Simplicity of contracted inverse semigroup algebras Nóra Szakács University of York, UK University of Szeged, Hungary York Semigroup seminar (online), May 20 2020 #### Definition A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which $$ss^{-1}s = s, \ s^{-1}ss^{-1} = s^{-1}.$$ #### Definition A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which $$ss^{-1}s = s$$, $s^{-1}ss^{-1} = s^{-1}$. Idempotents of S form a subsemilattice denoted by E(S) or just E. #### Definition A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which $$ss^{-1}s = s$$, $s^{-1}ss^{-1} = s^{-1}$. Idempotents of S form a subsemilattice denoted by E(S) or just E. The partial order on E(S) extends to S. #### Definition A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which $$ss^{-1}s = s$$, $s^{-1}ss^{-1} = s^{-1}$. Idempotents of S form a subsemilattice denoted by E(S) or just E. The partial order on E(S) extends to S. #### The archetypal example The set of partial one-to-one maps on a set A under composition and inverse: the symmetric inverse semigroup \mathcal{I}_A . ### The polycylic monoid #### Example Fix a set |X| > 1 (alphabet). The **polycyclic monoid** P(X) on X is - an inverse semigroup with a zero 0 and an identity 1 generated by X, - defined by relations $$x^{-1}y = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \neq y \end{cases}$$ for all $x, y \in X$. ### The polycylic monoid #### Example Fix a set |X| > 1 (alphabet). The **polycyclic monoid** P(X) on X is - an inverse semigroup with a zero 0 and an identity 1 generated by X. - defined by relations $$x^{-1}y = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \neq y \end{cases}$$ for all $x, y \in X$. Elements: $\alpha\beta^{-1}$ with $\alpha, \beta \in X^*$, and 0 ldempotents: $\alpha\alpha^{-1}$ with $\alpha \in X^*$, and 0. # Semigroup algebras Let S be a semigroup, K a field. The **semigroup algebra** KS consists of finite linear combinations of elements of S over K. It is - \triangleright a vector space over K with basis S, - equipped with a multiplication by extending the multiplication on S linearly. # Semigroup algebras Let S be a semigroup, K a field. The **semigroup algebra** KS consists of finite linear combinations of elements of S over K. It is - \triangleright a vector space over K with basis S, - equipped with a multiplication by extending the multiplication on S linearly. Notice that $(KS, +, \cdot)$ is a ring. # Semigroup algebras Let S be a semigroup, K a field. The **semigroup algebra** KS consists of finite linear combinations of elements of S over K. It is - \triangleright a vector space over K with basis S, - equipped with a multiplication by extending the multiplication on S linearly. Notice that $(KS, +, \cdot)$ is a ring. **Question:** Suppose S in an inverse semigroup. When is the ring KS simple? ### A simple answer Let S be a nontrivial inverse semigroup, K a field. Then $$KS \to K, \sum_{s \in S} a_s s \mapsto \sum_{s \in S} a_s$$ is a homomorphism with a nontrivial, proper kernel ### A simple answer Let S be a nontrivial inverse semigroup, K a field. Then $$KS \to K, \ \sum_{s \in S} a_s s \mapsto \sum_{s \in S} a_s$$ is a homomorphism with a nontrivial, proper kernel $$\implies$$ KS is not simple. Let S be an inverse semigroup with a zero z, K a field. Let $K_0S = KS/(z)$ – this effectively identifies z with 0. We call it the **contracted inverse semigroup algebra**. Let S be an inverse semigroup with a zero z, K a field. Let $K_0S = KS/(z)$ – this effectively identifies z with 0. We call it the **contracted inverse semigroup algebra**. This can be simple, e.g. if S is the Brandt semigroup B_n , then $K_0S \cong M_n(K)$. Let S be an inverse semigroup with a zero z, K a field. Let $K_0S = KS/(z)$ – this effectively identifies z with 0. We call it the **contracted inverse semigroup algebra**. This can be simple, e.g. if S is the Brandt semigroup B_n , then $K_0S \cong M_n(K)$. Notice: a congruence \equiv on S induces a surjective homomorphism $K_0S \to K_0[S/\equiv]$, so K_0S is simple $\Longrightarrow S$ is congruence-free. But K_0S is simple $\not\leftarrow S$ is congruence-free. P(x,y) is congruence-free, but $K_0[P(x,y)]$ is not: $$I = (xx^{-1} + yy^{-1} - 1)$$ is a proper ideal, in fact $K_0[P(x,y)]/I$ is the Leavitt algebra $L_K(1,2)$. But K_0S is simple $\not\leftarrow S$ is congruence-free. P(x,y) is congruence-free, but $K_0[P(x,y)]$ is not: $$I = (xx^{-1} + yy^{-1} - 1)$$ is a proper ideal, in fact $K_0[P(x,y)]/I$ is the Leavitt algebra $L_K(1,2)$. #### Problem (Munn, 1978) Characterize those congruence-free inverse semigroups with zero which have a simple contracted algebra. # Congruence-free inverse semigroups with 0 An inverse semigroup with 0 is congruence free if and only if it is 0-simple: it has no proper, nonzero ideals, ### Congruence-free inverse semigroups with 0 An inverse semigroup with 0 is congruence free if and only if it is - 0-simple: it has no proper, nonzero ideals, - fundamental: it has no nontrivial idempotent-separating congruences, # Congruence-free inverse semigroups with 0 An inverse semigroup with 0 is congruence free if and only if it is - 0-simple: it has no proper, nonzero ideals, - fundamental: it has no nontrivial idempotent-separating congruences, - ▶ and E(S) is 0-disjunctive: for all idempotents $0 \neq f < e$, there exists $0 \neq f' < e$ such that ff' = 0. Let S be an inverse monoid with zero 0, E its semilattice of idempotents. Let $$e \in E$$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$ $$hf = 0$$ for all $f \in F \Longrightarrow he = 0$. Let S be an inverse monoid with zero 0, E its semilattice of idempotents. Let $e \in E$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$ $$hf = 0$$ for all $f \in F \Longrightarrow he = 0$. S is tight if all finite covers of e contain e. Let S be an inverse monoid with zero 0, E its semilattice of idempotents. Let $e \in E$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$ $$hf = 0$$ for all $f \in F \Longrightarrow he = 0$. S is tight if all finite covers of e contain e. Example $$P(x, y)$$ is not tight because $\{xx^{-1}, yy^{-1}\}$ covers 1. Let S be an inverse monoid with zero 0, E its semilattice of idempotents. Let $e \in E$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$ $$hf = 0$$ for all $f \in F \Longrightarrow he = 0$. S is tight if all finite covers of e contain e. #### Example P(x, y) is not tight because $\{xx^{-1}, yy^{-1}\}$ covers 1. However, P(X) is tight if X is infinite. Let S be an inverse monoid with zero 0, E its semilattice of idempotents. Let $e \in E$. We say $F \subseteq (e)^{\downarrow}$ covers e if for all $h \in E$ $$hf = 0$$ for all $f \in F \Longrightarrow he = 0$. S is tight if all finite covers of e contain e. #### Example P(x,y) is not tight because $\{xx^{-1}, yy^{-1}\}$ covers 1. However, P(X) is tight if X is infinite. Nontrivial finite covers give rise to an ideal of K_0S called the **tight** ideal. If K_0S is simple, then S is tight. S is called **Hausdorff** if for each $s, t \in S$, the set $(s)^{\downarrow} \cap (t)^{\downarrow}$ has finitely many maximal elements. #### Remark E^* -unitary \Longrightarrow Hausdorff #### Theorem (Steinberg, 2014) A Hausdorff inverse semigroup S with a zero has a simple contracted algebra over any field K if and only if S is congruence-free and tight. S is called **Hausdorff** if for each $s, t \in S$, the set $(s)^{\downarrow} \cap (t)^{\downarrow}$ has finitely many maximal elements. #### Remark E^* -unitary \Longrightarrow Hausdorff #### Theorem (Steinberg, 2014) A Hausdorff inverse semigroup S with a zero has a simple contracted algebra over any field K if and only if S is congruence-free and tight. In the general case, congruence-free and tight are necessary conditions, but it was not known if they were sufficient. Some ideals are better seen in a different model of K_0S : ► E: semilattice of idempotents of S - E: semilattice of idempotents of S - \widehat{E} : the set of surjective semilattice homomorphisms $E \to \{0,1\}$, equipped with the topology of pointwise convergence - ► E: semilattice of idempotents of S - \widehat{E} : the set of surjective semilattice homomorphisms $E o \{0,1\}$, equipped with the topology of pointwise convergence - ightharpoonup S acts on \widehat{E} by partial homeomorphisms by the dual of the Munn representation - \triangleright E: semilattice of idempotents of S - \widehat{E} : the set of surjective semilattice homomorphisms $E \to \{0,1\}$, equipped with the topology of pointwise convergence - ightharpoonup S acts on \widehat{E} by partial homeomorphisms by the dual of the Munn representation - ▶ plug $S \curvearrowright \widehat{E}$ into a general construction to obtain its **groupoid** of germs $\mathcal{G}(S)$ an ample groupoid - \triangleright E: semilattice of idempotents of S - \widehat{E} : the set of surjective semilattice homomorphisms $E \to \{0,1\}$, equipped with the topology of pointwise convergence - ightharpoonup S acts on \widehat{E} by partial homeomorphisms by the dual of the Munn representation - ▶ plug $S \curvearrowright \widehat{E}$ into a general construction to obtain its **groupoid** of germs $\mathcal{G}(S)$ an ample groupoid - ▶ construct the **Steinberg algebra** KG(S) of the ample groupoid G(S) - \triangleright E: semilattice of idempotents of S - \widehat{E} : the set of surjective semilattice homomorphisms $E \to \{0,1\}$, equipped with the topology of pointwise convergence - ightharpoonup S acts on \widehat{E} by partial homeomorphisms by the dual of the Munn representation - ▶ plug $S \curvearrowright \widehat{E}$ into a general construction to obtain its **groupoid** of germs $\mathcal{G}(S)$ an ample groupoid - ▶ construct the **Steinberg algebra** KG(S) of the ample groupoid G(S) $$K_0S \cong KG(S)$$ # Simplicity of ample groupoid algebras S is Hausdorff $\iff \mathcal{G}(S)$ is Hausdorff (as a topological space). # Simplicity of ample groupoid algebras S is Hausdorff $\iff \mathcal{G}(S)$ is Hausdorff (as a topological space). Simplicity of ample groupoid algebras was characterized by - Brown, Clark, Farthing and Sims (2013) in the Hausdorff case, - Clark, Exel, Pardo, Sims and Starling (2018) in the non-Hausdorff case. In the non-Hausdorff case, a new ideal needs to be considered: the ideal of **singular** functions. #### The main theorem Let $$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}.$$ #### Theorem (Steinberg, Sz.) - 1. I is an ideal in K_0S . - 2. K_0S is simple if and only if S is congurence free and $I = \{0\}$. #### The main theorem #### Let $$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}.$$ #### Theorem (Steinberg, Sz.) - 1. I is an ideal in K_0S . - 2. K_0S is simple if and only if S is congurence free and $I = \{0\}$. #### Remark I contains the tight ideal. In fact it corresponds to the ideal generated by the tight ideal and the ideal of singular functions. #### The main theorem #### Let $$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}.$$ #### Theorem (Steinberg, Sz.) - 1. I is an ideal in K_0S . - 2. K_0S is simple if and only if S is congurence free and $I = \{0\}$. #### Remark - ► I contains the tight ideal. In fact it corresponds to the ideal generated by the tight ideal and the ideal of singular functions. - ► Simplicity depends on the field *K*. ### A class of congruence-free inverse semigroups Fix an alphabet X, and consider the polycyclic monoid P(X). Recall: P(X) is congruence free, and tight whenever X is infinite. We build congruence-free [tight] inverse semigroups from polycyclic monoids and a groups. #### A class of congruence-free inverse semigroups Fix an alphabet X, and consider the polycyclic monoid P(X). Recall: P(X) is congruence free, and tight whenever X is infinite. We build congruence-free [tight] inverse semigroups from polycyclic monoids and a groups. P(X) can be represented by partial one-to-one (right) maps on X^* : $$\alpha \beta^{-1} \colon \alpha X^* \to \beta X^*$$ $$\alpha w \mapsto \beta w$$ ### Self-similar groups Let G be a group with a faithful, length-preserving action on X^* . We call the action **self-similar** if for every $g \in G$, $u \in X^*$ there exists $g|_{u} \in G$ such that for all $w \in X^*$ $$g(uw) = g(u)g|_{u}(w).$$ #### Self-similar groups Let G be a group with a faithful, length-preserving action on X^* . We call the action **self-similar** if for every $g \in G$, $u \in X^*$ there exists $g|_{u} \in G$ such that for all $w \in X^*$ $$g(uw) = g(u)g|_{u}(w).