Inverse monoids of partial graph automorphisms

Nóra Szakács (with Robert Jajcay, Tatiana Jajcayova and Mária Szendrei)

University of Szeged, Bolyai Institute

International Conference on Semigroups 2018, Lisbon

Definition

Graph:

▶ undirected, simple: $\Gamma = (V, E)$, where $E \subseteq \binom{V}{2}$

Definition

Graph:

- ▶ undirected, simple: $\Gamma = (V, E)$, where $E \subseteq \binom{V}{2}$
- ▶ directed: $\Gamma = (V, E)$, where maps $\alpha, \omega \colon E \to V$ are given

Definition

Graph:

- ▶ undirected, simple: $\Gamma = (V, E)$, where $E \subseteq \binom{V}{2}$
- ▶ directed: $\Gamma = (V, E)$, where maps $\alpha, \omega \colon E \to V$ are given
- ▶ directed, edge-colored: $\Gamma = (V; E_1, \dots, E_n)$

Definition

Graph:

- ▶ undirected, simple: $\Gamma = (V, E)$, where $E \subseteq \binom{V}{2}$
- ▶ directed: $\Gamma = (V, E)$, where maps $\alpha, \omega \colon E \to V$ are given
- ▶ directed, edge-colored: $\Gamma = (V; E_1, \dots, E_n)$

Graph automorphism: a bijection $\varphi \colon V \to V$ which preserves edges (with direction/color/multiplicity) and non-edges.

Definition

Graph:

- ▶ undirected, simple: $\Gamma = (V, E)$, where $E \subseteq \binom{V}{2}$
- ▶ directed: $\Gamma = (V, E)$, where maps $\alpha, \omega \colon E \to V$ are given
- ▶ directed, edge-colored: $\Gamma = (V; E_1, \dots, E_n)$

Graph automorphism: a bijection $\varphi \colon V \to V$ which preserves edges (with direction/color/multiplicity) and non-edges.

Partial graph automorphism: a partial one-to-one map $\psi\colon V\to V$ which preserves edges (with direction/color/multiplicity) and non-edges.

Why partial automorphisms?

to have an algebraic tool to understand graphs with trivial automorphism groups

Why partial automorphisms?

- to have an algebraic tool to understand graphs with trivial automorphism groups
- the graph reconstruction conjecture:

Let Γ be an undirected, simple graph on n points.

 $\mathsf{Deck}(\Gamma)$: multiset of spanned subgraphs of Γ on n-1 points

Conjecture: Deck(Γ) determines Γ

Why partial automorphisms?

- to have an algebraic tool to understand graphs with trivial automorphism groups
- the graph reconstruction conjecture:

Let Γ be an undirected, simple graph on n points.

Deck(Γ): multiset of spanned subgraphs of Γ on n-1 points **Conjecture**: Deck(Γ) determines Γ .

The reason this is hard: some partial automorphisms between subgraphs on n-1 points don't extend to automorphisms.

The automorphism group

Aut(Γ): the group of all automorpisms of Γ .

Theorem (Frucht, 1939)

For all finite groups G, there exists a graph Γ such that $G \cong \operatorname{Aut}(\Gamma)$ (moreover, Γ can be chosen to be 3-regular).

The automorphism group

Aut(Γ): the group of all automorpisms of Γ .

Theorem (Frucht, 1939)

For all finite groups G, there exists a graph Γ such that $G \cong \operatorname{Aut}(\Gamma)$ (moreover, Γ can be chosen to be 3-regular).

A more difficult question:

If $G = \operatorname{Aut}(\Gamma)$, then $G \leq S_V$. Given a permutation group $G \leq S_n$, does there exist a graph Γ on n vertices for which $G = \operatorname{Aut}(\Gamma)$?

The automorphism group

Aut(Γ): the group of all automorpisms of Γ .

Theorem (Frucht, 1939)

For all finite groups G, there exists a graph Γ such that $G \cong \operatorname{Aut}(\Gamma)$ (moreover, Γ can be chosen to be 3-regular).

A more difficult question:

If $G = \operatorname{Aut}(\Gamma)$, then $G \leq S_V$. Given a permutation group $G \leq S_n$, does there exist a graph Γ on n vertices for which $G = \operatorname{Aut}(\Gamma)$?

