Exposing Bibliographic Information as Linked Open Data using Standards-based Mappings: Methodology and Results

Nikolaos Konstantinou
Nikos Houssos
Anastasia Manta

3rd International Conference on Integrated Information (IC-ININFO’13)
Prague, Czech Republic, September 5-9, 2013

09-Sep-13
Introduction

- Linked Open Data (LOD) paradigm constantly gaining worldwide acceptance
- Examples in various domains include:
 - Government data
 - http://www.data.gov.uk
 - Financial data
 - http://www.openspending.org
 - News data
 - http://www.guardian.co.uk/data
 - Cultural heritage
 - http://www.europeana.eu
 - Bibliographic information
 - http://data.ekt.gr
Why Linked Open Data (LOD)?

- Mature technological background
 - W3C Recommendations, i.e. Web standards
 - RDF, OWL, SPARQL, R2RML, but also HTTP, XML, etc.
- LOD benefits (indicatively)
 - Integration
 - With data models from other domains
 - Expressiveness
 - In describing information
 - Query answering
 - Graphs: beyond keyword-based searches
The EKT case (1/3)

- National Documentation Centre (EKT)
 - Part of the National Hellenic Research Foundation (NHRF)
 - Mission-critical digital preservation
 - Numerous repositories, maintained by teams of software engineers, librarians and domain experts
 - A living organism is created around these repositories

- **Problem statement**: How to benefit from semantic technologies while:
 - Keeping existing practices unaltered (as possible)
 - Respecting nationwide responsibility
 - Ensuring viability and durability of the result
The EKT case (2/3)

- The national archive of PhD theses (http://phdtheses.ekt.gr)
 - 29,284 theses
 - 21,793 full text records
 - 35,925 downloads from 68 countries
 - 14,742 registered users from 97 countries
 - 173,610 online views

- The Helios repository (http://helios-eie.ekt.gr)
 - 5,735 records by researchers affiliated with the NHRF
 - 1,930 full text records
 - 700 videos
The EKT case (3/3)

- Suggested methodology and approach
 - Maintain LOD repositories side-by-side with existing bibliographic content repositories
 - Respect standards to the maximum degree possible
 - Regarding technologies and vocabularies involved
 - Use open-source tools
 - R2RML Parser
 - Export database contents as RDF
 - Biblio-Transformation-Engine (BTE)
 - Process authority files
The R2RML Parser (1/3)

- An R2RML implementation
- A tool that can export relational database contents as RDF graphs, based on an R2RML mapping document
- See http://www.w3.org/2001/sw/wiki/R2RML_Parser
- R2RML
 - RDB to RDF Mapping Language
 - W3C Recommendation, as of Sept. 2012
 - Reusable mapping definitions
 - Supported by numerous tools
 - db2triples, d2rq, capsenta’s ultrawrap, openlink’s virtuoso, etc.
The R2RML Parser (2/3)

- Command-line tool
- Fully written in Java
- Open-source
- Publicly available at https://github.com/nkons/r2rml-parser
- Tested against MySQL and PostgreSQL
- Output can be written in RDF/OWL
 - N3, Turtle, N-Triple, TTL, RDF/XML notation
 - Relational database (Jena SDB backend)
The R2RML Parser (3/3)

- Covers most of the R2RML constructs
 - See https://github.com/nkons/r2rml-parser/wiki
- Allows arbitrary SQL queries to be used as logical views (rr:sqlQuery construct)
 - Allows SQL functions and function nesting
 - Allows foreign keys
- Limitations
 - No query nesting, union, intersection or difference
 - No multiple graphs from a single execution
 - No support for rr:defaultGraph, rr:graph, rr:graphMap
- Does *not* offer SPARQL-to-SQL translations
The Big Picture

