
Constructive Mathematics
in Constructive Set Theory

Nicola Gambino

University of Palermo

MALOA Worskhop
Leeds, June 30th 2011



Classical vs Constructive Mathematics

AC EM Pow

ZFC X X X

ZF 7 X X

IZF 7 7 X

Topos Theory 7 7 X

Constructive Set Theory 7 7 7

Constructive Type Theory 7 7 7



Constructive topology?

Problem

I Can we develop topology in Constructive Set Theory?

Issues

I Sometimes AC is essential. E.g.

Tychonoff’s Theorem ⇐⇒ Axiom of Choice.

I Use of EM and Pow is widespread in classical topology.

I Classically equivalent structures become distinct. E.g.

Dedekind reals 6= Cauchy reals.



Some developments

Pointfree topology (Banaschewski, Isbell, Johnstone, Vickers,
. . . )

I Traditionally developed in ZF or Topos Theory

I Focus on frames and locales

Formal Topology (Martin-Löf, Sambin, Coquand, Schuster,
Palmgren, . . . )

I Traditionally developed in Constructive Type Theory

I Focus on formal topologies

Formal Topology in CST (Aczel, Curi, Palmgren . . . )

I Work in CZF, CZF+ or even fragments of CZF

I Focus on both frames and formal topologies
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Part I

The basic notions



From topological spaces to frames

Let (X,O(X)) be a topological space. The set O(X) is

I a partial order
U ≤ V =def U ⊆ V ,

I a complete join-semilattice∨
i∈I

Ui =
⋃
i∈I

Ui ,

I a meet-semilattice:

U ∧ V =def U ∩ V .

Furthermore, it satisfies the distributivity law

U ∧
∨
i∈I

Vi =
∨
i∈I

(U ∧ Vi)



Frames

Definition. A frame is a partially ordered set (A,≤) having
arbitrary joins and binary meets which satisfy the distributive
law

a ∧
∨
S =

∨
{a ∧ x | x ∈ S}

for every a ∈ A and S ⊆ A.

Note. Every frame is a complete lattice, since∧
S =def

∨
{a ∈ A | (∀x ∈ S) a ≤ x} .

Examples. P(X) is a frame.



Pointfree topology

Key idea

I Replace topological spaces by frames

I Work with frames as ‘generalized spaces’.

Fundamental adjunction

O : Top←→ Frmop : Pt

where

I Top = category of topological spaces and continuous maps,

I Frm = category of frames and frame homomorphisms.



Problems for Constructive Set Theory

If we try to represent this in CZF we run into problems, e.g.

I O(X) is not a frame in CZF, since in general it is not a set.

I P(X) is not . . .

Idea

I We allow frames to be classes.

I We add data to have arbitrary meets and top element.



Set-generated frames

New Definition. A frame is a partially ordered class (A,≤)
with joins for all S ∈ P(A), a top element and binary meets
satisfying the distributivity law.

Definition. A set-generated frame is a frame equipped with
a generating set, i.e. a set G such that

I For all a ∈ A, the class Ga =def {x ∈ G | x ≤ a} is a set.

I For all a ∈ A, we have a =
∨
Ga.

Observation. In a set-generated frame, we can define the meet
of S ∈ P(A) by∧

S =def

∨
{a ∈ G | (∀x ∈ S)x ≤ a}



Examples

I Let X be a set. The class P(X) is a set-generated frame.
A generating set is {{x} | x ∈ X}.

I Let (X,≤) be a poset. A lower subset of X is a subset
U ⊆ X such that

U = ↓U

where
↓U =def {x ∈ X | (∃u ∈ U)x ≤ u}

The class L(X) of lower subsets is a set-generated frame.
The generating set is {↓ {x} |x ∈ X}.

It is convenient to have an alternative way of working with
set-generated frames.



Formal topologies

Definition. A formal topology consists of a poset (S,≤)
equipped with a cover relation, i.e. a relation

a� U (for a ∈ S , U ∈ P(S))

such that

(1) if a ∈ U then a� U ,

(2) if a ≤ b and b� U then a� U ,

(3) if a� U and U � V then a� V ,

(4) if a� U and a� V then a� U ↓ V ,

(5) for every U ∈ P(S), the class {x ∈ S | x� U} is a set,

where

U � V =def (∀x ∈ U)x� V ,

U ↓ V =def ↓U ∩ ↓V .



Formal topologies vs set-generated frames

Proposition.

