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Inverse semigroups

De�nition
A semigroup S is called an inverse semigroup if for any s ∈ S ,
there exists a unique element s−1 ∈ S for which

ss−1s = s, s−1ss−1 = s−1.

Idempotents of S form a subsemilattice denoted by E (S) or just E .
The partial order on E (S) extends to S .

The archetypal example

The set of partial one-to-one maps on a set A under composition
and inverse: the symmetric inverse semigroup IA.
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The polycylic monoid

Example

Fix a set |X | > 1 (alphabet). The polycyclic monoid P(X ) on X
is

I an inverse semigroup with a zero 0 and an identity 1 generated
by X ,

I de�ned by relations

x−1y =

{
1, if x = y ,

0, if x 6= y

for all x , y ∈ X .

Elements: αβ−1 with α, β ∈ X ∗, and 0
Idempotents: αα−1 with α ∈ X ∗, and 0.
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Semigroup algebras

Let S be a semigroup, K a �eld.

The semigroup algebra KS consists of �nite linear combinations
of elements of S over K . It is

I a vector space over K with basis S ,

I equipped with a multiplication by extending the multiplication
on S linearly.

Notice that (KS ,+, · ) is a ring.

Question: Suppose S in an inverse semigroup. When is the ring
KS simple?
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A simple answer

Let S be a nontrivial inverse semigroup, K a �eld.

Then
KS → K ,

∑
s∈S

ass 7→
∑
s∈S

as

is a homomorphism with a nontrivial, proper kernel

=⇒ KS is not simple.
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The contracted inverse semigroup algebra

Let S be an inverse semigroup with a zero z , K a �eld.

Let K0S = KS/(z) � this e�ectively identi�es z with 0. We call it
the contracted inverse semigroup algebra.

This can be simple, e.g. if S is the Brandt semigroup Bn, then
K0S ∼= Mn(K ).

Notice: a congruence ≡ on S induces a surjective homomorphism
K0S → K0[S/ ≡], so

K0S is simple =⇒ S is congruence-free.
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The contracted inverse semigroup algebra

But

K0S is simple 6⇐= S is congruence-free.

P(x , y) is congruence-free, but K0[P(x , y)] is not:

I = (xx−1 + yy−1 − 1)

is a proper ideal, in fact K0[P(x , y)]/I is the Leavitt algebra
LK (1, 2).

Problem (Munn, 1978)

Characterize those congruence-free inverse semigroups with zero
which have a simple contracted algebra.
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Congruence-free inverse semigroups with 0

An inverse semigroup with 0 is congruence free if and only if it is

I 0-simple: it has no proper, nonzero ideals,

I fundamental: it has no nontrivial idempotent-separating
congruences,

I and E (S) is 0-disjunctive: for all idempotents 0 6= f < e, there
exists 0 6= f ′ < e such that ff ′ = 0.
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Previous results

Let S be an inverse monoid with zero 0, E its semilattice of
idempotents.

Let e ∈ E . We say F ⊆ (e)↓ covers e if for all h ∈ E

hf = 0 for all f ∈ F =⇒ he = 0.

S is tight if all �nite covers of e contain e.

Example

P(x , y) is not tight because {xx−1, yy−1} covers 1.
However, P(X ) is tight if X is in�nite.

Nontrivial �nite covers give rise to an ideal of K0S called the tight
ideal. If K0S is simple, then S is tight.
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Previous results

S is called Hausdor� if for each s, t ∈ S , the set (s)↓ ∩ (t)↓ has
�nitely many maximal elements.

Remark
E ∗-unitary =⇒ Hausdor�

Theorem (Steinberg, 2014)

A Hausdor� inverse semigroup S with a zero has a simple

contracted algebra over any �eld K if and only if S is

congruence-free and tight.

In the general case, congruence-free and tight are necessary
conditions, but it was not known if they were su�cient.
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A reminder for the experts

Some ideals are better seen in a di�erent model of K0S :

I E : semilattice of idempotents of S

I Ê : the set of surjective semilattice homomorphisms
E → {0, 1}, equipped with the topology of pointwise
convergence

I S acts on Ê by partial homeomorphisms by the dual of the
Munn representation

I plug S y Ê into a general construction to obtain its groupoid
of germs G(S) � an ample groupoid

I construct the Steinberg algebra KG(S) of the ample
groupoid G(S)

K0S ∼= KG(S)
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Simplicity of ample groupoid algebras

S is Hausdor� ⇐⇒ G(S) is Hausdor� (as a topological space).

Simplicity of ample groupoid algebras was characterized by

I Brown, Clark, Farthing and Sims (2013) in the Hausdor� case,

I Clark, Exel, Pardo, Sims and Starling (2018) in the
non-Hausdor� case.

In the non-Hausdor� case, a new ideal needs to be considered: the
ideal of singular functions.
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The main theorem

Let

I = {A ∈ K0S : ∀ e ∈ E \{0} ∃ f ≤ e, f 6= 0 such that Af = 0}.

