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Aim of the talk

Step 1. Analysis of the dependent type theories considered
in Univalent Foundations

Step 2. New setting for the development of homotopical
algebra

Step 3. Homotopy-theoretic ideas feed back into
dependent type theories

Step 2: work by Awodey, van den Berg and Garner, Joyal,
Lumsdaine and Warren, Shulman, Voevodsky, ...



Plan of the talk

1. Review of dependent type theories

2. Homotopy-theoretic aspects of dependent type theories

3. Homotopy-initial natural numbers



1. Review of dependent type theories



Dependent type theories (I)

Key idea. We have types and their elements
A : type a:A
and also dependent types and their elements

x: AF B(z): type x:AFb(z): B(x)

Examples.
» 0: Nat
> [3,14,2]: List(Nat)

» n: Nat i List, (Bool): type
> z: Abrefl(z): lda(z, x).



Dependent type theories (II)

In general, dependent types and their elements have the form
I'HA:type 'Fa:A

where I' is a context, i.e. a sequence of variable declarations

(:Uo: AO , L1 Al(xo) M An(.%'(),...,.l‘n_l)>

Examples.
» n: Nat,/: List,(Nat) - reverse(?): List, (Nat)

> z,y,z: Ayuc lda(x,y),v: Ida(y, 2) F trans(u, v): 1dg(z, 2).

We write () for the empty context.



Dependent type theories (I1I)

A dependent type theory has:
(1) Structural rules
(2) Rules for primitive types, e.g.
Empty, Unit, Bool, Nat
(3) Rules for forming new types from old, e.g.

AxB, A— B, A+B,
lda(a,b), (Xx:A)B, (Illz:A)B.

These rules have an abstract description (cf. typed A-calculus).



The syntactic category

The syntactic category of a dependent type theory 7' has:

» Objects: contexts I', A, ...

» Morphisms: terms-in-context, e.g.

I' = (z: A) < (a), whereI'Fa: A
Do o Ay B) = (@b), whee 3 "7
— (x: A,y: B(z)) <= (a,b), where
Y T'Fb: Bla)

Examples.
» A morphism (x: A) — (y: B) is a family x: AF f(x): B.

» A morphism () — (z: A) is an element a: A.



Display maps

Definition. A display map is a morphism of the form
pa: (T,z: A) — (),

given by the list of the variables in I', where I' - A: type.

Examples.
> (z): (z: Ayy: B(x)) — (z: A)
> (z,y): (x: A,y: B(x),z: C(z,y)) — (z: A,y: B(x))



Dependent elements as sections

Remark. For a dependent type I' - A: type, a section of pg

R

Ta: A) —5—— ()

is the same thing as a dependent element
I'ka: A

The section is given by the sequence (... , a).

Note. For I' = (), we have just a: A, as before.



Substitution as pullback

For every

» display map pa: (I',z: A) —» T
» context morphism o: A —» T

we have a pullback diagram

(A, z: Alo]) — (T,

£

A4)

Example.




Basic axiomatic setting

Definition. A category with projections consists of
» a category C with a terminal object 1
» a class of maps P, called projections
such that:
» P contains isomorphisms and is closed under composition,

» For every morphism p: £ — Ain P and f: B — A, there
is a pullback
F——FE

q p

BT>A

with ¢: F¥ — B in P.
» Every map A — 1 isin P.



Examples of categories with projections

1. The syntactic category of a dependent type theory, with

P = closure of display maps under composition and isomorphisms

2. The category of Kan complexes (= ‘spaces’), with

P = Kan fibrations (= ‘good projections’ )



Y-types and II-types

> Y-types are types of pairs:
Ix: AF B(z): type 'a: A T'Fb: B(a): type
'k (Xz: A)B(x) I'F pair(a,b): (Xz: A)B(z)

» II-types are types of sections:

Ix: AF B(z): type Ix: AFb(z): B(x): type

'+ (Ilx: A)B(x) L' (Az: A)b(x): (Tlx: A)B(x)

Strong versions of their rules correspond to existence of
adjunctions to the pullback functor along (I',z: A) — (I").

For identity types, ideas of homotopical algebra are necessary.



2. Homotopical aspects of

dependent type theories



Analogy

Type theory

A: type

a: A

x: AF B(z): type
A b(x): B(x)

8

x,y: At lda(z,y)

Homotopy theory

A space
point a € A
fibration p: B — A

section of p: B — A

path space AT — A x A



ld-types (I)

Formation rule.

