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Large Scale Cellular Automata on FPGAs: A New Generic
Architecture and a Framework

NIKOLAOS KYPARISSAS∗ and APOSTOLOS DOLLAS, Technical University of Crete, Greece

Cellular Automata (CA) are discrete mathematical models discovered in the 1940s by John von Neumann and
Stanislaw Ulam, and used extensively in many scientific disciplines ever since. The present work evolved from
a Field Programmable Gate Array (FPGA)-based design to simulate urban growth into a generic architecture
which is automatically generated by a framework to efficiently compute complex cellular automata with large
29 × 29 neighborhoods in Cartesian or toroidal grids, with 16- or 256-states per cell. The new architecture and
the framework are presented in detail, including results in terms of modeling capabilities and performance.
Large neighborhoods greatly enhance CA modeling capabilities, such as the implementation of anisotropic
rules. Performance-wise, the proposed architecture runs on a medium-size FPGA up to 51 times faster vs.
a CPU running highly optimized C code. Compared to GPUs the speedup is harder to quantify, because
CA results have been reported on GPU implementations with neighborhoods up to 11 × 11, in which case
FPGA performance is roughly on par with GPU; however, based on published GPU trends, for 29 × 29
neighborhoods the proposed architecture is expected to have better performance vs. a GPU, at one-tenth
the energy requirements. The architecture and sample designs are open source available under the creative
commons license.
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applications; Hardware accelerators.
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1 INTRODUCTION
Cellular automata (CA) are Turing complete, discrete mathematical models discovered in the 1940s
by John von Neumann and Stanislaw Ulam [56, 58]. Through time, these highly parallelizable
mathematical models have been used to study and model physical processes. Ever since the early
days of FPGA-based computing, such CA architectures have been demonstrated to offer excellent
performance vs. general-purpose ones. Every decade or so novel FPGA-based architectures have
been developed with new architectural approaches rather than existing architectures mapped
on new FPGA technologies. Within the last few years, extending typical CA rules to large-scale
rules has provided new aspects of modeling physical processes with realistic features and results.
Our work is a new architecture for CA execution on FPGA technology (the term used by the CA
community is “CA simulation”), together with a framework to generate the entire architecture,
including the necessary timing constraints for graphics display.
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1.1 Motivation

A myriad physical processes can be modeled with CA, from chemistry and molecular dynamics
[26, 46, 49, 50] to large ecosystems [23] and arti�cial brains [16]. In cosmology, digital physics
suggests that a universal CA computes the evolution of the universe [62]. Apart from modeling
physical phenomena, CA are also used as abstract computational systems in various applications.
TheUniversal Constructor, the �rst CA designed by John von Neumann in the 1940s, is an abstract
machine which demonstrates the logical requirements for machine self-replication [4, 58, 59]. Since
then, the mathematical properties and modeling potential of CA have been meticulously studied,
with universality and reversibility being essential properties of numerous CA rules [2, 38, 47, 53].
The potential hidden in their inherent parallelism and modeling capabilities has greatly motivated
computer scientists and computer engineers to advance the �eld, and it would be an omission to
not mention John Horton Conway's (1937 - 2020) 1970's "Game of Life" which brought CA to the
general audience [14].

1.2 Key Ideas, Contributions, and Project Timeline

The main idea behind this work is that with judicious use of the FPGA internal memory (Block RAM
- BRAM) and a well-dimensioned architecture we can exploit the immense internal data transfer
bandwidth and available parallelism of a present-day FPGA in order to parallelize computations
in large CA neighborhoods. The DDR external memory - a bottleneck in CA execution on CPUs
and GPUs - is used once per cell read and once per cell write during each CA iteration. Thus,
FPGAs are an ideal technology for high complexity CA, because a CPU cannot have such �ne
grain parallelism and at best will operate at L1 cache speeds, whereas a GPU will have many of
its resources underutilized. With large neighborhoods (in our case, up to29� 29), for each datum
entered into our accelerator, there will be O(292) operations, as long as the BRAM can hold bu�ers
of 30rows(for 30 rows a typical BRAM can store tens of thousands of cells per row). In addition,
the customizable datapath of FPGAs allows for the implementation of many states per cell and
complex CA rules, leading to CA models which to date have been too expensive to compute.

