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14.1 Introduction

Snow avalanches, landslides, rock falls and debris flows are extremely dangerous
and destructive natural phenomena. The frequency of occurrence and ampli-
tudes of these disastrous events appear to have increased in recent years perhaps
due to recent climate warming. The events endanger the personal property and
infra-structure in mountainous regions. For example, from the winters 1940/41
to 1987/88 more than 7000 snow avalanches occurred in Switzerland with dam-
aged property leading to a total of 1269 deaths. In February 1999, 36 people
were buried by a single avalanche in Galtiir, Austria. In August 1996, a very
large debris flow in middle Taiwan resulted in 51 deaths, 22 lost and an approx-
imate property damage of more than 19 billion NT dollars (ca. 600 million US
dollars) [18]. In Europe, a suddenly released debris flow in North Italy in Au-
gust 1998 buried 5 German tourists on the Superhighway “Brenner—Autobahn”.
The topic has gained so much significance that in 1990 the United Nations
declared the International Decade for Natural Disasters Reduction (IDNDR);
Germany has its own Deutsches IDNDR—-Komitee fiir Katastrophenvorbeugung
e.V. Special conferences are devoted to the theme, e.g. , the CALAR confer-
ence on Avalanches, Landslides, Rock Falls and Debris Flows (Vienna, January
2000), INTERPRAEVENT, annual conferences on the protection of habitants
from floods, debris flows and avalanches, special conferences on debris flow haz-
ard mitigation and those exclusively on Awvalanches.

With increasing population and with the popularization of the tourism in
the mountainous regions the damage equally increases, occasionally leading to
excessive devastation. Reliable methods for the prevention or reduction of the
effects of such disasters consist, on the one hand, in predicting the disaster itself
and, on the other hand, in the determination of the likely paths of the flows, the
maximum run-out distances as well as the protection against such destructive
flows. They are of considerable interest to civil and environmental engineers and
civil servants of municipalities responsible for the planning and development in
populated mountainous regions. The Savage-Hutter theory [19120] and its three-
dimensional extension [4/15] for the gravity-driven, free-surface flow of granular
material has proved to model such flows adequately and is now established as
one of the leading models for this purpose. We will show in these lecture notes,
how these model equations can be constructively used to describe these flows.
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A successful verification of an avalanche model by laboratory experiments is
a necessary requirement for it to have a chance also to be adequate in realistic
situations. This second proof still needs to be completed by applying it to a
real avalanche event. For the time being, we are confident on the basis that our
model extends a well established model of Voellmy [26] to account for the im-
portant geometric deformations of an avalanche along its track. Entrainment of
material along the avalanche track can be incorporated, and is a very significant
process in real avalanches, but it is not yet incorporated in our model, because
no experimental method has so far been found by which an entrainment model
could be verified in the laboratory. Entrainment to and deposition from a moving
granular mass are however very significant in realistic flows and constitute the
“last” unsolved item in the mathematical model to be presented below.

Reviews on the subject are e.g. given in [8]9]. A further article on avalanches
— mostly from the practical side — is given by Ancey (Chap. [3).

14.2 The Granular Avalanche Model
of Savage & Hutter [

The Savage-Hutter theory [19] is a continuum theory to describe the two-dimen-
sional motion of a finite mass avalanche over a rough inclined slope@. The dry
cohesionless granular material is assumed to be incompressible with constant
density pg throughout the entire body. During flow the body behaves as a Mohr—
Coulomb plastic material at yield, which slides over a rigid basal topography.
Scaling analysis isolates the physically significant terms in the governing equa-
tions and identifies those terms that can be neglected. Finally, depth integration
reduces the theory by one spatial dimension.

A simple curvilinear coordinate system was introduced by Savage & Hutter
[20] to enable the avalanche motion to be modelled from initiation on a steep
slope to run-out on a rough curved bed. The coordinates are defined and aligned
with the curved rigid basal topography, so that the local inclination angle ¢
varies as a function of the downslope coordinate x.

The Savage-Hutter theory has been extended to three-dimensions by Hutter
et al. [15], Greve et al. [6], Gray et al. [4], and Wieland et al. [27] for the case of

! This section is taken from [24].

2 All avalanche models known to us and used in practice are essentially based on
Voellmy’s [26] original model, which may be interpreted as a rigid mass or hydraulic
model (depending on view point). In these models, the physics is incorporated in
the parameterization of the resistive forces comprising of a Coulomb and a viscous
type contribution. The modern trend is to use the basic balance laws of physics and
to account for the internal physics as well as the variation of the basal topography,
just as attempted in the Savage—Hutter model in a very simple form. There have
been attempts to model avalanches by molecular dynamics procedures, and these
are successful when the number of particles or grains is small, i.e. a few hundred or
thousand, as e.g. in rock falls. Possible farther reaching conceptual formulations of
both the continuum and molecular dynamics concepts are given in Chap. 4] and the
literature cited there.
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unconfined three-dimensional flow. Hutter et al. [15] derived the leading order
equations for the motion of unconfined flow on an inclined plane with constant
inclination angle. Greve et al. [6] introduced a quasi one-dimensional curvilinear
system to model unconfined flow on a simple chute without lateral curvature,
whilst Gray et al. [4] generalized this theory to allow the flow over complex three-
dimensional topography. The final three-dimensional theory is able to predict
the flow over realistic topography and provide information about the maximum
run-out distance in site specific applications.

