Γ) = S if and only if

the following hold:

1. E (IV ) ⊆ S ,

2. for any compatible subset A ⊆ S of rank 1 partial

permutations, if S contains the join of any two elements of A,
then S contains the join of the set A.
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Boolean inverse monoids

De�nition
An inverse monoid S with zero is called Boolean if the semilattice
E (S) is the meet semilattice of a Boolean algebra.

In particular if S is �nite Boolean, then E (S) ∼= 2X for some X .

Note: PAut(Γ) is Boolean for any graph, and V ←→ the atoms of
E (PAut(Γ)).

=⇒ PAut(Γ) has a faithful representation on the atoms of
E (PAut(Γ)), and it is exactly what one gets restricting the (in this
case, faithful) Munn representation.
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Restricted Munn representation

Let S be a �nite inverse monoid, and let X denote the set of atoms
of E (S). The restricted Munn representation of S is the Munn
representation of S restricted to the atoms A of E (S):
αS : s 7→ m̂s , m̂s : 〈ss−1〉 ∩ A → 〈s−1s〉 ∩ A, e 7→ s−1es.

Proposition

The above representation is faithful ⇐⇒ S is Boolean and

fundamental.

If S = PAut(Γ), then αS(S) = S (under the identi�cation of idv

and v).
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S as a poset

If S is an inverse monoid, then (S ,≤) is a poset wrt the natural
partial order.

In (S ,≤) we can talk about a partially de�ned join (∨).

De�nition
We call a, b ∈ S compatible if ab−1, a−1b are idempotents.

Fact: If A ⊆ S has a join, then elements of A are pairwise
compatible (the converse is not true, however).

De�nition
Suppose S is a �nite inverse semigroup with 0. The height of an
element s in (S ,≤) is the length of the chain [0, s].

Note: in PAut(Γ), height = rank.
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Note: in PAut(Γ), height = rank.
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The characterization of PAut(Γ) in the abstract case

Theorem
Given a �nite inverse monoid S there exists a simple, undirected

graph Γ such that PAut(Γ) ∼= S if and only if the following hold:

1. S is Boolean (hence it has a 0),

2. S is fundamental,

3. the elements of height 1 form a single D-class,
4. elements of height 2 form at most two D-classes, with

two-element H-classes,

5. if X ⊆ S is a set of pairwise compatible elements of height 1,
and for all a1, a2 ∈ A, a1 ∨ a2 exists, then

∨
A exists.
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The characterization of PAut(Γ) in the abstract case

Theorem
Given a �nite inverse monoid S there exists an edge-colored digraph

Γ such that PAut(Γ) ∼= S if and only if the following hold:

1. S is Boolean (hence it has a 0),
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The Cayley graph

Theorem
If G is a group, and Γ(G ) is its Cayley graph, then the

(edge-colored, directed) automorphism group Aut(Γ(G )) ∼= G .

Proof: Aut(Γ(G )) ≤ SG is exactly what one obtains as the (left)
Cayley representation of G .

Clearly, if S is an inverse monoid and Γ(S) is its Cayley graph, in
general PAut(Γ(G )) 6∼= S . However, one can realize S as a subset of
PAut(Γ) using the (left) Wagner�Preston representation:

Theorem (Sieben, 2008)

The map ρ : S → IS , s 7→ ρs , where ρs : s−1S → sS , t 7→ st embeds

S into PAut(Γ(G )).

The subgraphs arising as domains and images are exactly the ones
of the form

tail(s) = {t ∈ V : t can be reached by a �nite path from s}.
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Question: is there a nice relationship between ρ(S) and
PAut(Γ(S))?

Let ρ̃(S) be the smallest inverse semigroup in IS containing ρ(S)
which satis�es the properties of inverse monoids of partial graph
automorphisms:

1. E (IS) ⊆ ρ̃(S),

2. for any compatible subset A ⊆ S of rank 1 partial

permutations, if ρ̃(S) contains the join of any two elements of

A, then ρ̃(S) contains the join of the set A.

That is, a map ϕ

I of rank 1 is in ρ̃(S)⇐⇒ it is a restriction of a map in ρS ;

I of rank ≥ 2 is in ρ̃(S)⇐⇒ all 2-rank restrictions of ϕ are
restrictions of maps in ρS .

The best we can hope for: ρ̃(S) = PAut(Γ(S)).
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A non-theorem

Bad news: PAut(Γ(S)) does depend on the system of generators
chosen: the bigger the system of generators, the smaller it is.

The best we can hope for now: if the system of generators is large

enough, then ρ̃(S) = PAut(Γ(S)).

Bad news: even wrt to the generating system S ,

ρ̃(S) 6= PAut(Γ(S)).
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Thank you for your attention!

Happy birthday!
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