The speci�c contributions of this paper are:

� Brief presentation of the original (non-generic) architecture and its development.
� Generic architecture presentation in detail (datapath, custom bu�er structure and data for-

warding mechanism, pipelining, graphics - processing synchronization, memory subsystem).
� Detailed description of the framework and how it generates the design.
� Results from actual runs, not only highlighting performance vs. CPUs and GPUs, but also how

the ability to implement CA with large neighborhoods is a "game changer": it reveals patterns
which do not appear otherwise, and it allows for new kinds of CA algorithms to be developed
(we demonstrate how anisotropic rules can be executed on the proposed architecture).

� The entire architecture is available as open-source under the Creative Commons license, and
it can be found in:https://github.com/nkyparissas/Cellular_Automata_FPGA

The current work started as a project to model urban development. Over a period of �ve years
it evolved into a generic architecture for CA with many states (up to 256), large neighborhoods
(up to 29� 29), virtually unconstrained Cartesian or toroidal grids, a VGA interface to display the
execution of the model in real time, and a framework to generate FPGA designs for new rules easily.
This work achieved twice top-12 distinction in the Xilinx Open Hardware design competition (in
2015 and 2018). In 2019, applications of large-scale CA and the key elements of the architecture
were published in the international conferences HPCS [31] and FPL [32], respectively. The current
paper is a complete in-depth presentation of the new architecture and framework.

ACM Trans. Recon�g. Technol. Syst., Vol. 14, No. 1, Article 5. Publication date: December 2020.



Large Scale Cellular Automata on FPGAs: A New Generic Architecture and a Framework 5:3

1.3 Paper Outline

This paper is divided into seven sections. Following the introductory section:

� Section 2 comprises an overview of related works and approaches that have been proposed
to accelerate CA simulations with the use of FPGAs.

� Section 3 contains the theoretical background and terminology necessary for one to under-
stand the basic concepts of CA. It also provides the timeline of the project.

� Section 4 describes in full detail the new CA architecture. In addition, key architectural
decisions and system dimensioning are presented.

� Section 5 presents the framework by describing the scalable architecture design's ability to
automatically perform the process of resource dimensioning, allocation, interconnection and
synchronization, and generate a ready-to-go system.

� Section 6 uses examples to showcase the design's features and advantages over conventional
methods as well as some interesting results obtained with it. Furthermore, comparative
performance results are presented and discussed in this section.

� Finally, section 7 provides a summary of the present work and conclusions drawn from the
experimental results, and it discusses potential future extensions.

2 RELATED WORK

This section has an overview of prior FPGA-based CA accelerators. The �rst part presents a brief
description of signi�cant prior results and architectures. A short summary of other noteworthy
developments follows, leading to the rationale and approach followed in the present work. The
prevailing approaches to design hardware for CA simulations in space are "template over a grid
area" and "grid of processors", whereas in time the prevailing approaches are "completion of an
iteration before the next one" and "multiple iterations over an area in order to reduce memory
requirements". A more detailed coverage of the subject can be found in [52].

2.1 To�oli and Margolus' Cellular Automata Machines (1984�2000)

To�oli and Margolus' Cellular Automata Machines(CAM) were the �rst special-purpose computers
designed to accelerate CA simulations. Tommaso To�oli, who invented the universal reversible
logic gate named after him, has been working on reversible CA and reversible computing since
the 1970s. Early e�orts on a programmable, high-performance TTL- and memory-built CA engine
were published in 1984 [54]. To�oli explains that in a truly parallel implementation of CA each
cell would have to be implemented as an independent element having access to its own copy
of the rule's transition function, its own state variables and its neighborhood values. However,
this approach is in practice restricted by various technological constraints and is not suitable to
accelerate large-sized simulations. The alternative approach followed by To�oli consists of a single,
static RAM (SRAM)-based look-up table (LUT) to implement the transition function. This unit is
"time-shared" between cells. In other words,CAM's architecture processes a stream of cells and
their neighborhoods sequentially in order to, eventually, update the whole grid and produce a new
frame of the simulation. The issue occurring with this approach is that, as soon as a cell is updated,
the neighboring cells will immediately see the new state rather than the old one which is needed.
To address this and other problems (e.g., grid boundary conditions),CAM usesdouble bu�ering, i.e.
two copies of each frame ("previous" and "next"), a technique used in virtually all CA architectures.