In this section a brief introduction to the Savage-Hutter theory and its three-
dimensional extension over realistic topography is given. Different from the pro-
cedure of the original derivation in [19], the governing equations are integrated
through the depth before the procedure of scaling analysis. In accordance with
the conservation laws of mass and linear momentum the governing equations
are derived in conservative form as described in [4], which will be used to model
granular shocks that have been observed in laboratory experiments, as they are
in conservative form and therefore allow discontinuities in the physical variables
to be considered.

14.2.1 Governing Equations in Conservative Form

The avalanche is treated as a material with constant densit po throughout the
entire avalanche body, the local differential forms of the mass and momentum
conservation laws are therefore

divv =0, (14.1a)

ov . .
po{a +d1v(v®’v)} =—divp+pog, (14.1b)

where v is the velocity, ® the dyadic product, p the pressure tensor and g the
gravitational acceleration.

Following [19], the body is assumed to have Mohr—Coulomb constitutive
properties. This implies that yield occurs when the internal shear stress S and
the normal pressure N are related by

|S| = N tang , (14.2)

where ¢ is the so-called internal friction angle.

The body is subject to kinematic and traction boundary conditions at the
free surface F*(x, t) = 0 and at the base F®(x, t) = 0 of the avalanche. The
kinematic boundary conditions are

S

5 +v°-grad F° =0, (14.3)
OF®
W—&-1jb~graude=O7 (14.4)

3 Possible sizable volume changes occur at the instants of avalanche inception and
settling, but not so much during motion, see [12]. This is the reason, why a density
preserving model delivers good results.
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where the superscripts s and b indicate the variable evaluated at the free surface
and at the base, respectively. Note that for a rigid basal topography, F®(zx) = 0,
the kinematic boundary condition reduces to v’ - grad F®* = 0, which implies
that the avalanche slides on the basal surface without inflow or outflow, i.e. an
impenetrable base.

The kinematic free surface of the avalanche is assumed to be traction free,
and at the base a sliding Coulomb dry friction law] is applied. That is,

O (14.5)
p'n? — (n? - p'n¥)n? = (v*/[v"|)N" tans | (14.6)

where (pn); = p;jn;, N b = n’. p’nb indicates the normal pressure at the base
of the avalanche, 6 is the basal angle of friction, n® and n® are outward pointing
normal vectors at the free surface and base, respectively,

VF* , VF?

vEs o " T VR

S

(14.7)

14.2.2 Curvilinear Coordinate System

An orthogonal curvilinear coordinate system, Ozyz, is defined by a reference
surface [4], which is illustrated in Fig.[I4Th. The x axis is oriented in the downs-
lope direction, the y axis lies in the cross slope direction to the reference surface
and the z axis is normal to it. The downslope inclination angle of the reference
surface (, to the horizontal, changes as a function of the downslope coordinate
x, and there is no lateral variation in the y direction. The complex shallow basal
topography is defined by its elevation z = z%(z,y) above the reference surface,
as illustrated in Fig.[[4.Ib. The region above the reference surface z = 0 can be
described by the coordinates zyz that is based on the metric with the squared
arc length

ds? = (1 — kz)?da?® + dy? + d2? (14.8)

where kK = —9(/0z is the curvature of the reference surface. The metric de-
fines each point in a domain of the three-dimensional space uniquely as long as
the z-coordinate is locally smaller than 1/k. In the ensuing analysis this will
automatically be assumed.
In this curvilinear coordinate system the divergence of the velocity v in
([[41a) is
0 ov  Ow
Vv =—u)+ — + — — *k'z2u — Yrw , 14.9
S+ 5+ FE = =y (14.9)
where ¥ = 1/(1 — kz) and u, v, w are the physical velocity components in the
x, y and z directions, respectively. k' = 9x/0x is the derivative of the curvature

4 An elementary account on the Coulomb law is given in Chap. [l
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Fig.14.1. (a) The curvilinear reference surface which defines the curvilinear coordi-
nate system Oxyz, where the downslope inclination angle of the reference surface ¢, to
the horizontal, changes as a function of the downslope coordinate x. (b) The shallow
basal topography is defined by its height z = zb(x, y) above the curvilinear reference
surface

with respect to the downslope coordinate x. In the curvilinear coordinate system
the divergence of a second order tensor T' [6l[4] is expressed by

