

FINESSD: Near-Storage Feature Selection with Mutual Information

for Resource-Limited FPGAs

Nikolaos Kyparissas, Gavin Brown, Mikel Luján

Department of Computer Science, The University of Manchester

Conference Paper | Accepted Manuscript

To be presented in: The 32nd IEEE International Symposium On Field-Programmable Custom

 Computing Machines (FCCM 2024)

DOI: TBC

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

FINESSD: Near-Storage Feature Selection with
Mutual Information for Resource-Limited FPGAs

Nikolaos Kyparissas, Gavin Brown, Mikel Luján
Department of Computer Science

The University of Manchester
{firstname.lastname}@manchester.ac.uk

Abstract—Feature selection is the data analysis process that
selects a smaller and curated subset of the original dataset by
filtering out data (features) which are irrelevant or redundant.
The most important features can be ranked and selected based
on statistical measures, such as mutual information. Feature
selection not only reduces the size of dataset as well as the
execution time for training Machine Learning (ML) models, but
it can also improve the accuracy of the inference.

This paper analyses mutual-information-based feature selec-
tion for resource-constrained FPGAs and proposes FINESSD,
a novel approach that can be deployed for near-storage ac-
celeration. This paper highlights that the Mutual Information
Maximization (MIM) algorithm does not require multiple passes
over the data while being a good trade-off between accuracy
and FPGA resources, when approximated appropriately. The
new FPGA accelerator for MIM generated by FINESSD can
fully utilize the NVMe bandwidth of a modern SSD and perform
feature selection without requiring full dataset transfers onto
the main processor. The evaluation using a Samsung SmartSSD
over small, large and out-of-core datasets shows that, compared
to the mainstream multiprocessing Python ML libraries and an
optimized C library, FINESSD yields up to 35× and 19× speedup
respectively while being more than 70× more energy efficient for
large, out-of-core datasets.

I. INTRODUCTION

Part of the growing success of Machine Learning (ML) dur-
ing the last decade has been attributed to being able to collect
and curate increasingly large datasets. These large datasets
often can be interpreted as a table containing rows after rows
of values and each column representing a variable, or feature.
Reducing the dataset would naturally reduce the computational
time for the training of a given ML algorithm. Thus, the
recommended practice is to reduce the number of features
(number of columns) that would be used for the ML model.
Such reduction of features is often known as dimensionanality
reduction. The curse of dimensionality and its effects on the
process and accuracy of ML algorithms is well-established
and understood in the literature. Dimensionality reduction is a
fundamental part of data analysis in ML for preprocessing
large datasets in a principled manner as to obtain curated
datasets.

One of the most well-known dimensionality reduction al-
gorithms is the Principal Component Analysis (PCA). Thus,
the FPGA community has studied how to optimise such an
important algorithm in multiple occasions. However, at its
core PCA incurs a matrix factorization with real numbers as
to compute the eigenvalues and the associated eigenvectors.

The FPGA requirements of PCA (and other matrix-based
factorizations) make them not to be the first choice for small
FPGAs.

On the other hand, feature selection is the data analysis
process which selects a subset of the original dataset by identi-
fying a subset of features according to their relevance and them
not being redundant (correlated with another feature in the set).
The most important features can be ranked and selected relying
on statistical measures, such as mutual information. Within
feature selection, filter methods are often preferred over the
alternatives because they are application and ML algorithm
agnostic, generating high-quality reduced datasets regardless
of where and how they will be used.

Information-theoretic feature selection is not based on ma-
trix factorizations, but rather on counting events to measure
event frequencies, and thus calculate probabilities. Thus, this
kind of feature selection can be an ideal candidate for acceler-
ation on a resource-constrained FPGA element. Nonetheless,
mutual-information-based feature selection poses two main
challenges. First, the statistical properties of the dataset, such
as the probability distributions of each feature, have to be
extracted from it, usually in the form of histograms. This
process, depending on the filtering algorithm, requires one or
multiple passes over the whole dataset, resulting in substantial
amount of data transfers and random memory accesses for
multiple histograms. Additionally, in the case of large datasets
which do not fit in the memory, those passes produce I/O
transfers from the much slower storage. Second, calculating
the mutual information between variables is not trivial, with
the mainstream approaches resorting to complex floating-point
mathematical operations such as divisions and logarithms.

To tackle the complexity of feature selection and mutual
information, past approaches either utilize power-hungrier
computing devices such as GPUs, or trade accuracy for
resources and speed with approximate computations. However,
in the case of large datasets, transferring low-reuse data from
storage remains a bottleneck.

When dealing with large datasets that do not fit in main
memory, the main bottleneck tends to become the latency
and bandwidth of accessing the storage devices. Nowadays,
SSDs connected via PCIe (such as NVMe) to a multicore chip
capture most desktop, laptops and server computing devices.
To avoid the bottleneck of transferring data from the SSD
via PCIe, there is a growing interest in bringing computation

Counter
Width
Logarithm
Table Width
Logarithm
Table Length

FINESSD: MIM Hardware Approximation

Part or
complete
dataset Accuracy

Evaluation
against MIM

FPGA Area
& Timing

Evaluation

Counter
Partitioning
Factor

AMD VitisPARAMETERS PARAMETERS

Modelling (MATLAB)
FINESSD: MIM Hardware
Design Generation (BSV)

& HW Model
Configuration

D
EP

LO
YM

EN
T

Recalibrate Dimensions Recalibrate Partitioning

Dataset

Verilog
Accelerator

Fig. 1. The flow of FINESSD: a MATLAB model of the mutual information approximation and the hardware design dataflow is used to perform design
space exploration, until a configuration with an acceptable final accuracy is found. The accelerator generator written in Bluespec SystemVerilog (BSV) uses
that configuration along with other architectural configuration options to generate the Verilog code of the final MIM accelerator.

closer to the storage; near-storage processing. When compared
with state-of-the-art chips found on servers, the computational
capacity of the near-storage processing elements is much
reduced and constrained.

To overcome the aforementioned challenges, we identify the
Mutual Information Maximization (MIM) algorithm [1] for ac-
celeration since it avoids multiple passes over the dataset. We
propose FINESSD, a methodology for approximating MIM
and generating accelerators for resource-constrained FPGAs
(Figure 1). We deploy FINESSD on a Samsung SmartSSD,
a reconfigurable computational storage device (CSD), and
show how the generated FPGA design can fully harness the
bandwidth of a modern SSD. By doing so, FINESSD offloads
from the host the feature selection pipeline with significant
end-to-end performance and energy gains.

This paper makes the following contributions:
• We propose FINESSD, a novel hardware-oriented

methodology for approximating mutual information with
resource-constrained FPGAs. We provide a thorough
design space exploration, contingent on the resource
constraints of FPGA-based CSDs, illustrating the trade-
off between accuracy and hardware resources.

• Based on counters that record multiple feature samples at
clock rate, the FPGA accelerator generated by FINESSD
transforms the MIM algorithm from compute-bound to
I/O-bound and filters the data with one sequential read,
outperforming the baseline methods by tackling the data
transfer and computation bottlenecks.