TheCAM architecture was fully pipelined and its memory consisted of 8 bit-planes, with each
plane contributing a single bit to each 8-bit cell (�g. 1). The memory planes' size was256� 256
sites and they provided the transition function with all3 � 3 neighborhood cells simultaneously.
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Fig. 1. CAM's basic computational loop. The transition function hardware module is an SRAM LUT.

Fig. 2. CAM-6's pipeline bu�er provides the transition function with all3 � 3 neighborhood cells simultane-
ously.

These features made the system signi�cantly faster than any general-purpose computer at the time,
asCAM could display the evolution of256� 2568-bit cells in real time.

Norman Margolus, a PhD student at the time, worked with To�oli on further developing the
prototype. During the next two years the machine's capabilities started growing, many versions
followed and in 1986CAM-6was completed. It spawned a book [55], which showcases the machine's
numerous applications, and was produced commercially as a PC expansion board.

CAM-6's architecture was fully pipelined and its memory consisted of 4 bit-planes, with each
plane contributing a single bit to each 4-bit cell. The size of each plane was256� 256sites. A pipeline
bu�er (�g. 2) provided the transition function with all3 � 3 neighborhood cells simultaneously.
Similar to its predecessor,CAM-6could display the evolution of256� 256cells in real time. A
most interesting feature was the ability to rearrange the interconnection of the planes. The user
could, at the expense of having 16 states per cell, either obtain multidimensional CA simulations by
"stacking" planes on top of one another, or simulate a larger grid by "gluing" planes edge-to-edge.
Larger grids could also be simulated by using a technique calledscooping: the large grid is stored in
the host computer's memory andCAM-6's internal 256� 256grid is used as a cache memory.

Margolus continued developingCAMswithin the next few years, withCAM-8published in 1995
[34]. It was a multiprocessor version of its predecessors, with interconnectedCAM-like modules
processing separate sectors of the CA grid simultaneously (�g. 3). The sectors could be rearranged
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Fig. 3. CAM-8 architecture. Each processing node was connected only to its nearest-neighboring module.

in any way forming n-dimensional spaces of any size, provided the user had enoughsector modules
in their CAM-8. The machine supported arbitrarily large neighborhood sizes and cell sizes in bits.
Following the steps of its predecessors,CAM-8's performance was outstanding at that time. Its
shift-based data manipulation was ideal for simulation of lattice gas automata and it could process a
1000� 2000FHP gas model at a rate of 190 frame updates per second. In generalCAM-8could display
the evolution of512� 512cells in real time. However, for large neighborhoods the performance
dropped signi�cantly. For example, when simulating a CA rule with 3-bit cells and an11� 11
neighborhood size,CAM-8could display 10 generations per second.

Even thoughCAMsoriginally were not FPGA-based, Margolus' later work on custom FPGA
machines [35, 36] was based on these architectures, and hence we have included these architectures
here. Through time, his ideas of data permutation and the e�ective use of fast memories as custom
bu�ers proved to be useful not only for CA simulation, but also for DRAM-based systolic computa-
tion in general, and many subsequent works (including our own) employ similar structures for
di�erent aspects of FPGA-based custom machines.

2.2 CEPRA: Cellular Processing Architecture (1994�2000)

TheCellular Processing Architecture(CEPRA) was an FPGA-based architecture developed during the
1990s at the Technical University of Darmstadt. It was a streaming architecture with an internal
data�ow similar to that of CAM. The key di�erence between the two systems was thatCEPRAused
pipelined arithmetic logic instead of LUTs for computing the CA's transition function. As a result,
the advantage ofCEPRAcompared toCAM was that complex rules could be computed in one step,
whereasCAM had to convey their computation through cascaded LUTs.