There is a necessary and sufficient condition for edge-colored graphs, in general (to my knowledge) such is not known.

The inverse monoid of partial automorphisms

PAut(Γ): the *inverse monoid* of all partial automorphisms of Γ . Note: PAut(Γ) $\leq I_V$, the symmetric inverse monoid on V.

The inverse monoid of partial automorphisms

PAut(Γ): the *inverse monoid* of all partial automorphisms of Γ . Note: PAut(Γ) $\leq I_V$, the symmetric inverse monoid on V.

Questions:

► For which inverse monoids S does there exist a graph Γ such that PAut(Γ) \cong S?

The inverse monoid of partial automorphisms

PAut(Γ): the *inverse monoid* of all partial automorphisms of Γ . Note: PAut(Γ) $\leq I_V$, the symmetric inverse monoid on V.

Questions:

- ► For which inverse monoids S does there exist a graph Γ such that PAut(Γ) \cong S?
- For which inverse submonoids S of I_V does there exist a graph Γ on V such that $\mathsf{PAut}(\Gamma) = S$?

Idempotents: partial identical maps

Idempotents: partial identical maps

- ▶ $a \mathcal{L} b \iff dom(a) = dom(b)$
- ▶ $a \mathcal{R} b \iff \operatorname{ran}(a) = \operatorname{ran}(b)$
- ▶ $a \mathcal{H} b \iff dom(a) = dom(b) \land ran(a) = ran(b)$

Idempotents: partial identical maps

- ▶ $a \mathcal{L} b \iff dom(a) = dom(b)$
- ▶ $a \mathcal{R} b \iff \operatorname{ran}(a) = \operatorname{ran}(b)$
- ▶ $a \mathcal{H} b \iff dom(a) = dom(b) \land ran(a) = ran(b)$
- $ightharpoonup a \mathcal{D} b \iff |\mathsf{dom}(a)| = |\mathsf{dom}(b)|$

Idempotents: partial identical maps

- ▶ $a \mathcal{L} b \iff dom(a) = dom(b)$
- ▶ $a \mathcal{R} b \iff \operatorname{ran}(a) = \operatorname{ran}(b)$
- ▶ $a \mathcal{H} b \iff dom(a) = dom(b) \land ran(a) = ran(b)$
- $a \mathcal{D} b \Longleftrightarrow |\mathsf{dom}(a)| = |\mathsf{dom}(b)|$

Rank of a map: cardinality of its domain/image

Suppose Γ is an undirected, finite graph. Then $\mathsf{PAut}(\Gamma) \leq I_{\mathcal{V}}$, and

• every idempotent of I_V is in PAut(Γ),

- every idempotent of I_V is in PAut(Γ),
- every map of rank 1 in I_V is in PAut(Γ),

- every idempotent of I_V is in PAut(Γ),
- every map of rank 1 in I_V is in PAut(Γ),
- $ightharpoonup \mathcal{R}$ -, \mathcal{L} and \mathcal{H} —-classes are the same as in I_V ,

- every idempotent of I_V is in PAut(Γ),
- every map of rank 1 in I_V is in PAut(Γ),
- $ightharpoonup \mathcal{R}$ -, \mathcal{L} and \mathcal{H} —-classes are the same as in I_V ,
- ▶ \mathcal{D} -classes of $\mathsf{PAut}(\Gamma) \longleftrightarrow \mathsf{isomorphism}$ classes of $\mathsf{PAut}(\Gamma)$,

- every idempotent of I_V is in PAut(Γ),
- every map of rank 1 in I_V is in PAut(Γ),
- $ightharpoonup \mathcal{R}$ -, \mathcal{L} and \mathcal{H} —-classes are the same as in I_V ,
- $ightharpoonup \mathcal{D}$ -classes of $\mathsf{PAut}(\Gamma) \longleftrightarrow \mathsf{isomorphism}$ classes of $\mathsf{PAut}(\Gamma)$,
- ▶ the group H-classes of a D-class are the isomorphism groups of the corresponding subgraphs.