B 0 Oy | oz 5, B

9] T, oT,.
+ {w(zmy) + 85’“‘ + g VKT - z/J/iTyz}ey
0 oT,, 0T,
+ {633(¢sz) + (9;; + o V2K 2T, — Yr(T,, — Tm)}ez ,

(14.10)
where e,, e, and e, are the unit vectors in the downslope, cross slope and
normal directions, respectively. Furthermore, the gradient of a scalar field F' in
this curvilinear coordinate system is

1 oF oF oF

= - —e, . 14.11
vE 17523xem+3yey+6zez ( )

Using (I£9) the mass balance equation ([Z1a]) becomes
%(1/}@0 + %Z + %} —?K 2w — prw =0 . (14.12)

By virtue of (I£9]) and (I410), the downslope, cross slope and normal compo-
nents of the momentum balance equations are

ou , 0 oy, O 9 202
po{ 5 + 5 (Yu?) + oy (uv) + o (uw) — K z¢%u® — 2kpuw
0

0 0
= pPog SiﬂC - 7(¢pzz) - *(sz) - 7(pa:z) + K/Z’@[szz + 25"/}739& )
ox y 0z
(14.13)
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Po{(?;; + %(d}uv) 62( 2) + %(’Uw) - Iﬁ:/Z’LlleL’U — Hz}[)vw}
0 0 9
= - % (d’]hy) (pyy) az (pyz) + K’/Zprwy + [pryz ,
(14.14)

{681: + ag(wuw) + (%(vw) %(wz) — K 2¢%uw — kp(w? — u2)}

+
1o}
= —pog cos¢ — 7(¢prz) ~

+ Kw(pzz - pza:) )

respectively, where p;;, ¢, j = x, y, z are the components of the pressure tensor
in this curvilinear coordinate system. The free and basal surfaces are defined by
their heights above the reference surface,

(pyZ) o %( 22) + ’1/2'7/’210“ (1415)

Fs(w7t) =z Zs(.’L',y,t) =0,
(14.16)
Fb(z,t) = 2°(z,y,t) —2=0,

which ensure the normals n* and n® point outwards from the avalanche body.
The kinematic boundary conditions reduce to

0z° 0z° 5 02°

— —3u® S = 14.17
ot vu ox Jy ( )
for the free surface and
02° p 5020 L 02° b
= - - _ = 14.18
ot +9%u Ox v oy v ( )

for the base, where we recall that the superscripts s, b indicate the values at the
free and basal surface, respectively. The traction condition on the free surface

([ZH) yields
0z° 0z°

pmlﬁ& — Day oy 0,
s Sazs s 825 s
—Pay ¥ aax — Dy aai‘y +p. =0, (14.19)
S S ZS S ZS S
- — P =0
pmzw 3:10 pyz ay +pzz ’
and the sliding condition at the base (I£:6) becomes
0zb zb z
p?m bai—F I;yaj— (1/be+|VFb|Wtan5)
0zb Ozb zb vb
b b b b vpb t 5) 14.20
b b9 b 95 b —Nb
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where 1)* = 1/(1—£z%). The Coulomb dry friction shear traction is related by the
normal basal pressure N® and the bed friction angle §. Applying the definitions
of the normal basal pressure N’ = n® - pn® and the basal normal vector ([4.7)
yields

1 0zb 0z 0z
N = T {(W («%) e, + 247 (8 ) <8y> b
9zb 920\ z?
—2qpb <8x> ph. + (6y) ph, —2 (634) ph. +plz)z} .

14.2.3 Depth Integration

(14.21)

The mass and momentum balance equations are integrated through the avalanche
depth to simplify the problem. The avalanche thickness (depth) is the difference
between the height of the free surface z° and the height of the basal topography

b

h=z%—2b, (14.22)

and is measured normal to the reference surface. The depth integrated mean
value is denoted by (-) and defined by

—1/ fdz (14.23)
)

for any field quantity f.

Using Leibniz’s rule and integrating the mass balance equation (I£9]) through
the avalanche depth subject to the kinematic boundary conditions at the free
(IZT11) and basal (IZI8) surfaces in the curvilinear coordinate system, it follows
that

% aﬁ( (thu)) + ;y(h(@) — &' h{?zu) — kh{ypw) =0 . (14.24)
Similarly, integrating the linear momentum balance equations, (IZ13), (I£14)
and ([ZTH), through the avalanche depth and applying the kinematic as well as
traction boundary conditions at both the free surface (IZI7), (IZIY) and the
basal surface ([ZIY)), (I£20), the depth integrated downslope, cross slope and
normal components of the momentum balance are

po{%(h<u>) + ({%(hqu» + (%(h(uv)) — K h{p?zu?) — 2mh<wuw>}

= poghsing — - (hper)) — -(hlpey) (14.25)

Oy
— (95 IV a8 | NP B p) + 20l
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po{ g1 () + 5 () + 5L (B(0?)) = Wh(02un) — ehlwou)}

B 0
= ax( <¢pxy>) dy (h<pyy>)
020 vb
— (G + 19 1S | N )+ ).