CEPRA-8L, the �rst member of theCEPRAfamily, was completed in 1994 [22]. It contained 8
FPGA-based CA processors which could access all their3 � 3 neighborhood cells simultaneously
thanks to a computation window bu�er.CEPRA-8Lcould display 22 generations of512� 5128-bit
cells per second.CEPRA-1X, CEPRA-8L's successor, was completed in 1997 [20]. It was an FPGA
co-processor mounted on a PC expansion board and used the memory of the host computer to
store the CA grid.CEPRA-1Xsupported 2D and 3D CA with neighborhoods of radiusA= 1 and
could display the evolution of1024� 102416-bit cells in real time.

Within the next 3 years the designers ofCEPRA-1Xalso created a high-levelCellular Description
Language(CDL) which translates complex CA rules into Verilog HDL [21]. CDLprogramming does
not require any special knowledge of the system architecture and can be used as a general CA
description language.
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Fig. 4. Top level view of the la�ice gas automaton as it was implemented in SPACE.

2.3 SPACE: Scalable Parallel Architecture for Concurrency Experiments (1996)

In 1996, Shaw, Cockshott and Barrie from the University of Strathclyde in the UK argued that, as far
as lattice gas automata are concerned, parallel machines can outperform LUT-based computers such
asCAM and yield more useful results [51]. They introduced theirScalable Parallel Architecture for
Concurrency Experiments(SPACE) and proposed a di�erent approach towards hardware for CA sim-
ulations. As shown in �g. 4, their FPGA-based architecture consisted of an array of interconnected
processing elements (PEs), each one of which represented a cell of the HPP model, a fundamental
lattice gas automaton. ASPACEboard, which contained 16 FPGA chips, could simulate a9 � 30
lattice gas automaton, achieving nearly a10� speedup over 2CAM-8modules. The architecture
was scalable and larger lattice gas automata could be simulated by obtaining moreSPACEboards.

As we will see later in this section, the size of a lattice gas automaton that can �t in only one
of today's FPGA chips is an order of magnitude larger than that of twoSPACEboards, and these
quantitative di�erences greatly a�ect scalability issues of the architecture.

2.4 Kobori, Maruyama and Hoshino (2001)

In 2001, Kobori, Maruyama and Hoshino from the University of Tsukuba in Japan presented their
own FPGA-based CA system at the 9th IEEE International Symposium on Field-Programmable
Custom Computing Machines [28]. Their design combined the two approaches discussed in the
previous subsections. Their streaming architecture consisted of an array of PEs sweeping across
the CA grid (�g. 5). In this computation method, if the depth of the PE array is=, each cell of the
grid is processed= consecutive times within the FPGA. As a result, if the input cells belong to
generation6, the output cells will belong to generation6 ¸ =.

The problem arising from this method is that when the width of the CA grid is larger than that
of the FPGA's I/O, as the computation moves on within the FPGA, the cells located at the edge of
the PE array cannot access the new state of the cells located in their neighborhood, therefore, their
new values are invalid. As a result, after each sweep of the grid, the cells that the system has read
outnumber the ones that have been produced in its output. The issue is tackled by overlapping
consecutive scans of the grid, as shown in �g. 6. This FPGA-based CA system consisted of an o�-the-
shelf PCI board with one FPGA and used the host computer to display the results. It could simulate
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Fig. 5. Overview of Kobori, Maruyama and Hoshino's system architecture.

a 2048� 1024FHP lattice gas automaton and calculate 400 generations per second, achieving
nearly a155� speedup over a high-end CPU at the time. However, the CA's visualization was in
pseudo-real time, as most calculated generations never reached the PE array's output. Their system
was complemented by a custom high-level language which could be translated into Verilog HDL.
By using that language, the user could specify the size of the PE array and the CA rule.