• We present the first near-storage application of feature
selection, reducing data transfers of low-reuse data from
storage to host over PCIe and increasing parallelism.

• We evaluate FINESSD using datasets of different di-
mensions and complexity, yielding up to 35× speedup
over established, mainstream multi-processing tools and
significant energy improvements.

II. BACKGROUND

This section provides the context for feature selection and
near-storage processing as to allow for further discussion
thereafter. We introduce the fundamentals of feature selection,
the role of mutual information as a scoring function, and the
choice of MIM as an ideal candidate for resource-constrained
FPGAs such as the ones found on CSDs.

A. Feature Selection and Mutual Information Maximization

In ML, many significant applications such as gene expres-
sion and text clustering may easily be comprised of several
thousand variables, or features [1], [2]. Many of these features
can be redundant or irrelevant, increasing the computation cost
[3] and compromising the accuracy of the ML model, for
example, by causing it to be prone to overfitting [1]. Hence,
dimensionality reduction is an integral part of the ML pipeline.

Feature selection is a dimensionality reduction approach
which, in contrast to feature extraction, preserves the data
in their initial form by choosing a higher-quality subset of
the initial features, excluding those which are redundant or
exhibit low correlation. Preserving the original features is
necessary, for example, when it comes to applications where
model explainability is required, such as healthcare or safety-
critical applications [4]. While there are several strategies to
conduct feature selection, in this paper we will focus on filter
methods. Filter methods use scoring mechanisms based on
statistical measures to evaluate the usefulness of the input
features relative to the output labels. The advantage of filter
methods is that, in contrast to other feature selection strategies,
they are independent of the ML algorithm that will be used, as
they rely only on the statistical correlations found in the data.
As a result, filter-based feature selection produces smaller,
generic inputs of higher quality.

One of the prominent measures used for scoring the features
is mutual information [1], [5]–[8]. In information theory,
the mutual information between two random variables is
the amount of information that is common in those two
variables [9] or, in other words, the amount of information
that is revealed about a random variable when observing the
other one. Mutual information between two random variables,
feature X and label Y , is defined as:

I(X;Y) =
∑
x∈X
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x) is the probability of the random variable X
having the value x, and is usually calculated with histogram
estimators. With mutual information as a scoring criterion, the
score of a feature Xk for a class label Y is defined as:

SMIM (Xk) = I(Xk;Y)

Once we calculate SMIM (Xk) ∀ k, we rank the features based
on their importance score and choose the K ones with the
highest score. This method is known as feature selection based
on Mutual Information Maximization (MIM).

MIM is widely used and, in most cases, has similar filtering-
quality performance to other information-theoretic filtering
algorithms such as Joint Mutual Information (JMI) and mini-
mum Redundancy - Maximum Relevance (mRMR) [1], [10],
[11]. However, MIM feature selection has the critical advan-
tage of requiring only one pass over the dataset and simpler
histograms, and for a dataset of N samples and M features its
complexity is O(NM) as opposed to O(NM2) for JMI and
mRMR. Hence, MIM is preferred when more passes over the
dataset would be inefficient or even impossible (e.g. in [12]).
Near-storage deployment is such a scenario.

B. Near-Storage Processing and MIM Feature Selection

In a typical computer system, the host processor orches-
trates the dataflow between the storage, the memory and the
coprocessors or accelerators which, normally are connected via
PCIe. Up until recently, in order for the coprocessor to process
data found in storage, the host processor needed to load part
of the file from the storage to memory and then copy the data
from its address space to the address space of the accelerator.
The latter step of time-consuming memory copies can now be
bypassed with the use of an IOMMU [13] or protocols such
as CXL [14] which provide a shared address space between
the host processor and the accelerator.

An effective approach to improve coprocessor access to the
storage, is to bring processing closer to it; a research area
known as near-storage processing. The key idea behind this
strategy is that there exists a direct link between the processing
element and the storage device without the mediation of the
host processor. Controller Memory Buffers (CMB) in NVMe
enable a peer-2-peer (P2P) connection from one NVMe PCIe
end point to another without using a system memory buffer.
In recent years, significant efforts have been made to bring
processing even closer to storage and process data within
the storage device [13], forming a computational storage
device (CSD). Bringing processing so close to the data has
numerous advantages, such as decreased data transfers via the
system PCIe bus, increasing parallelism by unloading the host
processor, and reduced energy consumption.

However, CSDs, and especially reconfigurable CSDs, are
characterized by a number of constraints. First, in most cases,
they have limited hardware resources available for processing.
Second, they are suitable for applications with high spatial and
low temporal data locality, which are able to maximize the
amount sequential accesses to the storage part of the CSD. As
we mentioned in Section II-A, MIM has the critical advantage
of needing only a single pass over the dataset and simpler
hardware requirements for its histogram-based data structures
compared to JMI and mRMR, making it the ideal candidate for
near-storage acceleration and the resource-constrained FPGAs
of CSDs if accelerated appropriately. While JMI and mRMR
are able to take advantage of the re-use of features, unlike

MIM, this eventually acts as their disadvantage against MIM.
Mechanisms such as host page caching do not help for the
mentioned algorithms in the cases of large and larger-than-
memory datasets, where consecutive, complete passes are
required over the dataset.

In this paper, we present FINESSD, our hardware-oriented
approach on mutual information for accelerating MIM feature
selection. The FPGA design generated by FINESSD acceler-
ates MIM, causing it to become I/O-bound. When placed near
storage, the FINESSD FPGA accelerator filters big datasets
directly where data lie with a single sequential pass, resulting
in significant time and energy savings by avoiding costly I/O
transfers to and from the host.

C. Related Work

In recent years, several hardware acceleration approaches
have been proposed for accelerating mutual information calcu-
lations, either independently or as part of feature selection and
other algorithms. CUDA-JMI [15] and Fast-mRMR [16] use
GPUs to speedup the two feature selection algorithms, JMI and
mRMR respectively. Aside from the fact that GPUs are power-
hungry, the main problem of these GPU implementations is
that they are limited by the shared memory found on the
device when counting contingency tables. Also, as we saw
in Section II-B, a direct comparison between these GPU im-
plementations and FINESSD for large and larger-than-memory
datasets would not add any extra information.

FPGAs have also been used for calculating mutual informa-
tion. A combination of reduced-precision arithmetic and look-
up tables was used in [17], trading accuracy for parallelism to
achieve a highly-parallel architecture on a multi-FPGA system.
A different strategy for partitioning the problem in multiple
parallel parts and using a combination of fixed and floating
point precision was used in [18], with intensive processing
over small data in mind, in contrast to our case. Approximate
computing has been applied even more extensively by [19],
where fixed-point arithmetic and narrow counters where used
for feature selection, but with embedded platforms as a target
and a limited set of selected features. Also, this analysis was
not accompanied by a hardware implementation, which, as we
will see later, comes with its own challenges.