- From DSpace (http://dspace.org) records to RDF

<table>
<thead>
<tr>
<th>DSpace field</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc.creator</td>
<td>Kollia, Zoe Sarantopoulou, Evangelia Cefalas, Alciviadis Constantinos Kobe, S. Samardzija, Z.</td>
</tr>
<tr>
<td>dc.date</td>
<td>2004</td>
</tr>
<tr>
<td>dc.format.extent</td>
<td>379-382</td>
</tr>
<tr>
<td>dc.identifier.uri</td>
<td>http://hdl.handle.net/10442/7055</td>
</tr>
<tr>
<td>dc.language</td>
<td>eng</td>
</tr>
<tr>
<td>dc.publisher</td>
<td>Springer</td>
</tr>
<tr>
<td>dc.title</td>
<td>Nanometric size control and treatment of historic paper manuscript and prints with laser light at 157 nm</td>
</tr>
<tr>
<td>dc.type</td>
<td>Article</td>
</tr>
<tr>
<td>dc.subject</td>
<td>Printmaking and Engraving</td>
</tr>
</tbody>
</table>

Resulting RDF snippet in turtle syntax

```
<http://data.ekt.gr/helios/item/10442/7055> a dcterms:BibliographicResource;
   dcterms:creator "Kobe, S." ,
   <http://data.ekt.gr/person/48>,
   <http://data.ekt.gr/person/14>,
   "Samardzija, Z.",
   <http://data.ekt.gr/person/112>;
   dcterms:date "2004";
   dcterms:extent "379-382";
   dcterms:identifier
   "http://hdl.handle.net/10442/7055" ;
   dcterms:language
   <http://www.lexvo.org/page/iso639-3/eng>;
   dcterms:publisher "Springer";
   dcterms:title
   "Nanometric size control and treatment of historic paper manuscript and prints with laser light at 157 nm";
   dcterms:type "Article";
   dc.subject
   <http://id.loc.gov/authorities/classification/NE1-NE978>.
```
R2RML Mapping Definition Example

@prefix map: <#>.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix dcterms: <http://purl.org/dc/terms/>.
map:items
rr:logicalTable <#item-view>;
rr:subjectMap [
 rr:template 'http://data.ekt.gr/helios/item/{"handle"}';
 rr:class dcterms:BibliographicResource;].
map:dc-description-abstract
rr:logicalTable <#dc-description-abstract-view>;
rr:subjectMap [rr:template 'http://data.ekt.gr/helios/item/{"handle"}';];

<select query="""" data烊e="""">SELECT h.handle AS handle, mv.text_value AS text_value
FROM handle AS h, item AS i, metadatavalue AS mv, metadataschemaregistry AS msr,
metadatafieldregistry AS mfr WHERE i.in_archive=TRUE AND
h.resource_id=i.item_id AND
h.resource_type_id=2 AND
msr.metadata_schema_id=mfr.metadata_schema_id AND
mfr.metadata_field_id=mv.metadata_field_id AND
mv.text_value is not null AND
i.item_id=mv.item_id AND
msr.namespace = 'http://dublincore.org/documents/dcmi-terms/'
AND
mfr.element='description' AND
mfr.qualifier='abstract' """"."
Biblio-Transformation-Engine (BTE)

- An open-source java framework
- Part of the core DSpace distribution (release 3.0)
- Enables importing Items via basic bibliographic formats
 - Endnote, BibTex, RIS, TSV, CSV
Authority files

- Using BTE, a graph with researcher records is exported

- Input
 - MADS*-based XML

- Output
 - MADS/RDF
 - Subjects of the form http://data.ekt.gr/persons/{researcher_id}

* Metadata Authority Description Schema: http://www.loc.gov/standards/mads/
The L in LOD

- Open Data is *Linked* when it contains links to other URI’s
 - Allows the user to discover more things
- In the EKT case, we linked fields
 - `dc.language` to lexvo.org (language-related concepts)
 - `dc.subject` to LCC terms (Library of Congress Classification)
 - E.g. “Printmaking and Engraving” to http://id.loc.gov/authorities/classification/NE1-NE978
System Architecture

• Virtuoso-backed quadstore
 • Hosts RDF dumps from repository contents
 • Integrated query capabilities
 • Exposes a SPARQL endpoint and a faceted browser

