Simplicity of contracted inverse semigroup algebras

Nóra Szakács

University of York, UK University of Szeged, Hungary

York Semigroup seminar (online), May 20 2020

Definition

A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which

$$ss^{-1}s = s, \ s^{-1}ss^{-1} = s^{-1}.$$

Definition

A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which

$$ss^{-1}s = s$$
, $s^{-1}ss^{-1} = s^{-1}$.

Idempotents of S form a subsemilattice denoted by E(S) or just E.

Definition

A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which

$$ss^{-1}s = s$$
, $s^{-1}ss^{-1} = s^{-1}$.

Idempotents of S form a subsemilattice denoted by E(S) or just E. The partial order on E(S) extends to S.

Definition

A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which

$$ss^{-1}s = s$$
, $s^{-1}ss^{-1} = s^{-1}$.

Idempotents of S form a subsemilattice denoted by E(S) or just E. The partial order on E(S) extends to S.

The archetypal example

The set of partial one-to-one maps on a set A under composition and inverse: the symmetric inverse semigroup \mathcal{I}_A .

The polycylic monoid

Example

Fix a set |X| > 1 (alphabet). The **polycyclic monoid** P(X) on X is

- an inverse semigroup with a zero 0 and an identity 1 generated by X,
- defined by relations

$$x^{-1}y = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \neq y \end{cases}$$

for all $x, y \in X$.

The polycylic monoid

Example

Fix a set |X| > 1 (alphabet). The **polycyclic monoid** P(X) on X is

- an inverse semigroup with a zero 0 and an identity 1 generated by X.
- defined by relations

$$x^{-1}y = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \neq y \end{cases}$$

for all $x, y \in X$.

Elements: $\alpha\beta^{-1}$ with $\alpha, \beta \in X^*$, and 0 ldempotents: $\alpha\alpha^{-1}$ with $\alpha \in X^*$, and 0.

Semigroup algebras

Let S be a semigroup, K a field.

The **semigroup algebra** KS consists of finite linear combinations of elements of S over K. It is

- \triangleright a vector space over K with basis S,
- equipped with a multiplication by extending the multiplication on S linearly.

Semigroup algebras

Let S be a semigroup, K a field.

The **semigroup algebra** KS consists of finite linear combinations of elements of S over K. It is

- \triangleright a vector space over K with basis S,
- equipped with a multiplication by extending the multiplication on S linearly.

Notice that $(KS, +, \cdot)$ is a ring.

Semigroup algebras

Let S be a semigroup, K a field.

The **semigroup algebra** KS consists of finite linear combinations of elements of S over K. It is

- \triangleright a vector space over K with basis S,
- equipped with a multiplication by extending the multiplication on S linearly.

Notice that $(KS, +, \cdot)$ is a ring.

Question: Suppose S in an inverse semigroup. When is the ring KS simple?

A simple answer

Let S be a nontrivial inverse semigroup, K a field.

Then

$$KS \to K, \sum_{s \in S} a_s s \mapsto \sum_{s \in S} a_s$$

is a homomorphism with a nontrivial, proper kernel

A simple answer

Let S be a nontrivial inverse semigroup, K a field.

Then

$$KS \to K, \ \sum_{s \in S} a_s s \mapsto \sum_{s \in S} a_s$$

is a homomorphism with a nontrivial, proper kernel

$$\implies$$
 KS is not simple.

Let S be an inverse semigroup with a zero z, K a field.

Let $K_0S = KS/(z)$ – this effectively identifies z with 0. We call it the **contracted inverse semigroup algebra**.

Let S be an inverse semigroup with a zero z, K a field.

Let $K_0S = KS/(z)$ – this effectively identifies z with 0. We call it the **contracted inverse semigroup algebra**.

This can be simple, e.g. if S is the Brandt semigroup B_n , then $K_0S \cong M_n(K)$.

Let S be an inverse semigroup with a zero z, K a field.

Let $K_0S = KS/(z)$ – this effectively identifies z with 0. We call it the **contracted inverse semigroup algebra**.

This can be simple, e.g. if S is the Brandt semigroup B_n , then $K_0S \cong M_n(K)$.

Notice: a congruence \equiv on S induces a surjective homomorphism $K_0S \to K_0[S/\equiv]$, so

 K_0S is simple $\Longrightarrow S$ is congruence-free.

But

 K_0S is simple $\not\leftarrow S$ is congruence-free.

P(x,y) is congruence-free, but $K_0[P(x,y)]$ is not:

$$I = (xx^{-1} + yy^{-1} - 1)$$

is a proper ideal, in fact $K_0[P(x,y)]/I$ is the Leavitt algebra $L_K(1,2)$.