Theorem (Steinberg, Sz.)

1. I is an ideal in K0S .

2. K0S is simple if and only if S is congurence free and I = {0}.

Remark

I I contains the tight ideal. In fact it corresponds to the ideal
generated by the tight ideal and the ideal of singular functions.

I Simplicity depends on the �eld K .
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A class of congruence-free inverse semigroups

Fix an alphabet X , and consider the polycyclic monoid P(X ).

Recall: P(X ) is congruence free, and tight whenever X is in�nite.
We build congruence-free [tight] inverse semigroups from polycyclic
monoids and a groups.

P(X ) can be represented by partial one-to-one (right) maps on X ∗:

αβ−1 : αX ∗ → βX ∗

αw 7→ βw
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Self-similar groups

Let G be a group with a faithful, length-preserving action on X ∗.
We call the action self-similar if for every g ∈ G , u ∈ X ∗ there
exists g |u ∈ G such that for all w ∈ X ∗

g(uw) = g(u)g |u(w).

A very trivial example: G = C2 = {1, a}, X = {x , y},

a(xw) = yw , a(yw) = xw ,

so for any nonempty word u we have a(uw) = a(u)1(w), that is
a|u = 1.

Nóra Szakács Simplicity of contracted inverse semigroup algebras



Introduction
Characterization of simplicity

Examples

Self-similar groups

Let G be a group with a faithful, length-preserving action on X ∗.
We call the action self-similar if for every g ∈ G , u ∈ X ∗ there
exists g |u ∈ G such that for all w ∈ X ∗

g(uw) = g(u)g |u(w).

A very trivial example: G = C2 = {1, a}, X = {x , y},

a(xw) = yw , a(yw) = xw ,

so for any nonempty word u we have a(uw) = a(u)1(w), that is
a|u = 1.

Nóra Szakács Simplicity of contracted inverse semigroup algebras



Introduction
Characterization of simplicity

Examples

Inverse semigroups from self-similar actions

Let G be a group with a self-similar action on X ∗.
Identify G and PX with their images in the symmetric inverse
semigroup IX∗ , and let S = 〈G ,PX 〉 ≤ IX∗ .

S is congruence-free, and if X is in�nite, tight.

Note: for any g ∈ G , and for any α, β ∈ A∗(⊆ PA), w ∈ A∗,

(gα)(w) = g(αw) = g(α)g |α(w) = (g(α)g |α)(w),

so gα = g(α)g |α. Similarly β−1g = g |g−1(β)(g
−1(β))−1.

Furthermore we can write elements of S uniquely in the form
αgβ−1, where α, β ∈ X ∗(⊆ PX ), g ∈ G .
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Let G be a group with a self-similar action on X ∗.
Identify G and PX with their images in the symmetric inverse
semigroup IX∗ , and let S = 〈G ,PX 〉 ≤ IX∗ .

S is congruence-free, and if X is in�nite, tight.

Note: for any g ∈ G , and for any α, β ∈ A∗(⊆ PA), w ∈ A∗,

(gα)(w) = g(αw) = g(α)g |α(w) = (g(α)g |α)(w),

so gα = g(α)g |α. Similarly β−1g = g |g−1(β)(g
−1(β))−1.

Furthermore we can write elements of S uniquely in the form
αgβ−1, where α, β ∈ X ∗(⊆ PX ), g ∈ G .
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A congruence-free, tight inverse semigroup S with I 6= {0}
Let A = {x , y}

⋃̇
Z with Z in�nite, G = C2 = {1, a}, and consider

the self-similar action

a(xw) = yw , a(yw) = xw , a(zw) = zw

for all z ∈ Z , w ∈ X ∗.

Let S = 〈G ,PA〉.

Recall:

I = {A ∈ K0S : ∀ e ∈ E \{0} ∃ f ≤ e, f 6= 0 such that Af = 0}.

Claim:

A = (1− xx−1 − yy−1)− (a− axx−1 − ayy−1) ∈ I .
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Examples

A congruence-free, tight inverse semigroup S with I 6= {0}

Ax =((1− xx−1 − yy−1)− (a− axx−1 − ayy−1))x

=(x − xx−1x − yy−1x)− (ax − axx−1x − ayy−1x)

=(x − x)− (ax − ax) = 0.

=⇒ if α = xβ, then Aαα−1 = 0. Similarly for y .

Let z ∈ Z .

Az =((1− xx−1 − yy−1)− (a− axx−1 − ayy−1))z

=(z − xx−1z − yy−1z)− (az − axx−1z − ayy−1z)

=z − az = z − a(z)a|z = z − z = 0.

=⇒ if α = zβ, then Aαα−1 = 0.
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A congruence-free, tight inverse semigroup S with I 6= {0}

So for all f ∈ E \ {1} we have Af = 0, so certainly for all
e ∈ E \ {0} there exists f ≤ e, f 6= 0 such that Af = 0

=⇒ A ∈ I ,

=⇒ S is congruence-free an tight, but K0S is not simple.
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