Greek PhD theses repository

NHRF Helios repository

repository metadata → mapping definition → http://data.ekt.gr → mapping definition → repository metadata
Virtuoso – data.ekt.gr

- SPARQL endpoint
 - http://data.ekt.gr/sparql
 - Allows arbitrary SPARQL queries on all graphs
 - Results in HTML, JSON, RDF/XML, CSV etc.
 - Allows programmatic access

- Faceted view
 - http://data.ekt.gr/fct

- Full-text search capabilities
Discussion – Benefits (1/2)

- Semantic annotation
 - Data is unambiguously interpreted and understood by humans and software clients
- Query simplification
 - Complex SQL queries can be mapped to concepts

SPARQL Query: Article abstracts

```sparql
SELECT ?id ?abstract
FROM <http://data.ekt.gr/helios>
FROM <http://data.ekt.gr/phdtheses>
WHERE {
  ?a rdf:type
dcterms:BibliographicResource .
?a dcterms:identifier ?id .
?a dcterms:abstract ?abstract }
```

SQL Query: Article abstracts

```sql
SELECT h.handle AS handle, mv.text_value AS text_value
FROM handle AS h, item AS i, metadatavalue AS mv, metadataschemaregistry AS msr, metadatafieldregistry AS mfr
WHERE
  h.in_archive = TRUE AND
  h.resource_id = i.item_id AND
  h.resource_type_id = 2 AND
  msr.metadata_schema_id = mfr.metadata_schema_id AND
  mfr.metadata_field_id = mv.metadata_field_id AND
  mv.text_value IS NOT NULL AND
  i.item_id = mv.item_id AND
  msr.namespace = 'http://dublincore.org/documents/dcmi-terms/' AND
  mfr.element = 'description' AND
  mfr.qualifier = 'abstract' ""
```

3rd International Conference on Integrated Information (IC-ININFO’13)
Discussion – Benefits (2/2)

- Increased discoverability
 - Through interconnections to other datasets
- Reduced effort required for schema modifications
 - New concepts can be created without altering the source schema
- Synthesis
 - Integration, fusion, mashups
- Inference
 - Reasoning is possible over the result
- Reusability
 - Third parties can reuse the data
Discussion – Challenges (1/2)

- Multidisciplinarity
 - Computer Science, Library Science
 - Contributions from both domains are required
- The technological barrier
 - No advanced mapping tools exist yet
 - Presence of a technical expert is required
- Result is prone to errors
 - Even after the resulting graph is produced
 - Lack of validation or automation can leave errors or bad practices go unnoticed
Discussion – Challenges (2/2)

- Concept mismatch
 - RDB fields and values may not be exact matches to RDF concepts and instances
 - Identical mappings will not always be present

- Exceptions to general mapping rules
 - Automated curation procedures will apply to the majority but not to all metadata fields and values
 - Post-transformation manual interventions will be required
Synchronous vs. Asynchronous access

• Asynchronous: persistent RDF views
 • Data is exposed periodically
 • RDF graph is materialized
 • Data does not change as frequently as it does in e.g. sensor or social network data
 • More viable option in the case of digital repositories

• Synchronous: transient views
 • Real-time SPARQL-to-SQL translation
 • RDF data is not materialized (as in SQL views)
 • Queries are round-trips to the database
 • Higher cost in terms of computational burden
 • Small benefit (since data does not change frequently)
Conclusions – Future Work

• Conclusions
 • Balance between
 • Experimenting with state-of-the-art technologies
 • Initial investment pays off in numerous ways
 • Carrying the responsibility of maintaining national archives
 • Ensure dataset high value and, most importantly, its viability

• Future work
 • Put more effort in R2RML Parser development
 • Cover more R2RML functionality, offer more related services
 • Improve dataset
 • Quantity: Map and export more database fields, and more datasets as RDF graphs in http://data.ekt.gr
 • Quality: Denser links to other datasets
Thank you!
Questions?