As we mentioned earlier, counting histograms is a big
part of calculating mutual information and constitutes one
of the bottlenecks, which is why in the cases of CUDA-
JMI [15] and [17] histogram counting was offloaded either
partly or completely to the host CPU. Fast-mRMR [16] is
using a different approach, based on changing the dataset
access pattern from row-wise to column-wise (from sample-
by-sample to feature-by-feature); a low-level trick that we also
utilize in order to reduce the amount of random accesses to
multiple histograms.

To our knowledge, FINESSD is the first near-storage feature
selection solution and the first FPGA accelerator for the whole
end-to-end process of feature selection.

0 10 20
X0

0

5

10

15

20

25

X
1

0 10 20
X0 (good feature)

0

5

10

15

20

25

X
1
 (

b
a
d
 f

e
a
tu

re
)

Label
0

1

Fig. 2. A high-level overview of MIM: calculating and ranking the information-theoretic scores for a curated binary-classification dataset of N samples and
two features, X0 and X1. A The histogram of every feature and the histograms of the joint appearances of every feature with every class label must be
calculated. Here, histograms 1, 2 and 3 refer to feature X0, and histograms 4, 5 and 6 refer to X1. After extracting the histograms, B these have to be
processed to calculate the information-theoretic score of each feature. C A list of the best features can be extracted by the ranking of the feature scores.

III. FINESSD: PROFILING, APPROXIMATION AND
MODELLING

A. Breaking Down MIM Feature Selection

There are three key steps in MIM feature selection: A

estimate the probability distributions of the features and the
label, B calculate the mutual information between every
feature and the label based on their probability distributions,
and C rank the features based on their mutual information
scores. The process over a simple example dataset is shown
in Figure 2.

The first important step consists of estimating the proba-
bility distributions of the dataset features. This is attributed
to the fact that, practically, it is impossible to know the true
probability distributions p(x), p(y) and p(x, y) and we have
to estimate them from the dataset. Estimating mutual infor-
mation for continuous data is not trivial [20]–[22] as we need
to measure the probability densities without the probability
density functions. Therefore, in this paper, we use datasets
discretized with Sturge’s rule, a commonly-used algorithm that
chooses the number of bins needed to approximate the original
distribution of the samples based on the size of the dataset. For
the scope of this paper, it is safe to assume that this process
has been conducted offline as it refers to previous stages of a
typical data preprocessing pipeline.

According to maximum likelihood estimation, the probabil-
ity of an event can be estimated from the observed data as the
number of event occurrences over the number of total events
(i.e. the total number of samples): p̂(x) = [count(X = x)]/N .
Consequently, we estimate the probability distributions with
histogram estimators, which give us the estimated frequency
of the events.

Figure 2 shows that for every feature, numerous histograms
have to be extracted from the data in order to calculate the
score of that feature. This is the only pass required over the
data for MIM feature selection, where each data element is
only ready once. For example, in the simple example shown
in Figure 2, we need one histogram for each feature, and
two more histograms per feature for its joint appearances
with the two classes of the label. From the joint-appearances

histograms it can already be seen that X0 is better at providing
an indication about the classification result.

As we see in the formula of mutual information (Equa-
tion 1), for datasets with the same number of labels and
bins, regardless of the number of samples, calculating mu-
tual information between a feature and a label requires the
same number of steps once we have counted the probability
distribution histograms. However, the number of samples in a
dataset is proportional to the time required for counting the
histograms. We created two synthetic datasets with the same
N×M size, but one is “short and wide” (few samples N , many
features M) and the other is “tall and slim” (many samples,
few features). Both are synthetic datasets created with Scikit-
learn’s make classification function, having the same number
of bins, labels, and probability distribution properties.

In Figure 3 we can see that for two datasets with the
same characteristics, the time required for calculating the
mutual information score of one feature (green rectangle) is
significantly larger for the dataset with more samples, only
because of the histogram calculations. That phenomenon is
amplified when we apply MIM feature selection on large
datasets with a large number of samples, since the number of
samples is proportional to the effort needed for determining a
feature’s statistical properties.

B. Breaking Down Mutual Information

Considering that counting consumes most of the time we
need for MIM feature selection, limiting the different objects
that have to be counted affects greatly the performance of
our approach. In order to minimize the amount of items we
need to count, it is necessary to modify the second step
of MIM feature selection, which consists of calculating the
mutual information score for each feature. As mentioned
before, mutual information is a measure used for scoring the
features in order to rank them by importance. However, the
actual value of the score in this application is irrelevant, as
the ranking of the features is the only end goal. To that end,
we will preserve only the parts of mutual information that are
necessary for ranking. Mutual information can be expressed
as I(X;Y) = H(Y) − H(Y |X), where we can see that the

Fig. 3. Profiling a multi-process Python version of MIM on 20 processing
cores for two datasets with the same number of bins and labels and different
number of samples. On top, the time required for calculating mutual infor-
mation for one feature (green rectangle) is significantly smaller compared to
a dataset with more samples (bottom), solely due to histogram calculations.

first term of the two, H(Y), is the entropy of the label. Notice
that we can neglect H(Y) without affecting the final ranking
of the features, since its value depends only on the label and
remains the same for every feature.

As a result, we can use the conditional entropy H(Y |X) for
scoring the features and have the same result. Estimating the
conditional entropy with histogram estimators, given a dataset
D = {([x1, x2, ..., xm]i, yi); i = 1..N} with N samples,
where xki is the value of feature Xk in the i-th sample labeled
yi, conditional entropy can be estimated as:

Ĥ(Y |X) = −
N∑
i=1

p̂(xi, yi) log p̂(yi|xi) =

−
N∑
i=1

(count(xi, yi)

N
log

count(xi, yi)

count(xi)

)
=

− 1

N

N∑
i=1

[
count(xi, yi)

(
log count(xi, yi)− log count(xi)

)]
Notice that we can neglect multiplying the score of every
feature by the constant 1/N without affecting the final ranking
of the features. Also, by inverting the subtraction operands,
since count(x) ≥ count(x, y) we do not need to negate
the summation and we only need unsigned integers for our
calculations. We do not have to count the frequency of how
many times each value appears (count(xi) ∀ i ∈ N), since
we have that information as the sum of all joint counts of a
given x ∀ y ∈ Y .

Thus, the final information-theoretic criterion that we can
use to rank the features based on their importance relies only
on counting the different joint appearances of X (feature bins)
and Y (labels) for every feature:

I(X;Y) ≈ Î(X;Y) ∝ Ĥ(Y |X) ∝ S′(X) = (2)
N∑
i=1

{
count(xi, yi)

[
log

(∑
y∈Y

count(xi, y)
)
− log count(xi, yi)

]}
Notice that the objects we have to count for the whole dataset
form a cube whose dimensions are features× bins× labels

Feature

Label

Bin

Input
Sample

Value
Feature

Label

XY Counters

+1

Fig. 4. A cube of counters is formed by all the different objects we have to
count in order to estimate the mutual information between the features and
the label for the whole dataset.