Suppose Γ is an undirected, finite graph. Then $\mathsf{PAut}(\Gamma) \leq I_{\mathcal{V}}$, and

- every idempotent of I_V is in PAut(Γ),
- every map of rank 1 in I_V is in PAut(Γ),
- $ightharpoonup \mathcal{R}$ -, \mathcal{L} and \mathcal{H} —-classes are the same as in I_V ,
- ▶ \mathcal{D} -classes of $\mathsf{PAut}(\Gamma) \longleftrightarrow \mathsf{isomorphism}$ classes of $\mathsf{PAut}(\Gamma)$,
- ▶ the group H-classes of a D-class are the isomorphism groups of the corresponding subgraphs.

Note that the rank ≤ 2 maps of PAut(Γ) determine Γ uniquely up to taking the complement.

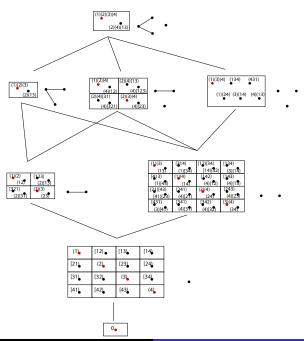
Suppose Γ is an undirected, finite graph. Then $\mathsf{PAut}(\Gamma) \leq I_{\mathcal{V}}$, and

- every idempotent of I_V is in PAut(Γ),
- every map of rank 1 in I_V is in PAut(Γ),
- $ightharpoonup \mathcal{R}$ -, \mathcal{L} and \mathcal{H} —-classes are the same as in I_V ,
- ▶ \mathcal{D} -classes of $\mathsf{PAut}(\Gamma) \longleftrightarrow \mathsf{isomorphism}$ classes of $\mathsf{PAut}(\Gamma)$,
- ▶ the group H-classes of a D-class are the isomorphism groups of the corresponding subgraphs.

Note that the rank ≤ 2 maps of PAut(Γ) determine Γ uniquely up to taking the complement.

Theorem

If for graphs Γ_1, Γ_2 we have $PAut(\Gamma_1) = PAut(\Gamma_2)$, then $\Gamma_1 = \Gamma_2$ or $\Gamma_1 = \overline{\Gamma_2}$.



How can one (algebraically) obtain $PAut(\Gamma)$ from the low-rank maps?

How can one (algebraically) obtain $PAut(\Gamma)$ from the low-rank maps?

Definition

Elements of $a, b \in I_X$ are called compatible (not.: $a \sim b$) if $a \cup b \in I_X$.

How can one (algebraically) obtain $PAut(\Gamma)$ from the low-rank maps?

Definition

Elements of $a, b \in I_X$ are called compatible (not.: $a \sim b$) if $a \cup b \in I_X$.

Proposition

 $a \sim b \iff ab^{-1}$ and $a^{-1}b$ are idempotents

How can one (algebraically) obtain $PAut(\Gamma)$ from the low-rank maps?

Definition

Elements of $a, b \in I_X$ are called compatible (not.: $a \sim b$) if $a \cup b \in I_X$.

Proposition

 $a \sim b \Longleftrightarrow ab^{-1}$ and $a^{-1}b$ are idempotents

Proposition

Suppose $a \in I_V$ is of rank ≥ 3 . Then $a \in \mathsf{PAut}(\Gamma)$ if and only if all its rank 2 restrictions are in $\mathsf{PAut}(\Gamma)$.

How can one (algebraically) obtain $PAut(\Gamma)$ from the low-rank maps?

Definition

Elements of $a, b \in I_X$ are called compatible (not.: $a \sim b$) if $a \cup b \in I_X$.

Proposition

 $a \sim b \Longleftrightarrow ab^{-1}$ and $a^{-1}b$ are idempotents

Proposition

Suppose $a \in I_V$ is of rank ≥ 3 . Then $a \in \mathsf{PAut}(\Gamma)$ if and only if all its rank 2 restrictions are in $\mathsf{PAut}(\Gamma)$.

Proposition

For all $A \subseteq I_V$ pairwise compatible rank 1 maps, $\bigcup A \in \mathsf{PAut}(\Gamma)$ iff for all $a_1, a_2 \in A$ we have $a_1 \cup a_2 \in \mathsf{PAut}(\Gamma)$.