(14.26)

pof () + %(h«buw» + 5 (o)) — Wh{u?uw) = kh(p(w? — w2)}

= —pughcosC — - (h(pa)) - (%(Mpyz»

+ Nb+ H'hWQZsz) + Kh<w(pzz - pxw» )
(14.27)
respectively. For details of the derivation see [].

14.2.4 Non-Dimensionalization and Ordering

Three length scales are introduced to isolate the physically significant terms in
the governing equations, a longitudinal length scale, L, a depth scale, H, and a
scale for the basal curvature in the downslope direction, 1/R. Following [19], [0]
and [4], the physical variables are non-dimensionalized using the scalings

(:U Y, z) L= L(x Y, 5z)n0n_dim ,

(U’U’LU (U’U{-:U.))

dim non—dim ’

(pz:m Dyys Pzzy N dim = pogH (pxa:a Pyys Pzz, Nb)non—dim )

(14.28)

(t dim — \/T(t)non—dim )
(/{ dim — 1/R( )nonfdim )

where e = H/L is the aspect ratio and p indicates a typical magnitude of the
friction coefficient, tandg.

Observations of avalanches in nature and laboratory experiments suggest
that they are long and thin and that the basal surfaces on which they slide often
have shallow curvature. The shallowness assumption for the avalanche geometry
implies that the aspect ratio of the avalanche is small,

)
)
(Pays Prz> Pyz) gig = POIH I (Days Pz Pyz) o aion >
)
)

e=H/L<1. (14.29)

The measure of the curvature of the reference surface geometry with respect to
the length of the avalanche A = L/R and the friction coefficient u are assumed
to be of magnitude [4]

A=0EY), p=0E", 0<a, g<1. (14.30)
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Applying the scalings ([428) and assumption (I430Q), it follows that the
depth integrated non-dimensional mass balance equation in curvilinear form is

Oh Gh 7]

Gt F e () 5 () =0+ O (1431)

where all variables in this equation and in the remainder of this text are now
non-dimensional unless stated otherwise. Using (IZ.28]) the normal component
of the momentum balance (I4.15) reduces to

Op...
0z

= —cosC + O(e”) , (14.32)

which implies that p,, varies linearly with respect to z to order €*. The normal
basal pressure ([Z.21)) gives N, = p%, + O(¢'*#) that the normal component of
the non-dimensional depth integrated momentum balance ([[4:27) reduces to

P2, = Ash(u?) + hcos¢ + O(e) . (14.33)

The downslope and cross slope components are

0 0 9 0
g 1) + g7 (M) + 5o (o))
= hsin¢ — Eg(h<p )) —eh cos(a—Zb (14.34)
ox T Ox .
— |:Z|htan6(cosC + Me(u?)) + O |
0 0 0 2
57 (h() + o= (h(uv)) + a*y(h@ )
- - 53(;1@ ) — eh cosga—zb (14.35)
oy v dy .
Wb

- mhtané(cos( + Me(u?)) + O(e 1)
v

respectively, in which v = min(a, ().

14.2.5 Earth Pressure Coefficients

In the original Savage-Hutter theory [I9J20] the stress state of the avalanche is as-
sumed to satisfy both the Coulomb sliding friction law and the internal yield cri-
terion simultaneously at the base of the avalanche. In addition, since the motion
is predominantly downslope it is assumed that the basal cross slope pressure, pgy,
is a principal stress and that it is equal to one of the other two principal stresses
in the zz plane. The details of this analysis have been performed many times and
are well documented in the literature, see e.g. [456I7/8OIT2/T3[T4I517IT920],
the most useful references probably being [6I17].
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Fig. 14.2. The downslope (a) and cross slope (b) earth pressure coefficients are plotted

as functions of the internal friction angle ¢ with constant bed friction angle § = 30°.
The various active and passive stress states are indicated by different line styles

Under these assumptions two Mohr stress circles can be constructed that
satisfy the yield criterion and the sliding law. For the basal normal pressure, p°_,
and the shear stress, —p®,, the basal down slope pressure, p’ , can therefore
assume two values, one on the larger circle, p2, > pb., and the other on the
smaller circle, p’, < p%,. These downslope and normal pressures can be related
by introducing the earth pressure coefficient K% = pb_ /p%_ . Using elementary
geometrical arguments K? is described as a function of the internal and basal
friction angles [19]

K;)act/mss =2 (1 F /1 — cos2 ¢/ cos? 6) sec’p — 1. (14.36)
This is real valued provided § < ¢. Savage & Hutter [I9] made the ad hoc
definition that the active state was associated with divergent motion and the
passive state was associated with convergent motion, i.e.