1. For a set-generated frame (A,≤,
∨
,∧,>, G), we can define

a cover relation on (G,≤) by letting

a� U ⇐⇒ a ≤
∨
U .

2. For a formal topology (S,≤,�), the class of the subsets
U ⊆ S such that

U = {x ∈ S | x� U}

has the structure of a set-generated frame.

Note. This result extends to an equivalence of categories.



Points

Let (S,≤,�) be a formal topology.

Definition. A point of S is a subset α ⊆ S such that, letting

α 
 a =def a ∈ α ,

we have that

1. α is inhabited

2. If α 
 a and a ≤ b then α 
 b

3. If α 
 a1, α 
 a2 then there is a ≤ a1, a2 such that α 
 a

4. If α 
 a and a� U then there is x ∈ U such that α 
 x.

Note. The points of S form a (large) topological space, Pt(S).



Example: the formal Dedekind reals

Define a formal topology (R,≤,�) as follows:

I R =def {(p, q) | p ∈ Q ∪ {−∞}, q ∈ Q ∪ {+∞} , p < q}
I (p, q) ≤ (p′, q′) iff p′ ≤ p and q ≤ q′.
I The cover relation is defined inductively by the rules

(p, q) ∈ U

(p, q) � U

(p, q) ≤ (r, s) (r, s) � U

(p, q) � U

(p, q′) � U (p′, q) � U
for p ≤ p′ ≤ q′ ≤ q

(p, q) � U(
∀(p′, q′) < (p, q)

)
(p′, q′) � U

(p, q) � U

Proposition. The space Pt(R) is homeomorphic to R.



Example: the formal Cantor space

Define a formal topology (C,≤,�) as follows:

I C =def set of finite sequences of 0’s and 1’s.

I For p, q ∈ C, let

p ≤ q iff q is an initial segment of p

I The cover relation is defined inductively by the rules

p ∈ U

p� U

p ≤ q q � U

p� U

p · 0 � U p · 1 � U

p� U

Proposition. The space Pt(C) is homeomorphic to 2N.



Example: the double negation formal topology

Consider 1 =def {0} as a discrete poset and let Ω =def P(1)

For a ∈ 1 and U ∈ Ω define

a� U =def ¬¬a ∈ U .

To check:

1. If a ∈ U then ¬¬a ∈ U
2. If a = b and ¬¬b ∈ U then ¬¬a ∈ U
3. If ¬¬a ∈ U and (∀x ∈ U)¬¬x ∈ V then ¬¬a ∈ V
4. If ¬¬a ∈ U and ¬¬a ∈ V then ¬¬a ∈ U ∩ V
5. For every U ∈ Ω, the class {x ∈ 1 | ¬¬x ∈ U} is a set.



Part II

Further topics



Covering systems

Let (S,≤) be a poset.

Definition. A covering system on (S,≤) is a family of sets

( Cov(a) | a ∈ S )

such that

1. if P ∈ Cov(a) then P ⊆ ↓ a,

2. if P ∈ Cov(a) and b ≤ a, then there is Q ∈ Cov(b) such that

(∀y ∈ Q)(∃x ∈ P ) y ≤ x .

Note. Compare with the notion of a Grothendieck coverage.



Inductively defined formal topologies

Let ( Cov(a) | a ∈ S ) be a covering system on (S,≤).

We define inductively a cover relation on (S,≤) by the rules

a ∈ U

a� U

a ≤ b b� U

a� U

P � U
for P ∈ Cov(a)

a� U

Proposition. (S,≤,�) is a formal topology.

Examples.

I The formal Dedekind reals

I The formal Cantor space

U ∈ Cov(p)⇐⇒ U = {p · 0 , p · 1}



A characterization

Theorem (Aczel). A formal topology (S,≤,�) is inductively
defined if and only if it is set-presented, i.e. there exists

R : S → P(S)

such that
a� U ⇔ (∃V ∈ R(a))V ⊆ U

Proof. Application of the Set Compactness Theorem.

Theorem. The double-negation formal topology is not
set-presented.



The fundamental adjunction

Classically, there is an adjunction

O : Top←→ Frmop : Pt

Peter Aczel has obtained a version of this adjunction in CZF

O : Top1 ←→ Frmop
1 : Pt

where

I Top1 is equivalent to Top in IZF

I Frm1 is equivalent to Frm in IZF

The proof of this result involves subtle size conditions.
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