The characterization of $PAut(\Gamma)$ in I_V

Theorem

Given an inverse monoid $S \subseteq I_V$ (V is finite), there exists a simple, undirected graph Γ on V such that $PAut(\Gamma) = S$ if and only if the following hold:

- 1. $E(I_V) \subseteq S$,
- 2. the rank 2 elements of S form at most two \mathcal{D} -classes,
- 3. the rank 2 \mathcal{H} -classes of S are nontrivial,
- 4. for any compatible subset $A \subseteq S$ of rank 1 partial permutations, if S contains the join of any two elements of A, then S contains the join of the set A.

The characterization of $PAut(\Gamma)$ in I_V

Theorem

Given an inverse monoid $S \subseteq I_V$ (V is finite), there exists an edge-colored digraph Γ on V such that $PAut(\Gamma) = S$ if and only if the following hold:

- 1. $E(I_V) \subseteq S$,
- 2. for any compatible subset $A \subseteq S$ of rank 1 partial permutations, if S contains the join of any two elements of A, then S contains the join of the set A.

Boolean inverse monoids

Definition

An inverse monoid S with zero is called *Boolean* if the semilattice E(S) is the meet semilattice of a Boolean algebra.

In particular if S is finite Boolean, then $E(S) \cong 2^X$ for some X.

Boolean inverse monoids

Definition

An inverse monoid S with zero is called *Boolean* if the semilattice E(S) is the meet semilattice of a Boolean algebra.

In particular if S is finite Boolean, then $E(S) \cong 2^X$ for some X.

Note: PAut(Γ) is Boolean for any graph, and $V \longleftrightarrow$ the atoms of $E(\mathsf{PAut}(\Gamma))$.

Boolean inverse monoids

Definition

An inverse monoid S with zero is called *Boolean* if the semilattice E(S) is the meet semilattice of a Boolean algebra.

In particular if S is finite Boolean, then $E(S) \cong 2^X$ for some X.

Note: PAut(Γ) is Boolean for any graph, and $V \longleftrightarrow$ the atoms of $E(\mathsf{PAut}(\Gamma))$.

 \implies PAut(Γ) has a faithful representation on the atoms of $E(\mathsf{PAut}(\Gamma))$, and it is exactly what one gets restricting the (in this case, faithful) Munn representation.

Restricted Munn representation

Let S be a finite inverse monoid, and let X denote the set of atoms of E(S). The restricted Munn representation of S is the Munn representation of S restricted to the atoms A of E(S): $\alpha_S \colon s \mapsto \hat{m}_s, \ \hat{m}_s \colon \langle ss^{-1} \rangle \cap A \to \langle s^{-1}s \rangle \cap A, \ e \mapsto s^{-1}es.$

Restricted Munn representation

Let S be a finite inverse monoid, and let X denote the set of atoms of E(S). The restricted Munn representation of S is the Munn representation of S restricted to the atoms A of E(S): $\alpha_S \colon s \mapsto \hat{m_s}, \ \hat{m_s} \colon \langle ss^{-1} \rangle \cap A \to \langle s^{-1}s \rangle \cap A, \ e \mapsto s^{-1}es$.

Proposition

The above representation is faithful \iff S is Boolean and fundamental.

Restricted Munn representation

Let S be a finite inverse monoid, and let X denote the set of atoms of E(S). The restricted Munn representation of S is the Munn representation of S restricted to the atoms A of E(S): $\alpha_S \colon s \mapsto \hat{m_s}, \ \hat{m_s} \colon \langle ss^{-1} \rangle \cap A \to \langle s^{-1}s \rangle \cap A, \ e \mapsto s^{-1}es$.

Proposition

The above representation is faithful \iff S is Boolean and fundamental.

If $S = \mathsf{PAut}(\Gamma)$, then $\alpha_S(S) = S$ (under the identification of id_v and v).

If S is an inverse monoid, then (S, \leq) is a poset wrt the natural partial order.

If S is an inverse monoid, then (S, \leq) is a poset wrt the natural partial order.

In (S, \leq) we can talk about a partially defined join (\vee) .

If S is an inverse monoid, then (S, \leq) is a poset wrt the natural partial order.

In (S, \leq) we can talk about a partially defined join (\vee) .