(Figure 4). Basically, for every feature we have a 2-D matrix
which is its contingency table. Visualizing the counters this
way provides an initial insight on how each dimension of the
cube affects the amount resources needed for approximating
the probability distributions on hardware.

However, as we mentioned earlier, with FINESSD we are
resorting to the same low-level nuance as Fast-mRMR [16],
reading the dataset in a feature-by-feature manner (column
by column) instead of sample by sample (row by row). This
allows us to alternate between only two copies of the afore-
mentioned 2-D contingency tables (double buffering), having
the need for only 2× bins× labels counters instead of having
the whole cube of counters available at any time in hardware.
Hence, we can use one set of counters to calculate the score of
feature Xk right after we have finished counting its histograms,
while we use the other set to count the histogram of the next
feature, Xk, in parallel. In this way, FINESSD is completely
scalable as far as the features dimension is concerned, being
able to handle an arbitrary number of features.

C. Design Space Exploration: Dimensioning and Trade-offs

FINESSD is configurable and can be completely adjusted
according to the use case. To calculate the score for every
feature as described in Equation 2, we introduce the dataflow
of FINESSD shown in Figure 5. A look-up table is used
to calculate the logarithm. There are some properties of the
design that can drastically affect the area and the accuracy
performance, such as the width of the counters and the
logarithm look-up table length and width. However, not every
configuration can perform well over any dataset.

Adjusting the width of the counters directly affects the logic
resources needed for their implementation. Wider counters
allow for a more accurate approximation of the different
dynamics between the joint probability distributions, whereas
narrow counters can still follow the distributions’ trends. When
a counter is about to overflow, all the counters are shifted
right, avoiding the overflow and preserving the trends of the
histograms. The number of counter overflow shifts depends
on the number of samples in the dataset and how smooth or
spiked the distributions are.

A similar intuition follows the logarithm look-up table.
More precision is needed if the scores of features are very
close; for example, in our synthetic dataset examples, all

XY Counters

−

Logarithm
LUT

×

log(cxy)

log(cx)

∀ k, x∈X,
y∈Y

+

+

Score[x]

cx = Σcxy

Y

y=1

cxy

cxy

Fig. 5. The dataflow of FINESSD for approximating our information-theoretic
scoring function consists of two seperate stages of the process, histogram
counting (green) and processing (purple).

features follow very similar normal distributions. The table
length, apart from the logarithm precision, also affects how
much the counters need to be truncated for a look-up opera-
tion, while the table width affects the precision of the multiply-
accumulate operations and thus that of the final score.

A detailed model of FINESSD has been created in MAT-
LAB, enabling the quick design space exploration based on the
aforementioned parameters over multiple datasets. The model
reports the accuracy of FINESSD over the selected datasets,
before the user proceeds to generate the design based on their
needs. The results of such an example can be seen in Figure 6.

IV. FINESSD: DESIGN AND IMPLEMENTATION

In FINESSD, the three key steps of MIM feature selection
(A counting, B calculating, C sorting) are completely sep-
arate stages, making control data-driven and straightforward.
The stages are pipelined, with each stage running in parallel
to the next iteration of the previous stage. The architecture of
the system can be seen in Figure 7. The design and function
of its parts are analysed below.

A. Counting Histograms for Probability Distributions

There are two sets of counters for the contingency table
of two features as we use double buffering to read the
dataset input in a feature-by-feature manner. When FINESSD
is counting the histograms of a feature, it is using the first
set of counters. Once it reads the last sample of that feature,
it copies the values of the counters to the second set in one
clock cycle and uses the first set to count the histograms of
the next feature.

As we mentioned earlier, histogram counting is one of the
bottlenecks of calculating mutual information. For a near-
storage solution, we need to be able to fully harness the
bandwidth provided by a modern SSD, and in order to do that,
we have to count fast. Accessing the data feature by feature
instead of sample by sample, saves us a lot of counters (and
hence resources and timing convergence effort), since we need
to count only the joint appearances of values and labels for
one feature at a time. Still, we need to do so at clock rate with
a wide interface in order to reach high speeds for a generic
near-storage solution applicable to faster storage devices.

32-bit 100.0% 99.0% 98.0% 97.0% 96.0% 91.0% 61.0% 0

20-bit 100.0% 99.0% 98.0% 97.0% 96.0% 91.0% 61.0% 0

16-bit 100.0% 99.0% 98.0% 97.0% 96.0% 91.0% 61.0% 41

12-bit 96.0% 96.0% 96.0% 96.0% 93.0% 84.0% 60.0% 49356

8-bit 66.0% 66.0% 66.0% 66.0% 66.0% 67.0% 66.0% 856842

A16 A16 A12 A12 A10 A8 A8
W32 W20 W32 W16 W16 W16 W11

Logarithm LUT Addressing/Width

C
ou

nt
er

 W
id

th

O
ve

rf
lo

w
s

Fig. 6. The ranking accuracy when selecting 100 out of 2000 features of the
“Epsilon” dataset compared to the baseline. Both the width of the counters
and the dimensions of the logarithm look-up table affect the accuracy of
FINESSD.

Histogram FPGA designs in existing papers usually use
either BRAM in a map-reduce fashion [18], [23], or elaborate
encoding techniques which require substantial resources [24].
However, since we need to switch counting buffers in a few
clock cycles between features, using two copies of multiple
subcopies of a histogram would not be practical resource-
wise. Also, as we explained in Section III-C, preventing the
counters from overflowing is achieved by right-shifting them
all when one counter is about to overflow. With multiple copies
of counters in BRAM, that would require a LOAD-SHIFT-
STORE operation sequence over every memory element.

Instead, we use hardware logic for all counters, being able
to perform the aforementioned operations within a few clock
cycles. FINESSD comes with a wide interface to fully harvest
the high bandwidth of a storage device. Hence, we accept
multiple inputs per clock cycle, and they all have to be counted
without knowing how many common values we have in every
read. Having all the counters checking if and how many of
those values need to be counted in a clock cycle makes routing
impossible.

For that reason, we stream the values through a Gearbox
FIFO in order to reduce the processing frequency without
sacrificing reading speed, providing routing with some slack.
The overall performance of the feature selection pipeline is not
affected by lowering the clock frequency, since processing is
still completed before the next buffer change. Next, the stream
of values is passed through shift registers. Every register is
feeding a different subset of counters with values, and all
the counters of that partition are checking all the values of
that batch in one clock cycle, as shown in Figure 8. The
width of the shift register is determined by the width of the
interface, however the numbers of shift registers and counters
per partition are customizable by the user.

In this way, we are achieving 20 to 40 times more samples
counted per second for double the number of histogram bins
compared to [24], depending on the interface width chosen by
the user, as explained below.

B. Processing the Histogram and Sorting

Once a feature’s joint probability distributions have been
approximated by histogram counting, we copy the counts to
the second pair of counter registers. The second pair of counts
is used for calculating the feature’s score, while the first pair
of counters are reset and ready to be used for next incoming
feature after 1 clock cycle.