$$ A very trivial example: $G = C_2 = \{1, a\}$, $X = \{x, y\}$, $$a(xw) = yw, a(yw) = xw,$$ so for any nonempty word u we have a(uw)=a(u)1(w), that is $a|_{u}=1$. Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$. Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$. S is congruence-free, and if X is infinite, tight. Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$. S is congruence-free, and if X is infinite, tight. **Note:** for any $g \in G$, and for any $\alpha, \beta \in A^* (\subseteq P_A)$, $w \in A^*$, $$(g\alpha)(w) = g(\alpha w) = g(\alpha)g|_{\alpha}(w) = (g(\alpha)g|_{\alpha})(w),$$ so $$g\alpha = g(\alpha)g|_{\alpha}$$. Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$. S is congruence-free, and if X is infinite, tight. **Note:** for any $g \in G$, and for any $\alpha, \beta \in A^* \subseteq P_A$, $w \in A^*$, $$(g\alpha)(w) = g(\alpha w) = g(\alpha)g|_{\alpha}(w) = (g(\alpha)g|_{\alpha})(w),$$ so $$g\alpha = g(\alpha)g|_{\alpha}$$. Similarly $\beta^{-1}g = g|_{g^{-1}(\beta)}(g^{-1}(\beta))^{-1}$. Let G be a group with a self-similar action on X^* . Identify G and P_X with their images in the symmetric inverse semigroup \mathcal{I}_{X^*} , and let $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}$. S is congruence-free, and if X is infinite, tight. **Note:** for any $g \in G$, and for any $\alpha, \beta \in A^* (\subseteq P_A)$, $w \in A^*$, $$(g\alpha)(w) = g(\alpha w) = g(\alpha)g|_{\alpha}(w) = (g(\alpha)g|_{\alpha})(w),$$ so $g\alpha = g(\alpha)g|_{\alpha}$. Similarly $\beta^{-1}g = g|_{g^{-1}(\beta)}(g^{-1}(\beta))^{-1}$. Furthermore we can write elements of S uniquely in the form $\alpha g \beta^{-1}$, where $\alpha, \beta \in X^* (\subseteq P_X), g \in G$. Let $A = \{x, y\} \overset{.}{\bigcup} Z$ with Z infinite, $G = C_2 = \{1, a\}$, and consider the self-similar action $$a(xw) = yw, a(yw) = xw, a(zw) = zw$$ for all $z \in Z$, $w \in X^*$. Let $A = \{x, y\} \overset{.}{\bigcup} Z$ with Z infinite, $G = C_2 = \{1, a\}$, and consider the self-similar action $$a(xw) = yw, a(yw) = xw, a(zw) = zw$$ for all $z \in Z$, $w \in X^*$. Let $S = \langle G, P_A \rangle$. Recall: $$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}.$$ Claim: $$A = (1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}) \in I.$$ $$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$ = $(x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$ = $(x - x) - (ax - ax) = 0$. $$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$ $$= (x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$$ $$= (x - x) - (ax - ax) = 0.$$ $$\implies \text{if } \alpha = x\beta, \text{ then } A\alpha\alpha^{-1} = 0.$$ $$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$ = $(x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$ = $(x - x) - (ax - ax) = 0$. \implies if $\alpha = x\beta$, then $A\alpha\alpha^{-1} = 0$. Similarly for y. $$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$ = $(x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$ = $(x - x) - (ax - ax) = 0$. \implies if $\alpha = x\beta$, then $A\alpha\alpha^{-1} = 0$. Similarly for y. Let $z \in Z$. $$Az = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))z$$ = $(z - xx^{-1}z - yy^{-1}z) - (az - axx^{-1}z - ayy^{-1}z)$ = $z - az = z - a(z)a|_{z} = z - z = 0.$ $$Ax = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))x$$ = $(x - xx^{-1}x - yy^{-1}x) - (ax - axx^{-1}x - ayy^{-1}x)$ = $(x - x) - (ax - ax) = 0$. \implies if $\alpha = x\beta$, then $A\alpha\alpha^{-1} = 0$. Similarly for y. Let $z \in Z$. $$Az = ((1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}))z$$ = $(z - xx^{-1}z - yy^{-1}z) - (az - axx^{-1}z - ayy^{-1}z)$ = $z - az = z - a(z)a|_z = z - z = 0$. \implies if $\alpha = z\beta$, then $A\alpha\alpha^{-1} = 0$. So for all $$f \in E \setminus \{1\}$$ we have $Af = 0$, so certainly for all $e \in E \setminus \{0\}$ there exists $f \le e, f \ne 0$ such that $Af = 0$ $\Longrightarrow A \in I$, So for all $f \in E \setminus \{1\}$ we have Af = 0, so certainly for all $e \in E \setminus \{0\}$ there exists $f \le e, f \ne 0$ such that Af = 0 $$\Longrightarrow A \in I$$, $\Longrightarrow S$ is congruence-free an tight, but K_0S is not simple.