But

 K_0S is simple $\not\leftarrow S$ is congruence-free.

P(x,y) is congruence-free, but $K_0[P(x,y)]$ is not:

$$I = (xx^{-1} + yy^{-1} - 1)$$

is a proper ideal, in fact $K_0[P(x,y)]/I$ is the Leavitt algebra $L_K(1,2)$.

Problem (Munn, 1978)

Characterize those congruence-free inverse semigroups with zero which have a simple contracted algebra.

Congruence-free inverse semigroups with 0

An inverse semigroup with 0 is congruence free if and only if it is

0-simple: it has no proper, nonzero ideals,

Congruence-free inverse semigroups with 0

An inverse semigroup with 0 is congruence free if and only if it is

- 0-simple: it has no proper, nonzero ideals,
- fundamental: it has no nontrivial idempotent-separating congruences,

Congruence-free inverse semigroups with 0

An inverse semigroup with 0 is congruence free if and only if it is

- 0-simple: it has no proper, nonzero ideals,
- fundamental: it has no nontrivial idempotent-separating congruences,
- ▶ and E(S) is 0-disjunctive: for all idempotents $0 \neq f < e$, there exists $0 \neq f' < e$ such that ff' = 0.

Let S be an inverse monoid with zero 0, E its semilattice of idempotents.

Let
$$e \in E$$
. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$

$$hf = 0$$
 for all $f \in F \Longrightarrow he = 0$.

Let S be an inverse monoid with zero 0, E its semilattice of idempotents.

Let $e \in E$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$

$$hf = 0$$
 for all $f \in F \Longrightarrow he = 0$.

S is tight if all finite covers of e contain e.

Let S be an inverse monoid with zero 0, E its semilattice of idempotents.

Let $e \in E$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$

$$hf = 0$$
 for all $f \in F \Longrightarrow he = 0$.

S is tight if all finite covers of e contain e.

Example

$$P(x, y)$$
 is not tight because $\{xx^{-1}, yy^{-1}\}$ covers 1.

Let S be an inverse monoid with zero 0, E its semilattice of idempotents.

Let $e \in E$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$

$$hf = 0$$
 for all $f \in F \Longrightarrow he = 0$.

S is tight if all finite covers of e contain e.

Example

P(x, y) is not tight because $\{xx^{-1}, yy^{-1}\}$ covers 1. However, P(X) is tight if X is infinite.

Let S be an inverse monoid with zero 0, E its semilattice of idempotents.

Let $e \in E$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$

$$hf = 0$$
 for all $f \in F \Longrightarrow he = 0$.

S is tight if all finite covers of e contain e.

Example

P(x,y) is not tight because $\{xx^{-1}, yy^{-1}\}$ covers 1. However, P(X) is tight if X is infinite.

Nontrivial finite covers give rise to an ideal of K_0S called the **tight** ideal. If K_0S is simple, then S is tight.

S is called **Hausdorff** if for each $s, t \in S$, the set $(s)^{\downarrow} \cap (t)^{\downarrow}$ has finitely many maximal elements.

Remark

 E^* -unitary \Longrightarrow Hausdorff

Theorem (Steinberg, 2014)

A Hausdorff inverse semigroup S with a zero has a simple contracted algebra over any field K if and only if S is congruence-free and tight.

S is called **Hausdorff** if for each $s, t \in S$, the set $(s)^{\downarrow} \cap (t)^{\downarrow}$ has finitely many maximal elements.

Remark

 E^* -unitary \Longrightarrow Hausdorff

Theorem (Steinberg, 2014)

A Hausdorff inverse semigroup S with a zero has a simple contracted algebra over any field K if and only if S is congruence-free and tight.

In the general case, congruence-free and tight are necessary conditions, but it was not known if they were sufficient.