S
S×2 values

...

......

...

f/2 Hzf Hz

S×2 values REG

Gearbox
FIFO

...

...

...

New counter value

New feature
received

+
cx

cxy

Buffering

Counters
Logarithm LUT

y index counter

FIFO

+
REG

Pop. Count

Counter

values
feature

COUNTING HISTOGRAMS

...

SORTING

− × +

Sorter

REG

Rank to

Req.

host

from host

Score

R
EG

>

R
EG

>

PROCESSING

Fig. 7. The complete architecture of FINESSD. The three steps of MIM feature selection (A counting, B processing, C sorting) are seperate and independent
from one another, with data moving in a stream-through fashion. Control signals are straight-forward and have been omitted in this figure, for example ”Sort
Enable” when Multiply-Accumulate is completed etc.

count(0,1)

count(1,1)

count(2,1)

count(3,1)

count(4,1)

count(5,1)

count(0,0)

count(1,0)

count(2,0)

count(3,0)

count(4,0)

count(5,0)

[2,1] [2,1] [4,0] [2,1] [5,0]

1 0 4 11 7 52 0 3 5 3+2 +1 +3

[1,0] [1,1] [1,0] [3,0] [5,1]

9

count(0,1)

count(1,1)

count(2,1)

count(3,1)

count(4,1)

count(5,1)

count(0,0)

count(1,0)

count(2,0)

count(3,0)

count(4,0)

count(5,0)
1 7 11 72 2 5 310

INPUT

5 feature
values

per CLK
cycle

INPUT

5 feature
values

per CLK
cycle

TCLK+1TCLK

5

[1,0] [1,1] [1,0] [3,0] [5,1]

0
+1 +1

Feature sample: [value, label]

cxy for y = 0 at TCLK cxy for y = 1 at TCLK cxy for y = 0 at TCLK+1 cxy for y = 1 at TCLK+1

3

[2,0] [2,0] [2,0] [2,0] [2,0]

+5

Fig. 8. An abstract representation of how FINESSD would partition counting the histograms for one feature of a 6-bin binary classification dataset, with the
system accepting 5 sample inputs per clock cycle. For multiple values accepted per clock cycle and many counters, finding which values must be counted by
which counter and how many of them are common makes routing impossible. We partition this population count task into batches of different counters for
the same input and we propagate the input values through shift registers to limit routing congestion.

The processing part of FINESSD implements the dataflow
shown in Figure 5 to calculate the information-theoretic score
for every feature (Equation 2) in a completely pipelined
manner, as shown in Figure 9. All the processing elements
perform unsigned integer arithmetic operations. The logarithm
is implemented as a look-up table in the FPGA’s BRAM. A
MATLAB script generates a suitable fixed-point representation
and generates the look-up table, depending on the desired
number of elements in the table. A scaling factor can be
applied, in order to scale down the values as long as the
scaling preserves as many distinctive values in the table as
desired, before duplicates start to appear due to rounding. The
granularity of the logarithm affects the final ranking of the
features, especially when the distributions of the features are
similar to one another.

As we can see in Figure 9, because of our approximate
computing approach of transforming the calculation of mutual
information into a few basic integer operations and look-ups,
for calculations we only need a fraction of the time we need
for counting. Hence, the whole processing and sorting part
operates at half the frequency of counting, providing the place-
and-route tools with some slack and saving resources.

Sorting is also conducted in a way that, as a module, it

functions independently. As soon as there is a score input,
a shift register with comparators in-between its registers
transfers the new score value in its rank (Figure 7). We only
accept a sorting value every time we have completed all the
necessary calculations for a feature score, as denoted by the
sole “sorting” stage in Figure 9.

C. Implementation

The system is implemented in hardware using Bluespec
SystemVerilog (BSV) and tested as an RTL Kernel for AMD
Vitis 2022.2. BSV combines the flexibility of High-Level Syn-
thesis (HLS) with the explicitness of a Hardware Description
Language (HDL). As a superset of SystemVerilog, it allows
for complex design approaches that HLS does not provide,
such as multiple clock domains within one module and custom
interfaces between modules. At the same time, BSV’s atomic
rules offer a high level of concurrency, allowing for rapid
design exploration and prototyping [25], [26].

FINESSD is integrated with the host application with the
use of Xilinx Runtime Library (XRT), a set of libraries and
drivers which enable not only the communication between the
software and the hardware, but also the direct P2P connection
between the SSD and the FPGA. For that reason, the hardware

Counting
Calculating Score

...

score[1]

score[2]

...

score[K]

Idle Process

Calc.
Cx

LUT
Req.

LUT
Read MUL Accum.

...
SORT

Calc.
Cx

LUT
Req.

LUT
Read MUL Accum.

Calc.
Cx

LUT
Req.

LUT
Read MUL Accum.

DONE

Feature Reading
Complete

feature[1] feature[2] feature[K]

Reading Feature ...

Fig. 9. The dataflow of processing a feature’s histogram while counting the
histogram of the next feature. Counting is performed directly when reading the
dataset. Thanks to our approximate computing approach, processing requires
only a few steps and it can be of a lower clock frequency. Therefore, we can
focus routing and performance efforts on fast counting and make a difference
for big datasets.

kernel of FINESSD supports the appropriate Block-Level
Control Protocol required by XRT, which orchestrates our
system’s AXI4 interface. FINESSD can be called as a function
in C/C++, accepting a pointer to the dataset file buffer and the
dataset dimensions as an input. The dataset file is in NumPy’s
.npy binary format [27]. Column-wise reading is accomplished
by simply storing the transpose of the dataset in storage using
the corresponding built-in NumPy option.

The design is scalable and is automatically generated based
on the aforementioned parameters of the logarithm table length
and width, number of counters, counter width, counters per
partition, and interface width. It can accept 16, 32, or 64 sam-
ples per clock cycle. For convenience and easier deployment,
FINESSD comes with an optional AXI4 interface, either 512
or 1024-bit wide. With any of those two interface widths and
any of the aforementioned number of inputs, FINESSD can
process incoming data at 250 MHz, as long as there are enough
samples per feature to be counted while processing the previ-
ous feature. The time it takes to process a dataset is the time
needed to read it, plus the processing time and sorting for the
last feature: (N/S)×M+2×(bins×labels+LMUL+K+2)
cycles, where N is the number of samples, S is the number of
values we accept in every cycle, M is the number of features,
LMUL the latency of the multiplier and K the number of
features we want to select (final sorting).