X Kb Ou/ox >0,
K, = b (14.37)

Ky .. ~—0u/0x<0.
The left panel in Fig.[[4.2]illustrates the values of K iact e @S @ function of the
internal friction angle ¢ for constant basal friction angle § = 30°. When ¢ = §
the active and passive earth pressure coefficients are equal, Kﬁm = Kipm. For

¢ < 0 the earth pressure coefficients are not real valued.

As mentioned above, the basal cross slope pressure is equal to one of the
other two principal stresses in the zz plane. Introducing the cross slope earth
pressure coefficient at the base, K} = pb /p?., Hutter et al. [I3] showed that it
is equal to

b 1<K§; F1F /(KL — 1)? + 4 tan? 5) : (14.38)

yact/pass 2

which is not only a function of the internal and basal friction angle but also
depends on the downslope earth pressure coefficient. Since there are two principal
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stresses for the Mohr stress circle determined by the stress state in the xz plane,
there are four possible stress states for the cross slope pressure. As in the two-
dimensional theory they are distinguished from one another by ad hoc definitions
dependent upon whether the downslope and cross slope deformation is divergent
or convergent [13],

KZaet Qu/dx >0, 0v/0y >0,

Yact
b — ) B Ou/0z >0, 0v/dy <0,
Y EY Ko gujow < 0, 0v/oy > 0,
Ky Qu/dx < 0, dv/dy < 0.

yp'ms

(14.39)

In the first of these inequalities the flow is extending in both the z- and y-
directions, in the last it is contracting in the two directions. In the right panel
of Fig.M42], Ké’ is illustrated as a function of the internal friction angle ¢ for
constant 6 = 30°. Like the downslope earth pressure coefficient, K, is real valued
ifand only if § < ¢ and K Zact = Kybmss when § = ¢. In addition the earth pressure

coefficients are ordered in the following way: K=t < K, poo < Kjper < K o

Yact Ypas

Note that the theory is not ObJeCthEE in the xy plane, but 1t is a good
approximation if the assumption v* < u® holds, i.e. this simple representation
is reasonable when the flow is chiefly downhill and the shearing in the xy plane
is small in comparison with the shearing in the xz and yz planes. With these ad
hoc definitions (I437), (I£39), Koch et al. [17], Gray et al. [4] and Wieland et
al. [27] obtained good agreement between theory and experiments.

The ad hoc definitions (IZ37) and ([4£39) define the earth pressure coeffi-
cients in two limiting states with piecewise constant values, respectively. There
is a discontinuity at du/dx = 0 or dv/dy = 0, which results in a jump in the
in-plane pressure between convergent and divergent regions. If we consider the
jump condition of the linear momentum [I], there must be a corresponding jump
in the avalanche velocity, and/or the thickness, in order to balance the tractions
on either side of the jump interface.

A regularization? for these two limiting stress states was proposed by Tai
& Gray [21], in which the discontinuity is regularized by introducing a smooth
transition between the two limiting stress states. This is illustrated in Fig.[T4.3]
for the downslope earth pressure coefficient. For large convergence they approach
the passive stress state and for large divergence they approach the active stress
state. Between these two limiting stress states there is a smooth monotonically
decreasing transition, which crosses the du/dz = 0 line at K’ = K, for the
down slope component and KZ = K,, at dv/0y = 0 for the cross slope com-
ponent, where K, and K, are the downslope and cross slope coefficients with
6 = ¢, respectively. The regularized downslope and cross slope earth pressure
coefficients are given by

5 Objectivity refers here to invariance under rigid body rotations.

5 There is no other reason for this regularization than to make the earth pressure
coefficient a continuous function of the strain rate. A partial physical argument for
its introduction can be found in [23].
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Fig.14.3. The down slope earth pressure coefficient is regularized by introducing
a smoothly varying monotonically decreasing function of the downslope divergence
Ou/Ox, which approaches the limiting values, K,,., and K,.., for large divergence
and convergence, respectively. At du/dx = 0 the downslope earth pressure coefficient
equals Ky,

1
K:l; = 5{(K§ct + Kgass) + fﬂi(au/am)(Kgct - Kgass)} )

; (14.40)
Kgl; = 5{(Kgct + K;y)ass) + fy(av/ay)(Kgct - Kgass)} )

where the regularization functions f; and f, are dependent on the downslope and
cross slope velocity gradients du/dx and dv/dy, respectively. They are chosen
to be the monotonically decreasing functions

F(u)07) = (akdu/dz — &)/ (1 + (axdu/dz — c§)?)/?
(14.41)
1/2
fy(0v/0y) = (axdv/dy — )/ (1 + (axdv/dy — c§)?) / ,
where a i determines the steepness of the transition. The constants ¢ and ¢ are
chosen that Kf‘au/axzo = K, and Ky|6v/6y=0 = K,,, respectively]. Using this
regularization of the earth pressure coefficients, Tai & Gray [21] demonstrated
that a necking of the avalanche is resolved in simulating a channelized free-
surface flow, in which the Wieland et al. [27] Lagrangian moving grid technique
is applied. The necking form is observed in the transition zone when the material
flows down in a channel into the horizontal flat runout zone.