2.5 Other Significant Work

The above architectures comprise only a fraction of the landscape. During the last 3 decades, many
other signi�cant projects and developments have lead to advances in the �eld.

In 1991, Bouazzaet al.used theArMen Machineto implement CA in a way similar to that of
CEPRA-8L[3]. The ArMen Machineconsisted of interconnected FPGAs arranged in a ring and
was controlled by a host computer interface board. While the system's performance results were
comparable to those ofCAM, ArMen's routing resources were not su�cient for the simulation of
CA rules with large neighborhoods.

Fig. 6. When the width of the CA grid is larger than that of the FPGA's I/O, data integrity is preserved by
overlapping consecutive scans of the grid.

ACM Trans. Recon�g. Technol. Syst., Vol. 14, No. 1, Article 5. Publication date: December 2020.



5:8 Kyparissas and Dollas

Ten years later, Cappuccino and Cocorullo introducedCAREM, a con�gurable CA co-processor
[6]. The processor's architecture consisted of a variable number of PEs which depended on each
particular CA that the processor would be executing. For example, simulating a CA with only 2
states per cell (1-bit cell) resulted in generating 32 PEs withinCAREM, since 32 is the maximum
number of 1-bit cells that can �t in the system's 32-bit memory word. Although it might seem
restricting, this method actually gave the designers plenty of freedom by keeping the memory
management unit simple.

From 2007 to 2010, Murtaza, Hoekstra and Sloot from the University of Amsterdam performed a
series of studies on the performance modeling of FPGA-based CA systems [39� 42]. With archi-
tectures similar to those of Kobori, Maruyama and Hoshino, they experimented with di�erent
topologies, sizes and types of PEs, depending on whether a particular CA simulation is compute-
bound or memory-bound. Their experiments concluded with the �oating point execution of lattice
Boltzmann �uids on FPGA clusters.

In 2013, Lima and Ferreira from the University of Porto presented their own recon�gurable
CA architecture [33]. The approach followed was similar to that ofSPACE. The processing unit
consisted of a PE array which implemented the whole CA within the FPGA. The system could be
con�gured with the use of a Graphical User Interface (GUI) running at the host computer and it
could simulate any CA with small neighborhoods. The size of the automaton grid varied and could
reach up to72� 72cells depending on the rule's complexity.

Since then, FPGAs have been widely used to simulate CA, however, most implementations have
been custom to a speci�c CA rule without the use of large neighborhoods [52].

2.6 Our Approach

As we have seen in this section, there are two prevailing approaches for the design of custom
hardware accelerators to simulate CA. A commonplace approach is to exploit a CA's spatial
parallelism by implementing it as an array of PEs. Each PE represents a CA cell and is interconnected
to its adjacent PEs which are, in turn, the neighboring cells. This method results in outstanding
performance when simple CA rules are concerned. However, when it comes to complex rules with
many states per cell and large neighbordhood sizes, a PE's demand in logic and routing resources
increases and performance drops. The other approach, which is the one employed in the current
work, is to design a streaming architecture which processes the CA as a stream of cells. This
approach is e�ectively more scalable for complex rules with large neighborhoods on large grids.

3 THEORETICAL BACKGROUND

This section provides the theoretical background necessary to understand the subject of this paper.
The �rst part of this section gives an overview of the basic CA theory. The second part has a brief
description of major versions of our work through time and the features of our latest design.

3.1 Cellular Automata

The execution of CA in computing systems is termed by the community "CA simulations" and we
will keep this terminology, with the understanding that it refers to actual runs on actual hardware,
and in the case of our work with results from downloaded designs and not simulations of the
hardware, for 2D CA. A 2D CA consists of an in�nite rectangular grid of homogeneous cells, each
in one of a �nite number of discrete states. For each cell, a set of cells called its neighborhood is
de�ned relative to the speci�ed cell. An initial state of the CA at timeC= 0 is selected by assigning
a state for each cell. A new generation is created according to some �xed mathematical rules
described with a transition function which determines the new state of each cell in the next time
interval in terms of the current state of the cell and the states of the cells in its neighborhood.
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