D. Limitations

The limitation of FINESSD is its scalability, as there have
to be enough counters in the FPGA implementation for any
potential dataset dimensions and the corresponding histograms
(labels×bins×2). However, with the current technology, even
with the modest-sized FPGA of the CSD used during evalua-
tion (see Section V), FINESSD can fit 1600×2 32-bit counters,
occupying only 66% of the resources; a configuration which

should fit the vast majority of curated tabular datasets. Due to
the stream-through pipeline of the FINESSD accelerator, the
number of counters is primarily an area and not a timing issue.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup and Baseline

To evaluate FINESSD we use a SmartSSD, a CSD consist-
ing of an SSD with onboard FPGA introduced by Samsung and
AMD [28]. As shown in Figure 11-a, the SmartSSD consists
of an NVMe SSD, an FPGA, FPGA DRAM and a dedicated,
onboard PCIe switch. The FPGA DRAM is exposed as a
common memory area to both the host and to the NVMe
SSD. This configuration allows for direct P2P data transfers
between the storage and the FPGA, and effectively minimizes
PCIe traffic and the data transfer overhead from the SSD
to the host and from the host to the FPGA (Figure 11-b),
leaving to host only the initialization of P2P requests. The
SSD’s maximum reading bandwidth is 3.3 GB/sec while the
maximum bandwidth of the FPGA DRAM is 15.4 GB/sec. The
SmartSSD CSD has been used with great success in the past
for other data-intensive applications such as sorting [29]–[31]
and large-scale searching [32].

We install a SmartSSD in a computer system with an Intel
Core i9-7900X chip running at 3.30 GHz (max 4.3 GHz)
and 64 GB of RAM (DDR4 at 2133 MHz). The system
runs Ubuntu 20.04.6 with Linux Kernel 5.15.0-79-generic. The
version of the AMD tools (Vitis and XRT) is 2022.2. We
compare FINESSD against mainstream and high-performance
MIM software libraries and suites:

• A popular ML library, known as Scikit-learn [33], imple-
mented in Python and its built-in MIM feature selection
function, SelectKBest(mutual info classif),

• A multi-process version of feature selection using Scikit-
learn’s mutual info score and Dask [34], which is a suite
of tools for parallel, out-of-core computing in Python,
supporting larger-than-memory datasets,

• FEAST [1], [35], an optimized feature selection suite
implemented in C with MIM as a built-in option.

The metrics used in the evaluation are:
• Execution time and speedup: end-to-end time for reading

the dataset from storage and producing the list with the
top K selected features.

We only evaluate configurations with wide counters that pro-
duce 100% accuracy compared to the baseline, ensuring that
FINESSD preserves the accuracy of the algorithm. We also
feature a brief discussion on the FPGA resource allocation
per example and the measured energy efficiency savings of
FINESSD in contrast to the baseline.

FEAST accepts discretized datasets as inputs, stored in MAT
v7.3 files. For Python we use NumPy files. NumPy files are
high-performance binary files which can be used by all major
ML Python tools such as TensorFlow, PyTorch and Scikit-
learn [27]. Binary files are often preferred over hierarchical
file formats such as HDF5 because they are splittable and
have native support for the aforementioned ML suites.

Fig. 10. Execution time of FINESSD compared to both mainstream and high-performance solutions running on a high-end desktop computer. The execution
time includes the time to load the dataset from an SSD and select the K best features.

Fig. 11. a) Organizational overview of SmartSSD, b) PCIe events as perceived
by the host CPU, measured by Intel Performance Counter Monitor (PCM)
when the “Synthetic 1” dataset is being loaded by the host (NumPy) vs.
FINESSD (P2P Connection).

While SelectKBest is the mainstream out-of-the-box solu-
tion, we deem that a fair approach should include a multipro-
cessing approach which does not require a lot of programming
effort and would be what most users would do to gain perfor-
mance. The numbers for the sequential version of Python are
only mentioned to highlight the performance of the optimized
version of Python using multiprocessing (“Python MP”). In the
rest of the paper, we will only comment on the comparison
between FINESSD, Python MP and FEAST.

We use the Enterprise-Class Samsung SSD (3.84 TB PCIe
Gen3×4) found on the SmartSSD for the baseline software
experiments and the near-storage processing experiments with
FINESSD alike. To check whether this affects negatively the
software baseline, we also run the software experiments using
another SSD, a Samsung 970 EVO Plus 1 TB, instead of the
SmartSSD. The results do not show any significant difference
in the execution time, and thus for conciseness they are not
presented.

B. Experiments and Results

For the experiments we used small, large and larger-than-
memory datasets, to showcase the accuracy of our approxima-
tion and the effect of near-storage placement as the properties
of the dataset change. The size and characteristics of the
datasets vary in different dimensions, as shown in Figure 10.

TABLE I
COMPARATIVE PERFORMANCE OF FINESSD.

Higgs Epsilon SVHN Synth. 1 Synth. 2
Python 146.33× 109.02× 112.52× 114.39× –

Python MP 30.47× 20.93× 18.13× 21.34× 35.21×
FEAST 19.72× 16.90× 16.03× 15.92× –

The execution times of each case and the speedup of FINESSD
can be seen in Figure 10 and Table I accordingly.

The datasets span several applications and fields, from
digit classification on images (Modified National Institute of
Standards and Technology – MNIST [36], Street View House
Numbers – SVHN [37]), to particle physics (Higgs Boson
[38]) and ranking models (Microsoft Learning to Rank [39]).

The first point of interest is that, even for relatively small
datasets, FINESSD outperforms the baseline. This is attributed
to the high throughput of the accelerator, which starts counting
multiple samples per clock cycle right from the first AXI4
burst received. Second, we notice that FINESSD yields higher
speedup for datasets with a large number of samples due to
the more demanding histogram calculations.

In addition to real-world datasets, we evaluate FINESSD
using synthetic datasets. Large datasets are in most cases
proprietary, thus, it is common for the Big Data and
ML communities to use synthetic datasets for evaluation
[40]. In order to produce the dataset, we used Python’s
dask ml.datasets.make classification [41], a multiprocessing
version of a widely-used dataset generation function. Synthetic
datasets act as a “worst case scenario,” as all feature samples
follow similar normal distributions.

“Synthetic 2” is a larger-than-memory synthetic multiclass
dataset, occupying 400 GB when stored as a NumPy binary
file of 32-bit unsigned integers. As the dataset is larger than
the host’s memory, the multithreaded Python implementation
reads data from storage when necessary through a memory-
mapped file. Dynamic scheduling assures that the processor
utilization is as high as possible, overlapping loading with
computing in different cores. FINESSD shows its true power
here, processing 400 GB in roughly 2 minutes, at a rate of 3.3
GB/sec, which is the maximum the SmartSSD can achieve,

TABLE II
RESOURCE ALLOCATION OF FINESSD ON THE SMARTSSD KINTEX

ULTRASCALE+ KU15P FPGA

Higgs MS Rank Synth. 2
LUT 12152 (3.08%) 25654 (6.50%) 55511 (14.07%)

LUTRAM 298 (0.20%) 258 (0.17%) 298 (0.20%)
FF 12477 (1.46%) 24612 (2.89%) 49975 (5.87%)

BRAM 19 (2.59%) 51 (6.94%) 73 (9.93%)

yielding a speedup of 35× against Python MP, which requires
over an hour for the same result. FEAST cannot run this
dataset, as it does not fit in memory.