Definition

We call $a, b \in S$ compatible if $ab^{-1}, a^{-1}b$ are idempotents.

Fact: If $A \subseteq S$ has a join, then elements of A are pairwise compatible (the converse is not true, however).

If S is an inverse monoid, then (S, \leq) is a poset wrt the natural partial order.

In (S, \leq) we can talk about a partially defined join (\vee) .

Definition

We call $a, b \in S$ compatible if $ab^{-1}, a^{-1}b$ are idempotents.

Fact: If $A \subseteq S$ has a join, then elements of A are pairwise compatible (the converse is not true, however).

Definition

Suppose S is a finite inverse semigroup with 0. The *height* of an element s in (S, \leq) is the length of the chain [0, s].

If S is an inverse monoid, then (S, \leq) is a poset wrt the natural partial order.

In (S, \leq) we can talk about a partially defined join (\vee) .

Definition

We call $a, b \in S$ compatible if $ab^{-1}, a^{-1}b$ are idempotents.

Fact: If $A \subseteq S$ has a join, then elements of A are pairwise compatible (the converse is not true, however).

Definition

Suppose S is a finite inverse semigroup with 0. The *height* of an element s in (S, \leq) is the length of the chain [0, s].

Note: in $PAut(\Gamma)$, height = rank.

The characterization of $PAut(\Gamma)$ in the abstract case

Theorem

Given a finite inverse monoid S there exists a simple, undirected graph Γ such that $\mathsf{PAut}(\Gamma) \cong S$ if and only if the following hold:

- 1. S is Boolean (hence it has a 0),
- 2. S is fundamental,
- 3. the elements of height 1 form a single \mathcal{D} -class,
- 4. elements of height 2 form at most two \mathcal{D} -classes, with two-element \mathcal{H} -classes,
- 5. if $X \subseteq S$ is a set of pairwise compatible elements of height 1, and for all $a_1, a_2 \in A$, $a_1 \lor a_2$ exists, then $\bigvee A$ exists.

The characterization of $PAut(\Gamma)$ in the abstract case

Theorem

Given a finite inverse monoid S there exists an edge-colored digraph Γ such that $\mathsf{PAut}(\Gamma) \cong S$ if and only if the following hold:

- 1. S is Boolean (hence it has a 0),
- 2. S is fundamental,
- 3. if $X \subseteq S$ is a set of pairwise compatible elements of height 1, and for all $a_1, a_2 \in A$, $a_1 \vee a_2$ exists, then $\bigvee A$ exists.

Theorem

If G is a group, and $\Gamma(G)$ is its Cayley graph, then the (edge-colored, directed) automorphism group $\operatorname{Aut}(\Gamma(G)) \cong G$.

Theorem

If G is a group, and $\Gamma(G)$ is its Cayley graph, then the (edge-colored, directed) automorphism group $\operatorname{Aut}(\Gamma(G)) \cong G$.

Proof: Aut($\Gamma(G)$) $\leq S_G$ is exactly what one obtains as the (left) Cayley representation of G.

Theorem

If G is a group, and $\Gamma(G)$ is its Cayley graph, then the (edge-colored, directed) automorphism group $\operatorname{Aut}(\Gamma(G)) \cong G$.

Proof: $Aut(\Gamma(G)) \leq S_G$ is exactly what one obtains as the (left) Cayley representation of G.

Clearly, if S is an inverse monoid and $\Gamma(S)$ is its Cayley graph, in general $\mathsf{PAut}(\Gamma(G)) \not\cong S$.

Theorem

If G is a group, and $\Gamma(G)$ is its Cayley graph, then the (edge-colored, directed) automorphism group $\operatorname{Aut}(\Gamma(G)) \cong G$.

Proof: Aut($\Gamma(G)$) $\leq S_G$ is exactly what one obtains as the (left) Cayley representation of G.

Clearly, if S is an inverse monoid and $\Gamma(S)$ is its Cayley graph, in general $\mathsf{PAut}(\Gamma(G)) \not\cong S$. However, one can realize S as a subset of $\mathsf{PAut}(\Gamma)$ using the (left) Wagner–Preston representation:

Theorem (Sieben, 2008)

The map $\rho: S \to I_S, s \mapsto \rho_s$, where $\rho_s: s^{-1}S \to sS, t \mapsto st$ embeds S into $\mathsf{PAut}(\Gamma(G))$.