14.2.6 Model Equations in Conservative Form

In the one-dimensional Savage-Hutter [19]20] theory and in the two-dimension-
al extensions of their theory [4]13] the downslope and cross slope pressures are

" The parameters K, and Ky, must be identified by experiment or via inverse meth-
ods, which is not easy. Tai et al. [23] design an experiment with rotating drums from
which K, can directly be inferred.
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assumed to vary linearly over the thickness of the avalanche. In accordance with
([432) this implies that K, = K% and K, = Kyb throughout the avalanche
depth. With the traction free assumption at the free surface it follows that the
average depth integrated pressures h(p,,) and h(p,,) [4] are determined by

hpzz) = %hQKz cos(+ O(€Y), hipyy) = %thg cosC + O(e7) . (14.42)

It is also assumed that the velocity profiles are approximately uniform through
the avalanche depth, i.e. all sliding and little differential shear [19]. Thus, the
basal velocities are assumed to be of the form

u’ = (u) + O, b = (v) + O, (14.43)
and the velocity products can be factorised [4]

(W?) = (W)* +O(e'),  (uv) = (u) (v) + O(e"+7)
(14.44)
and  (v2) = (v)° + O(e*) .

These assumptions are supported by measurements in large scale dry snow [2]
and ping-pong ball avalanches [16].
From (I431) and ({£44) it follows that the mass balance equation reduces
to order e to
oh 0

0
e + %(hu) + a—y(hv) =0. (14.45)

With assumptions ([£242), (IZ43) and ([£44) the depth integrated downslope
([Z34) and cross slope (IZ35) momentum balances yield

d d, o, 0 d [ Buh?

— sy — 2 . (144
8t(hu) + 8x(hu )+ 8y(huv) hs o ( 5 ) (14.46a)
9 9 D ey — ps — O (Bl
5 (hv) + am(huv) + a9 (hv®) = hsy By < 5 , (14.46b)

to order e*7, where the brackets ( ) for the mean values are dropped. The
factors 3, and §, are defined as

By =ecos(K, and By =ecos(K,, (14.47)

respectively. The terms s, and s, represent the net driving accelerations in the
downslope and cross slope directions, respectively

b

Sy = sin¢ — % tand(cos¢ + Aku?) — 5003(8—2 , (14.48a)
Sy = -2 tand(cos¢ + Aku?) — ¢ cos(a—'Zb (14.48b)
e [v] Ay’ '

where |v| = (u? +v2)'/2. The first term at the right-hand side of (IZ48a) is due
to the gravitational acceleration. It has no contribution in the lateral, y, direc-
tion. The second terms of both (IZ48al) and ([4£.480) indicate the dry Coulomb
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friction and guarantee that basal shear traction and the sliding velocity are
collinear. The third terms are the contributions from the basal topography. The
system of equations ([4.45])-(I4.46D]) shall be referred to as the two-dimensional
conservative system (2DCS) of equations.

For smooth solutions the mass balance can be used to simplify the convective
terms in the momentum balances (14.46a)), (14.46D). Providing h # 0 the mass
and momentum balance equations reduce to

oh 0 0

e + Eﬁ(hu) + —8y(hv) =0, (14.49a)
ou ou ou oh  hOp,
o o oy T P 2o (14.49b)
v dv ov Oh  h 0By
ot o oy~ T My T2 ey (4499

These equations and their spatially one-dimensional analogues (9(-)/dy = 0,
and (I£49d) missing) were derived earlier and numerically integrated by a La-
grangian finite difference methodd. These cannot capture possible shocks; but
they proved the model to be adequate for many avalanche tests performed in
the laboratory.