A:type a:A b:A

Id4(a,b) : type

Introduction rule.

a:A
refl(a) : 1d4(a, a)

Idea. p € ldg(a,b) <= p is a proof that a equals b.



ld-types (II)

Elimination rule.

z,y: Ayu:lda(z,y) b E(x,y,u) :type z: Ak d(z): E(x,z,refl(x))
x,y: Ayuclda(z,y) B I(z,y,y,d) : E(x,y,u)

Computation rule.

z,y: Ayu:lda(z,y) b E(x,y,u) :type z: At d(z): E(x,refl(z))
x: A J(x, z,refl(z),d) = d(z) : E(x,z,refl(x))




Identity types in the syntactic category (I)
Formation rule. A display map
p:(x: Ajy: Ayu: lda(z,y)) — (x: Ayt A)
Introduction rule. A factorisation

(x: A) (z,z,refl(z))

(x: Ayy: A u: lda(z,y))

(z,x) /

(x: Ayy: A)



Identity types in the syntactic category (II)

Elimination and computation rule. A diagonal filler for
diagrams

(z,x,refl(z),d(z))

(z: A) (z,y: Ayu: ld(z,y),z: E(x,y,u))

(x,m,refl(m))‘ lpE

(z,y: Ayu: ld(z,y)) — (x,y: Ayu: ld(z,y))




Anodyne maps

Let (C,P) be a category with a class of projections.

Definition. We say that i: X — Y is an anodyne map if it
has the left lifting property with respect to every projection, i.e.
every diagram

X—F

)

Y——B

with p: £ — B in P, has a diagonal filler.

Example. The morphism
(x,z,refl(x)): (x: A) = (z,y: A, u: ld(z,y))

is anodyne.



Homotopical categories with projections

Definition. We say that a category with a class of projections
(C,P) is homotopical if

» every map factors as an anodyne map followed by a
projection:

» the pullback of an anodyne map along a projection is
anodyne.



Examples

1. The syntactic category of a dependent type theory with
identity types is homotopical (Gambino and Garner).

For example:

(f(2))

(x: A) (y: B)

(f(z),z,refl(x)

(y: Byx: A,u: ld(f(x),y)

2. The category of Kan complexes is homotopical.



Relation to homotopical algebra

Homotopical categories with projections are a weakening of
many structures considered in homotopical algebra.

In particular:
» Minimal assumptions on C
(no completeness and cocompleteness)

» Just path objects, not cylinder objects
(assumed in a model category)

» No functoriality of the factorisation
(often assumed in the theory of model categories)

Note. Strengthenings by adding
» Il-types and function extensionality
» higher inductive types (Lumsdaine and Shulman)

» Univalence axiom



The Univalence axiom

Fix a type universe U: type.

A: U <= Ais a ‘small type’

For each A, B: U, we have:
> IdU(A7 B)
» the type Equiv(A, B) of equivalences f: A — B.

» a function

Idy(A, B) — Equiv(A, B)

Univalence Axiom. The function Idy(A4, B) — Equiv(A, B) is
an equivalence.



3. Homotopy-initial natural numbers



The type of natural numbers (I)

Formation rule.

Nat : type

Introduction rules.

n : Nat
0 : Nat _
succ(n) : Nat



The type of natural numbers (II)

Elimination rule.

x:Natk E(z):type d:E(0) z:Naty:E(z)F e(r,y): E(succ(z))

x: Nat - natrec(z,d, e) : E(x)

Computation rules.

x:Natk E(z):type d:E(0) z:Nat,y: E(z)F e(z,y): E(succ(z))

natrec(0,d, e) = d : E(0)

x:Natk E(z):type d:E(0) z:Nat,y:E(z)F e(r,y): E(succ(z))

2 : Nat F natrec(succ(z), d, e) = e(z, natrec(u, d, e)) : E(succ(z))



Homotopy-invariance

Note. If f: A — Nat is an equivalence, then A will satisfy

» the introduction rules for Nat,
» the elimination rules for Nat,

» the computation rules, modified by having propositional
equalities in the conclusion.

We call such a type inductive.



Successor algebras

Definition.

» A successor algebra is a tuple (4, s4,04), where A is a
type, sa: A — Aand 04: A.

» A morphism of successor algebras
(f, fsr fo): (A,54,04) = (B, sp,0p)
is a function f: A — B together with
fstld(spof,fosa), forld(f(04),0p).
These are proofs that the diagrams commute:

= ()4

A B
SAJ/ lsB \) f
A——B U B

f



Homotopy-initial successor algebras

Note. For successor algebras A and B, we can form the type

SuccAlg[A, B] =4t (Sf: A — B)(Id(spof, fosa)xId(f(04),05))

of successor algebra morphisms from A to B.

Definition. A successor algebra A is homotopy-initial if for
any successor algebra B the type SuccAlg[A, B] is contractible,
i.e. it has a unique element up to propositional equality.

Note.
» What is required is uniqueness of tuples.

» Homotopy-theoretic variant of initiality.



A characterisation

Theorem (Awodey, Gambino, Sojakova) For a successor
algebra A, the following are equivalent:
1. A is equivalent to Nat

2. A is inductive

3. A is homotopy-initial.

Note.
» Special case of general result on W-types.

» Result can be internalized.



Conclusion

The interplay between dependent type theory and homotopy
theory:

> suggests a new, refined axiomatic setting for developing
homotopical algebra, yet to be fully explored.

» provides new, topologically-inspired, intuition for working
with dependent type theories.