Theorem

If G is a group, and $\Gamma(G)$ is its Cayley graph, then the (edge-colored, directed) automorphism group $\operatorname{Aut}(\Gamma(G)) \cong G$.

Proof: Aut($\Gamma(G)$) $\leq S_G$ is exactly what one obtains as the (left) Cayley representation of G.

Clearly, if S is an inverse monoid and $\Gamma(S)$ is its Cayley graph, in general $\mathsf{PAut}(\Gamma(G)) \not\cong S$. However, one can realize S as a subset of $\mathsf{PAut}(\Gamma)$ using the (left) Wagner–Preston representation:

Theorem (Sieben, 2008)

The map $\rho: S \to I_S, s \mapsto \rho_s$, where $\rho_s: s^{-1}S \to sS, t \mapsto st$ embeds S into $\mathsf{PAut}(\Gamma(G))$.

The subgraphs arising as domains and images are exactly the ones of the form

 $tail(s) = \{t \in V : t \text{ can be reached by a finite path from } s\}.$

Let $\rho(S)$ be the smallest inverse semigroup in I_S containing $\rho(S)$ which satisfies the properties of inverse monoids of partial graph automorphisms:

- 1. $E(I_S) \subseteq \widetilde{\rho(S)}$,
- 2. for any compatible subset $A \subseteq S$ of rank 1 partial permutations, if $\widetilde{\rho(S)}$ contains the join of any two elements of A, then $\widetilde{\rho(S)}$ contains the join of the set A.

Let $\rho(S)$ be the smallest inverse semigroup in I_S containing $\rho(S)$ which satisfies the properties of inverse monoids of partial graph automorphisms:

- 1. $E(I_S) \subseteq \widetilde{\rho(S)}$,
- 2. for any compatible subset $A \subseteq S$ of rank 1 partial permutations, if $\widetilde{\rho(S)}$ contains the join of any two elements of A, then $\widetilde{\rho(S)}$ contains the join of the set A.

That is, a map φ

- of rank 1 is in $\widetilde{\rho(S)} \Longleftrightarrow$ it is a restriction of a map in ρ_S ;
- of rank ≥ 2 is in $\rho(S) \iff$ all 2-rank restrictions of φ are restrictions of maps in ρ_S .

Let $\rho(S)$ be the smallest inverse semigroup in I_S containing $\rho(S)$ which satisfies the properties of inverse monoids of partial graph automorphisms:

- 1. $E(I_S) \subseteq \widetilde{\rho(S)}$,
- 2. for any compatible subset $A \subseteq S$ of rank 1 partial permutations, if $\widetilde{\rho(S)}$ contains the join of any two elements of A, then $\widetilde{\rho(S)}$ contains the join of the set A.

That is, a map φ

- of rank 1 is in $\rho(S) \iff$ it is a restriction of a map in ρ_S ;
- of rank ≥ 2 is in $\rho(S) \iff$ all 2-rank restrictions of φ are restrictions of maps in ρ_S .

The best we can hope for: $\widetilde{\rho(S)} = \mathsf{PAut}(\Gamma(S))$.

A non-theorem

Bad news: $PAut(\Gamma(S))$ does depend on the system of generators chosen: the bigger the system of generators, the smaller it is.

A non-theorem

Bad news: $PAut(\Gamma(S))$ does depend on the system of generators chosen: the bigger the system of generators, the smaller it is.

The best we can hope for now: if the system of generators is large enough, then $\widetilde{\rho(S)} = \mathsf{PAut}(\Gamma(S))$.

A non-theorem

Bad news: $PAut(\Gamma(S))$ does depend on the system of generators chosen: the bigger the system of generators, the smaller it is.

The best we can hope for now: if the system of generators is large enough, then $\widetilde{\rho(S)} = \mathsf{PAut}(\Gamma(S))$.

Bad news: even wrt to the generating system S, $\widetilde{\rho(S)} \neq \mathsf{PAut}(\Gamma(S))$.

Thank you for your attention!

Thank you for your attention!

Happy birthday!