14.3 Numerical Integration
of the Savage—Hutter Equations

14.3.1 Standard Form of the Differential Equations
and Characteristic Speeds

The two dimensional model equations ([4.45))—([I4:46H) can be written in general

vector form
ow Of Og s
ot oxr oy
where w denotes the vector of conservative variables, f and g represent the
transport fluxes in the x- and y-directions, respectively, and s means the source

(14.50)

8 The one-dimensional model was derived by Savage & Hutter [T9120] and tested
against laboratory chute experiments by Greve & Hutter [5], and Hutter et al. [13].
Two-dimensional spreading was attacked by Hutter [7], Hutter et al. [13], Greve et al.
[6] and Koch et al. [17] on the basis that the basal topography was flat perpendicular
to the direction of steepest descent with good agreement with granular avalanches
from laboratory experiments. Sidewise confinement was then incorporated in [4/27)3]
with equally satisfactory agreement between model output and laboratory experi-
ments. The chute topography in these cases was a weak parabolic channel merging
into a horizontal plane.
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term. They are

h m”
w=|m* |, f=| memeanre |
mY m*mY/h
(14.51)
mY 0
g= m*mY/h , s=|hs*|,
(m¥)?/h + B,h?/2 hsY

where the source terms in the momentum balance equations, s, and s,, are
defined in (T448al) and (14.48b), respectively and equations are written in the
conservative variables h, m* = hu and m¥Y = hv. The spatially one-dimensional

version of (IZ50) is

ow  af
E + % =S, (1452)

where

w = (;}) . f= <(mx)2/}:”jﬁxh2/2) . s= <h2x> . (14.53)

It can be obtained from (IZEI) by setting g = 0 and ignoring in w, f and s the
third line.
The characteristic speeds of the system (IZ5L0)—([I45T) can be computed by

rewriting (IZE0) as

A, 0 Jw
ow Bz
e + aﬂ =s, (14.54)
0 Ay 0y
where
0 1 0
A, = 2—1{] = | —(m®)?/h? + B.h 2m®/h 0 )
—m®mY /h? mY/h m®/h
(14.55)
0 0 1
og . .
VT G —m®mY /h? mY/h  m®/h ,

—(m¥)?/h? + B,h 0 2mY /h

and evaluating the eigenvalues of A. These follow from the characteristic equa-
tion
det (A — M) =det (A, — AM3)det (A, — AI3) =0 (14.56)
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with six solutions, given by
Al=u, A3 :mx/him,
Ae=v, Ag=mY/h+\/Byh.

The first two solutions yield as characteristic speed the particle velocity ¢, =
(u2 +v2)1/ 2 and as characteristic directions the streamline directions. A3,...6 give
rise to four different characteristic speeds

(14.57)

crt = (A ot = (2+09)7

(14.58)
Ot = (427, o= (848"
with four different directions; C*7+ is the fastest and C~~ the slowest. When-
ever ¢, > C~~ the flow is called supercritical; otherwise, i.e. when ¢, < C~7,
it is subcritical. Any transition from a supercritical to a subcritical flow state
is associated with a shock. This inevitably happens when a finite avalanching
mass moves down a steep slope (where it reaches supercritical speeds) and is
considerably decelerated (when it approaches the runout zone) and eventually
approaches a subcritical speed. This transition is always accomplished by the
formation of a shock front across which the avalanche depth and speed experi-
ence sudden changes from small heights and large speeds to larger heights and
smaller speeds. The numerical schemes must cope with this situation.

14.3.2 Remarks on Numerical Integration

It is not the place here to present a detailed introduction into shock-capturing
numerical methods. Such an overview is given in Chap. 4 of [24]. We sketch the
method only and must direct the interested reader to the literature, see [24] and
[25] for detail.

Let us commence by recalling that the Lagrangian integration technique ap-
plied to the SH equations faced difficulties whenever a supercritical extending
(diverging) flow became subcritical and contracting. Numerical solution in the
vicinity of such transitions were accompanied with high oscillations of the depth
profile and velocity field which often led to instabilities unless this was properly
counteracted by a sufficient amount of numerical diffusion. The regularization
of the earth pressure coefficient outlined in Sect. helped to improve the
situation, but the difficulties encountered with shocks were thereby not resolved.

The shock-capturing numerical methods give a high resolution of shock solu-
tions without any spurious oscillations near a discontinuity. The traditional high
order accuracy methods result in unexpected oscillations near the discontinuity.
The Total Variation Diminishing (TVD) method for equation systems in con-
servative form achieves this goal; its application to the Savage—Hutter equations
allows integration across shocks without the introduction of additional numerical
diffusion.
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Uj.l L

—_— Uj+l/2

i1 j *1

Fig. 14.4. The cell average physical value U; (dashed line) and the linear piecewise cell
reconstruction (solid line), where there are two values for each interface, e.g. U jL_H 2=
U; + Uj/2 and UJ-RH/2 = Uj41 — Uj;1/2, one from the left side cell, U;, with the
approximate derivatives Uj, the other from the right side element, U;41 with Uj,

TVD means that the sum of the variations of the variables over the whole
computational domain does not increase as the time evolves. Now, the numerical
schemes are designed such that they provide only the cell average values of the
variable to be determined. In classical schemes of higher order approximation the
numerically determined variable is continuous or even differentiable across cell
boundaries. In TVD methods jump discontinuities are allowed over cell bound-
aries, whilst within each cell C™-continuity may prevail, for an illustration, see
Fig.[144

In regions where the variations of the field variables are small no jumps are
needed, but in the neighbourhood of shocks and in regions of large gradients of
the field variable the cell re-constructions are such, i.e. the slopes of the variable
within the cell kept so small, that possible spurious oscillations are avoided.
The operators that achieve the limitation of the cell slope (just sufficient to
avoid oscillations) are called slope limiters (and several different versions have
been proposed: e.g. Superbee, Minmod or Woodward). Several schemes have been
tested with the application of these three slope limiters to find the optimal
scheme for smooth as well as discontinuous solutions.