The FPGA resources required depend mainly on the number
and size of counters, the logarithm table size and the number of
features to select, which in turn affects the number of registers
and comparators necessary during sorting. Some indicative
results can be seen in Table II after the implementation of
FINESSD for three of the datasets mentioned above. The
FPGA resource allocation for the smallest, a medium and
the largest design is shown. As we can see, even for the
modest-sized FPGA of the SmartSSD, for all examples our
implementation occupies at most 15% of the logic and 10%
of the BRAM, leaving plenty of area for other kernels. A
critical advantage of FINESSD is that the resources required
remain the same regardless of the total number of features or
the number of samples in the dataset.

From an energy consumption point of view, the SmartSSD
utilizes a low-power FPGA requiring ∼7.5 W, ∼10 W in-
cluding the FPGA DRAM according to documentation and
relevant work [28], [30]. The SmartSSD card as a whole
consumes a maximum of 25 W [28]. We used a power
meter connected to the PSU of the computer system used in
the experiments to measure the power consumption. When
FINESSD is filtering “Synthetic2,” the system consumes
106.4 W (1.34 variance). For the software baseline (Python
MP) filtering “Synthetic2,” the system consumes 222.45 W
(10.7 variance). Comparing the energy consumed by the
system for the larger-than-memory dataset, using FINESSD is
(PBaseline × tBaseline)/(PFINESSD × tFINESSD) = 73.6×
more energy efficient.

Beyond PCIe Gen3 — The FPGA-based accelerator gen-
erated by FINESSD accepts either 32 or 64 16-bit unsigned
integers, or alternatively, 16 or 32 32-bit unsigned integers
per clock cycle at 250 MHz without the need to stall/throttle.
Hence, FINESSD can process up to 32 GB/sec, provided
that the memory interface and I/O bus can accommodate
such a bandwidth. While that is more than enough for the
SmartSSD’s 3.3 GB/sec actual bandwidth, the fact that our
design can be placed and routed with that configuration shows
us that we can go beyond the speeds of PCIe Gen3 that the
SmartSSD supports. With PCIe Gen4 still not having become
a mainstream choice and the first PCIe Gen5 SSDs having
been announced in 2023, FINESSD’s potential speeds can still
easily harness the bandwidth of the fastest available PCIe Gen5
SSDs of today at a bit under 15 GB/sec [42], [43].

VI. CONCLUSIONS

Feature selection and feature extraction represent the first
stage for analysing large and complex datasets. Both reduce
the dataset size as to accelerate the training of the appropriate
ML algorithm as well as improving the accuracy of the
inference. Feature selection has the advantage that it retains the
meaning of the features and thus can be used with explainable
ML algorithms.

FINESSD has analysed the preprocessing stage of ML
pipelines from the point of view of near-storage feature
selection and has focused on mutual information maximization
(MIM) due to its low resource requirements while providing
state-of-the-art results. We have deployed FINESSD on a
Samsung SmartSSD, a computational storage device with an
NVMe SSD, an FPGA, and a dedicated PCIe link connecting
the two in the same package. The performance evaluation
has shown how FINESSD can fully harness the bandwidth
of a modern SSD and offload from the host processors the
complete feature selection pipeline with significant end-to-end
performance and energy gains.

FINESSD introduces a novel approximation for mutual
information, and produces tailored designs which benefit from
the polymorphic nature of FPGAs. Based on counters that
record multiple feature samples at clock rate, FINESSD out-
performs the baseline methods by tackling the data transfer and
computation bottlenecks. FINESSD is the first near-storage
application of feature selection, eliminating data transfers of
low-reuse data from storage to host and increasing system-
level parallelism. An important advantage of FINESSD is that
the FPGA resources required remain constant regardless of the
size of the dataset.

A comprehensive evaluation using datasets of different
dimensions and complexity, has shown that FINESSD yields
up to 35× speedup over standard multiprocessing Python
packages, and up to 19× speedup over the FEAST optimized
C library. Using FINESSD also provides important energy
efficiency gains. The acceleration of feature selection was
limited by current SmartSSDs using PCIe Gen3. The imple-
mentation of FINESSD can take advantage of PCIe Gen5.
The evaluation has also provided the first thorough exploration
on the approximation of mutual information with resource
constraints derived for near-storage FPGAs, demonstrating the
trade-off between accuracy and hardware resources.

Finally, mutual information has many applications beyond
feature selection and ML. Other domains with large datasets
where this approximation could be applied include Medical
Imaging, Gene Analysis (reconstruction of gene networks or
multisequence alignment), Cosmology, and Solar Physics.

ACKNOWLEDGMENTS

Nikolaos Kyparissas is supported by the Department of Com-
puter Science Kilburn Scholarship. This work is partially
funded by EPSRC EP/N035127/1 (LAMBDA project) and
EP/T026995/1 (EnnCore project). Mikel Luján is supported
by a Royal Society Wolfson Fellowship and an Arm/RAEng
Research Chair Award.

REFERENCES

[1] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood
maximisation: A unifying framework for information theoretic feature
selection,” Journal of Machine Learning Research, vol. 13, no. 1, p.
27–66, jan 2012.

[2] T. Liu, S. Liu, Z. Chen, and W.-Y. Ma, “An evaluation on feature
selection for text clustering,” in Proceedings of the Twentieth Interna-
tional Conference on International Conference on Machine Learning,
ser. ICML’03. AAAI Press, 2003, p. 488–495.

[3] H. Liu and H. Motoda, Computational Methods of Feature Selection
(Chapman & Hall/CRC Data Mining and Knowledge Discovery Series).
Chapman & Hall/CRC, 2007.

[4] A. A. Freitas, “Comprehensible classification models: A position
paper,” SIGKDD Explor. Newsl., vol. 15, no. 1, p. 1–10, mar 2014.
[Online]. Available: https://doi.org/10.1145/2594473.2594475

[5] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A
review,” in Computational Methods of Feature Selection (Chapman &
Hall/CRC Data Mining and Knowledge Discovery Series), H. Liu and
H. Motoda, Eds. Chapman & Hall/CRC, 2014, ch. 2, pp. 37–64.

[6] V. Bolón-Canedo and B. Remeseiro, “Feature selection in
image analysis: a survey,” Artificial Intelligence Review,
vol. 53, no. 4, pp. 2905–2931, Apr 2020. [Online]. Available:
https://doi.org/10.1007/s10462-019-09750-3

[7] E. Hancer, B. Xue, and M. Zhang, “A survey on feature
selection approaches for clustering,” Artificial Intelligence Review,
vol. 53, no. 6, pp. 4519–4545, Aug 2020. [Online]. Available:
https://doi.org/10.1007/s10462-019-09800-w

[8] P. Dhal and C. Azad, “A comprehensive survey on feature selection
in the various fields of machine learning,” Applied Intelligence,
vol. 52, no. 4, pp. 4543–4581, Mar 2022. [Online]. Available:
https://doi.org/10.1007/s10489-021-02550-9

[9] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[10] S. Zhang and Z.-Q. Lang, “Orthogonal least squares
based fast feature selection for linear classification,” Pattern
Recognition, vol. 123, p. 108419, 2022. [Online]. Available:
https://doi.org/10.1016/j.patcog.2021.108419

[11] L. Morán-Fernández and V. Bolón-Canedo, “Finding a needle in a
haystack: insights on feature selection for classification tasks,” Journal
of Intelligent Information Systems, Nov 2023. [Online]. Available:
https://doi.org/10.1007/s10844-023-00823-y

[12] S. Liu and M. Tian, “Mutual information maximization
for semi-supervised anomaly detection,” Knowledge-Based Sys-
tems, vol. 284, p. 111196, 2024. [Online]. Available:
https://doi.org/10.1016/j.knosys.2023.111196

[13] A. Barbalace and J. Do, “Computational storage: Where are we today?”
Jan. 2021, conference on Innovative Data Systems Research 2020.