Some ideals are better seen in a different model of K_0S :

► E: semilattice of idempotents of S

- E: semilattice of idempotents of S
- \widehat{E} : the set of surjective semilattice homomorphisms $E \to \{0,1\}$, equipped with the topology of pointwise convergence

- ► E: semilattice of idempotents of S
- \widehat{E} : the set of surjective semilattice homomorphisms $E o \{0,1\}$, equipped with the topology of pointwise convergence
- ightharpoonup S acts on \widehat{E} by partial homeomorphisms by the dual of the Munn representation

- \triangleright E: semilattice of idempotents of S
- \widehat{E} : the set of surjective semilattice homomorphisms $E \to \{0,1\}$, equipped with the topology of pointwise convergence
- ightharpoonup S acts on \widehat{E} by partial homeomorphisms by the dual of the Munn representation
- ▶ plug $S \curvearrowright \widehat{E}$ into a general construction to obtain its **groupoid** of germs $\mathcal{G}(S)$ an ample groupoid

- \triangleright E: semilattice of idempotents of S
- \widehat{E} : the set of surjective semilattice homomorphisms $E \to \{0,1\}$, equipped with the topology of pointwise convergence
- ightharpoonup S acts on \widehat{E} by partial homeomorphisms by the dual of the Munn representation
- ▶ plug $S \curvearrowright \widehat{E}$ into a general construction to obtain its **groupoid** of germs $\mathcal{G}(S)$ an ample groupoid
- ▶ construct the **Steinberg algebra** KG(S) of the ample groupoid G(S)

- \triangleright E: semilattice of idempotents of S
- \widehat{E} : the set of surjective semilattice homomorphisms $E \to \{0,1\}$, equipped with the topology of pointwise convergence
- ightharpoonup S acts on \widehat{E} by partial homeomorphisms by the dual of the Munn representation
- ▶ plug $S \curvearrowright \widehat{E}$ into a general construction to obtain its **groupoid** of germs $\mathcal{G}(S)$ an ample groupoid
- ▶ construct the **Steinberg algebra** KG(S) of the ample groupoid G(S)

$$K_0S \cong KG(S)$$

Simplicity of ample groupoid algebras

S is Hausdorff $\iff \mathcal{G}(S)$ is Hausdorff (as a topological space).

Simplicity of ample groupoid algebras

S is Hausdorff $\iff \mathcal{G}(S)$ is Hausdorff (as a topological space).

Simplicity of ample groupoid algebras was characterized by

- Brown, Clark, Farthing and Sims (2013) in the Hausdorff case,
- Clark, Exel, Pardo, Sims and Starling (2018) in the non-Hausdorff case.

In the non-Hausdorff case, a new ideal needs to be considered: the ideal of **singular** functions.

The main theorem

Let

$$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}.$$

Theorem (Steinberg, Sz.)

- 1. I is an ideal in K_0S .
- 2. K_0S is simple if and only if S is congurence free and $I = \{0\}$.

The main theorem

Let

$$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}.$$

Theorem (Steinberg, Sz.)

- 1. I is an ideal in K_0S .
- 2. K_0S is simple if and only if S is congurence free and $I = \{0\}$.

Remark

I contains the tight ideal. In fact it corresponds to the ideal generated by the tight ideal and the ideal of singular functions.

The main theorem

Let

$$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}.$$

Theorem (Steinberg, Sz.)

- 1. I is an ideal in K_0S .
- 2. K_0S is simple if and only if S is congurence free and $I = \{0\}$.

Remark

- ► I contains the tight ideal. In fact it corresponds to the ideal generated by the tight ideal and the ideal of singular functions.
- ► Simplicity depends on the field *K*.

A class of congruence-free inverse semigroups

Fix an alphabet X, and consider the polycyclic monoid P(X).

Recall: P(X) is congruence free, and tight whenever X is infinite. We build congruence-free [tight] inverse semigroups from polycyclic monoids and a groups.

A class of congruence-free inverse semigroups

Fix an alphabet X, and consider the polycyclic monoid P(X).

Recall: P(X) is congruence free, and tight whenever X is infinite. We build congruence-free [tight] inverse semigroups from polycyclic monoids and a groups.

P(X) can be represented by partial one-to-one (right) maps on X^* :

$$\alpha \beta^{-1} \colon \alpha X^* \to \beta X^*$$
$$\alpha w \mapsto \beta w$$

Self-similar groups

Let G be a group with a faithful, length-preserving action on X^* . We call the action **self-similar** if for every $g \in G$, $u \in X^*$ there exists $g|_{u} \in G$ such that for all $w \in X^*$

$$g(uw) = g(u)g|_{u}(w).$$

Self-similar groups

Let G be a group with a faithful, length-preserving action on X^* . We call the action **self-similar** if for every $g \in G$, $u \in X^*$ there exists $g|_{u} \in G$ such that for all $w \in X^*$

$$g(uw) = g(u)g|_{u}(w).$$

A very trivial example: $G = C_2 = \{1, a\}$, $X = \{x, y\}$,

$$a(xw) = yw, a(yw) = xw,$$

so for any nonempty word u we have a(uw)=a(u)1(w), that is $a|_{u}=1$.

Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$.

Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$.

S is congruence-free, and if X is infinite, tight.

Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$.

S is congruence-free, and if X is infinite, tight.

Note: for any $g \in G$, and for any $\alpha, \beta \in A^* (\subseteq P_A)$, $w \in A^*$,

$$(g\alpha)(w) = g(\alpha w) = g(\alpha)g|_{\alpha}(w) = (g(\alpha)g|_{\alpha})(w),$$

so
$$g\alpha = g(\alpha)g|_{\alpha}$$
.

Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$.

S is congruence-free, and if X is infinite, tight.

Note: for any $g \in G$, and for any $\alpha, \beta \in A^* \subseteq P_A$, $w \in A^*$,

$$(g\alpha)(w) = g(\alpha w) = g(\alpha)g|_{\alpha}(w) = (g(\alpha)g|_{\alpha})(w),$$

so
$$g\alpha = g(\alpha)g|_{\alpha}$$
. Similarly $\beta^{-1}g = g|_{g^{-1}(\beta)}(g^{-1}(\beta))^{-1}$.

Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$.

S is congruence-free, and if X is infinite, tight.

Note: for any $g \in G$, and for any $\alpha, \beta \in A^* (\subseteq P_A)$, $w \in A^*$,

$$(g\alpha)(w) = g(\alpha w) = g(\alpha)g|_{\alpha}(w) = (g(\alpha)g|_{\alpha})(w),$$
 so $g\alpha = g(\alpha)g|_{\alpha}$. Similarly $\beta^{-1}g = g|_{g^{-1}(\beta)}(g^{-1}(\beta))^{-1}$.

Furthermore we can write elements of S uniquely in the form $\alpha g \beta^{-1}$, where $\alpha, \beta \in X^* (\subseteq P_X), g \in G$.

Let $A = \{x, y\} \overset{.}{\bigcup} Z$ with Z infinite, $G = C_2 = \{1, a\}$, and consider the self-similar action

$$a(xw) = yw, a(yw) = xw, a(zw) = zw$$

for all $z \in Z$, $w \in X^*$.

Let $A = \{x, y\} \overset{.}{\bigcup} Z$ with Z infinite, $G = C_2 = \{1, a\}$, and consider the self-similar action

$$a(xw) = yw, a(yw) = xw, a(zw) = zw$$

for all $z \in Z$, $w \in X^*$.

Let $S = \langle G, P_A \rangle$.

Recall:

$$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}.$$

Claim:

$$A = (1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}) \in I.$$

$$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$

= $(x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$
= $(x - x) - (ax - ax) = 0$.

$$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$

$$= (x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$$

$$= (x - x) - (ax - ax) = 0.$$

$$\implies \text{if } \alpha = x\beta, \text{ then } A\alpha\alpha^{-1} = 0.$$

$$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$

= $(x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$
= $(x - x) - (ax - ax) = 0$.

 \implies if $\alpha = x\beta$, then $A\alpha\alpha^{-1} = 0$. Similarly for y.

$$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$

= $(x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$
= $(x - x) - (ax - ax) = 0$.

 \implies if $\alpha = x\beta$, then $A\alpha\alpha^{-1} = 0$. Similarly for y.

Let $z \in Z$.

$$Az = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))z$$

= $(z - xx^{-1}z - yy^{-1}z) - (az - axx^{-1}z - ayy^{-1}z)$
= $z - az = z - a(z)a|_{z} = z - z = 0.$

$$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$

= $(x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$
= $(x - x) - (ax - ax) = 0$.

 \implies if $\alpha = x\beta$, then $A\alpha\alpha^{-1} = 0$. Similarly for y.

Let $z \in Z$.

$$Az = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))z$$

= $(z - xx^{-1}z - yy^{-1}z) - (az - axx^{-1}z - ayy^{-1}z)$
= $z - az = z - a(z)a|_z = z - z = 0$.

 \implies if $\alpha = z\beta$, then $A\alpha\alpha^{-1} = 0$.

So for all
$$f \in E \setminus \{1\}$$
 we have $Af = 0$, so certainly for all $e \in E \setminus \{0\}$ there exists $f \le e, f \ne 0$ such that $Af = 0$ $\Longrightarrow A \in I$,

So for all $f \in E \setminus \{1\}$ we have Af = 0, so certainly for all $e \in E \setminus \{0\}$ there exists $f \le e, f \ne 0$ such that Af = 0

$$\Longrightarrow A \in I$$
,

 $\Longrightarrow S$ is congruence-free an tight, but K_0S is not simple.