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Constructive topology?

Problem

» Can we develop topology in Constructive Set Theory?

Issues

» Sometimes AC is essential. E.g.
Tychonoff’s Theorem <= Axiom of Choice.

» Use of EM and Pow is widespread in classical topology.

» Classically equivalent structures become distinct. E.g.

Dedekind reals # Cauchy reals.



Some developments

Pointfree topology (Banaschewski, Isbell, Johnstone, Vickers,

» Traditionally developed in ZF or Topos Theory

» Focus on frames and locales

Formal Topology (Martin-Lof, Sambin, Coquand, Schuster,
Palmgren, ...)

» Traditionally developed in Constructive Type Theory

» Focus on formal topologies

Formal Topology in CST (Aczel, Curi, Palmgren ...)
» Work in CZF, CZF* or even fragments of CZF

» Focus on both frames and formal topologies
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Part 1

The basic notions



From topological spaces to frames

Let (X, O(X)) be a topological space. The set O(X) is

» a partial order
U<V =4t UCV,

» a complete join-semilattice

\/Uz':UUi7

i€l i€l
» a meet-semilattice:

UANV =4 UNV.

Furthermore, it satisfies the distributivity law

UA\Vi=\/(UAV)
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Frames

Definition. A frame is a partially ordered set (A, <) having
arbitrary joins and binary meets which satisfy the distributive

law
a/\\/S:\/{a/\x\weS}

for every a € A and S C A.

Note. Every frame is a complete lattice, since

/\S:def\/{aeA\(VxeS)aga:}.

Examples. P(X) is a frame.



Pointfree topology

Key idea

» Replace topological spaces by frames
» Work with frames as ‘generalized spaces’.
Fundamental adjunction
O: Top «+— Frm®: Pt

where

» Top = category of topological spaces and continuous maps,

» Frm = category of frames and frame homomorphisms.



Problems for Constructive Set Theory

If we try to represent this in CZF we run into problems, e.g.
» O(X) is not a frame in CZF, since in general it is not a set.

» P(X)isnot ...

Idea

» We allow frames to be classes.

» We add data to have arbitrary meets and top element.



Set-generated frames

New Definition. A frame is a partially ordered class (A, <)
with joins for all S € P(A), a top element and binary meets
satisfying the distributivity law.

Definition. A set-generated frame is a frame equipped with
a generating set, i.e. a set GG such that

» For all a € A, the class G, =gef {z € G | © < a} is a set.
» For all a € A, we have a = \/ G,,.

Observation. In a set-generated frame, we can define the meet

of S € P(A) by

NS =at \/{a € G| (Vz € S)z <a}



Examples

» Let X be a set. The class P(X) is a set-generated frame.
A generating set is {{z} | z € X}.
» Let (X, <) be a poset. A lower subset of X is a subset
U C X such that
U=1U

where

LU =get {z € X | (FuelU)z<u}

The class £(X) of lower subsets is a set-generated frame.
The generating set is {| {z} |z € X}.

It is convenient to have an alternative way of working with
set-generated frames.



Formal topologies

Definition. A formal topology consists of a poset (S, <)
equipped with a cover relation, i.e. a relation

aU (forae S, UeP(9))
such that
(1) ifa € U then a < U,
(2) ifa<band b<U then a<U,
(3) ifa<U and U<V thena <V,
(4) ifa<U and a <V thena<U |V,
(5) for every U € P(S), the class {xr € S | z < U} is a set,

where
U<V =4 (VzxeU)zaV,
UlV =4 JUNLV.



Formal topologies vs set-generated frames

Proposition.

1. For a set-generated frame (A, <,\/,A, T,G), we can define
a cover relation on (G, <) by letting

a<U<:>a§\/U.

2. For a formal topology (5, <, <), the class of the subsets
U C S such that

U={zeS|z<U}

has the structure of a set-generated frame.

Note. This result extends to an equivalence of categories.



Points

Let (S, <, <) be a formal topology.
Definition. A point of S is a subset @ C S such that, letting
alka =qef a € a,

we have that

—_

« is inhabited

2. If altaand a <bthen alFbd

3. If alF a1, a Ik as then there is a < a1, a9 such that al- a
4. If alF @ and a < U then there is z € U such that « I z.

Note. The points of S form a (large) topological space, Pt(.5).



Example: the formal Dedekind reals

Define a formal topology (R, <, <) as follows:

) —

> R:def {(paQ) ‘ b € QU{—OO},(] € QU{+OO}7P < Q}
> (p,q) < (p,¢) iff p’ <pand ¢ <q'.
» The cover relation is defined inductively by the rules

() €U (p,q) <(r,s) (r,s)<U

(p,q) <U (p,q) U

(p,d)<U (,q)<U
(p,q) U
V@',d) < (p,q) (.d)<U

(pq) U
Proposition. The space Pt(R) is homeomorphic to R.

forp<p' <¢ <gq




Example: the formal Cantor space

Define a formal topology (C, <, <) as follows:
> C =qer set of finite sequences of 0’s and 1’s.
» For p,q € C, let

p < q iff ¢ is an initial segment of p

» The cover relation is defined inductively by the rules

pelU p<q q<U p-0<U p-1<aU

p<1U p<aU p<aU

Proposition. The space Pt(C) is homeomorphic to 2V.



Example: the double negation formal topology
Consider 1 =g¢f {0} as a discrete poset and let Q =4t P(1)

For ¢ € 1 and U € () define

a<dU =qef —a € U .

To check:
1. If a € U then =—a € U
If a =band =—b € U then =-—a € U
If ~—a €U and (Vo € U)——z € V then =—a € V

If =—a € U and ——a € V then ~—a € UNV
For every U € , the class {z € 1 | ==z € U} is a set.

ARl o



Part II
Further topics



Covering systems

Let (S, <) be a poset.
Definition. A covering system on (S, <) is a family of sets

(Cov(a) |a€Ss)
such that
1. if P € Cov(a) then P C | a,
2. if P € Cov(a) and b < a, then there is ) € Cov(b) such that

MyeQ)Fxe P)y<z.

Note. Compare with the notion of a Grothendieck coverage.



Inductively defined formal topologies

Let (Cov(a) | a € S') be a covering system on (S, <).

We define inductively a cover relation on (.S, <) by the rules

acU a<b baU PaU
a<1U aU a<U

for P € Cov(a)

Proposition. (5, <, <) is a formal topology.

Examples.
» The formal Dedekind reals

» The formal Cantor space

UeCov(p)<—=U={p-0,p-1}



A characterization

Theorem (Aczel). A formal topology (S, <, <) is inductively
defined if and only if it is set-presented, i.e. there exists

R: S = P(S)

such that
a<1U < (AV € R(a))V CU

Proof. Application of the Set Compactness Theorem.

Theorem. The double-negation formal topology is not
set-presented.



The fundamental adjunction

Classically, there is an adjunction

O: Top «+— Frm®: Pt
Peter Aczel has obtained a version of this adjunction in CZF

O: Top, +— Frm{": Pt

where
» Top, is equivalent to Top in [ZF

» Frm, is equivalent to Frm in IZF

The proof of this result involves subtle size conditions.
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