[14] D. D. Sharma, R. Blankenship, and D. S. Berger, “An introduction to
the compute express link (CXL) interconnect,” 2023.

[15] J. González-Domı́nguez, R. R. Expósito, and V. Bolón-Canedo,
“CUDA-JMI: Acceleration of feature selection on heterogeneous
systems,” Future Generation Computer Systems, vol. 102, pp. 426–436,
2020. [Online]. Available: https://doi.org/10.1016/j.future.2019.08.031

[16] S. Ramı́rez-Gallego, I. Lastra, D. Martı́nez-Rego, V. Bolón-Canedo,
J. M. Benı́tez, F. Herrera, and A. Alonso-Betanzos, “Fast-
mRMR: Fast minimum redundancy maximum relevance algorithm
for high-dimensional big data,” International Journal of Intelligent
Systems, vol. 32, no. 2, pp. 134–152, 2017. [Online]. Available:
https://doi.org/10.1002/int.21833

[17] K. Iordanou, S. M. Nikolakaki, P. Malakonakis, and A. Dollas, “A
performance evaluation of multi-fpga architectures for computations
of information transfer,” in Proceedings of the 18th International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, ser. SAMOS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1–9. [Online]. Available:
https://doi.org/10.1145/3229631.3229635

[18] D. Conficconi, E. D’Arnese, E. Del Sozzo, D. Sciuto, and M. D.
Santambrogio, “A framework for customizable FPGA-based image
registration accelerators,” in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
251–261. [Online]. Available: https://doi.org/10.1145/3431920.3439291

[19] L. Morán-Fernández, K. Sechidis, V. Bolón-Canedo, A. Alonso-
Betanzos, and G. Brown, “Feature selection with limited bit depth
mutual information for portable embedded systems,” Knowledge-
Based Systems, vol. 197, p. 105885, 2020. [Online]. Available:
https://doi.org/10.1016/j.knosys.2020.105885

[20] L. Paninski, “Estimation of entropy and mutual information,” Neural
Computation, vol. 15, no. 6, p. 1191–1253, jun 2003.

[21] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Phys. Rev. E, vol. 69, p. 066138, Jun 2004. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevE.69.066138

[22] B. C. Ross, “Mutual information between discrete and continuous data
sets,” PLOS ONE, vol. 9, no. 2, pp. 1–5, 02 2014. [Online]. Available:
https://doi.org/10.1371/journal.pone.0087357

[23] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel Programming for
FPGAs,” ArXiv e-prints, May 2018.

[24] S. A. Fahmy, “Histogram-based probability density function estimation
on FPGAs,” in 2010 International Conference on Field-Programmable
Technology, 2010, pp. 449–453.

[25] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high
level specifications,” in Proceedings. Second ACM and IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE ’04., 2004, pp. 69–70.

[26] T. Bourgeat, C. Pit-Claudel, A. Chlipala, and Arvind, “The essence
of Bluespec: A core language for rule-based hardware design,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 243–257.
[Online]. Available: https://doi.org/10.1145/3385412.3385965

[27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[28] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and
Y. S. Ki, “SmartSSD: FPGA accelerated near-storage data analytics on
SSD,” IEEE Computer Architecture Letters, vol. 19, no. 2, pp. 110–113,
2020.

[29] S. Salamat, A. Haj Aboutalebi, B. Khaleghi, J. H. Lee, Y. S. Ki,
and T. Rosing, “NASCENT: Near-storage acceleration of database sort
on SmartSSD,” in The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 262–272.
[Online]. Available: https://doi.org/10.1145/3431920.3439298

[30] S. Salamat, H. Zhang, Y. S. Ki, and T. Rosing, “NASCENT2: Generic
near-storage sort accelerator for data analytics on SmartSSD,” ACM
Trans. Reconfigurable Technol. Syst., vol. 15, no. 2, jan 2022. [Online].
Available: https://doi.org/10.1145/3472769

[31] W. Qiao, J. Oh, L. Guo, M.-C. F. Chang, and J. Cong, “FANS:
FPGA-accelerated near-storage sorting,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2021, pp. 106–114.

[32] J.-H. Kim, Y.-R. Park, J. Do, S.-Y. Ji, and J.-Y. Kim, “Accelerating large-
scale graph-based nearest neighbor search on a computational storage
platform,” IEEE Transactions on Computers, vol. 72, no. 1, pp. 278–290,
2023.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] Dask Development Team, Dask: Library for dynamic task scheduling,
2016. [Online]. Available: https://dask.org

[35] A. Pocock, FEAST: A FEAture Selection Toolbox for
C/C++ & MATLAB/OCTAVE, v2.0.0., 2017. [Online]. Available:
https://github.com/Craigacp/FEAST

[36] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[37] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in

NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

[38] P. J. Sadowski, D. Whiteson, and P. Baldi, “Searching for Higgs
Boson decay modes with deep learning,” in Advances in Neural In-
formation Processing Systems, Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, Eds., vol. 27. Curran Associates,
Inc., 2014.

[39] T. Qin and T. Liu, “Introducing LETOR 4.0 datasets,” CoRR, vol.
abs/1306.2597, 2013. [Online]. Available: http://arxiv.org/abs/1306.2597

[40] A. Kleerekoper, M. Pappas, A. Pocock, G. Brown, and M. Lujan, “A
scalable implementation of information theoretic feature selection for
high dimensional data,” in Proceedings of the 2015 IEEE International
Conference on Big Data (Big Data), ser. BIG DATA ’15. USA:
IEEE Computer Society, 2015, p. 339–346. [Online]. Available:
https://doi.org/10.1109/BigData.2015.7363774

[41] D. developers, “Dask API reference: dask ml: datasets:
make classification,” Oct 2023. [Online]. Available: https://ml.dask.org

[42] S. Downing, “Crucial T700 SSD review: The
temporary king,” May 2023. [Online]. Available:
https://www.tomshardware.com/reviews/crucial-t700-ssd-review

[43] C. Robinson, “Sabrent shows progress building the fastest
PCIe Gen5 M.2 SSD,” Jul 2023. [Online]. Avail-
able: https://www.servethehome.com/sabrent-shows-progress-building-
the-fastest-pcie-gen5-m-2-ssd/