There is a further numerical subtlety associated with the motion of a finite
mass of granular material along an inclined plane or curved topography. The
material does not occupy the whole region of topographic surface available to
it but covers a region with compact support. The margin separates the regions
with and without material. It can be shown that the governing equations (IZ4.45)—
([446h) do not admit solutions with cliffs [24] at the margin, so that margins
always have vanishing avalanche height and the transition from the avalanche
region to its complement is continuous. Now in an Eulerian numerical scheme
with the cells fixed in space and a moving boundary problem as this one, it
happens more often than not that the margin lies between the cells than exactly
on cell boundaries. This is different from the Lagrangian integration technique in
which the grid moves with the deforming avalanche mass and margins are always
exactly traced. It is in general associated with a considerable loss of accuracy.
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There are several ways out of this difficulty. One is to add a thin layer to the
whole computational domain, thus abandoning the compactness of the avalanche
body; a second method is to set all physical variables to zero if h = 0; both are not
ideal and still associated with large errors close to the margin. A third method is
to treat the cells in the immediate neighbourhood of the margin separately by a
special front-tracking method. For one-dimensional flows this has been done [25],
and results for the spreading of a parabolic profile turned out to be very much
improved; for two-dimensional situations the method must still be developed.
We now present a few computational solutions.

14.4 Examples

In this section weJ present a number of solutions that were constructed with the
shock capturing finite difference schemes developed by Tai [24]. Further results
are also given in [25].

14.4.1 Similarity Solutions

For flows of a finite mass of granular materials down an inclined plane the de-
formation of an initially compact mass of granular materials is everywhere ex-
tending and so no shock will form in this case. The equations may then be used
in the form ([4.49al)-({I449d), either in their one- or two-dimensional case. For
a parabolic linear (1D) or circular (2D) initial hump at rest exact similarity
solutions were constructed. These solutions ([19], 1D; [14], 1D; [11], 2D) allow
determination of the asymptotic behaviour of the motion. They show that with-
out a viscous contribution to the drag force the avalanches do not reach an
asymptotic constant velocity. The parabolic profile remains preserved, but the
originally circular hump becomes elliptical. Thus, the streamwise extension is
larger than the cross slope extension. These exact solutions are useful, because
numerical solutions obtained by other techniques can be checked against them.

It is interesting to note that such parabolic ellipses have not been observed
experimentally. The profiles have rather tear drop shape [10]. These indicate
that either exact initial conditions to arrive at these solutions were not realized
in the experiments or the model equations — in particular the Coulomb sliding
law with constant bed friction angle § — are not adequate. The problem is still
open.

14.4.2 Motion of a Granular Avalanche on an Inclined Plane Chute
into the Horizontal Run-Out Zone

Shock formations are often observed when the avalanche slides from an inclined
slope into the horizontal run-out zone, where the frontal part comes to rest

9 The authors acknowledge help received from S. Noelle on shock capturing integration
techniques and the software for gas dynamics from A.-K. Lie which was adopted to
avalanche flow by Y.-Ch. Tai [24].
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Fig. 14.5. Process of the avalanche simulated by the shock-capturing method at ¢t =
0, 3, 6,9, 12, 15, 18, 21 dimensionless time units. As the front reaches the run-out zone
and comes to rest, the rear part of the avalanche accelerates further and the avalanche
body contracts. Once the velocity becomes supercritical, a shock wave develops, which
moves upward.

and the part of the tail still accelerates further so that its velocity becomes
supercritical. A test simulation is made by the shock-capturing method.

The granular material released from a parabolic cap slides down an inclined
plane chute and merges into the horizontal run-out zone. The parabolic cap
is initially located at the top of the slope with a linearly increasing velocity
distribution, so that the avalanche extends by maintaining its parabolic form
if it slides on an infinitely long slope [19]. The inclination angle of the inclined
plane is prescribed as 40°, and a transition region lies between the inclined slope
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and the run-out zone. The basal and internal friction angles are 35° and 38°,
respectively.

Figure illustrates the simulated process as the avalanche slides on the
inclined plane into the horizontal run-out zone. The avalanche body extends on
the inclined plane with a parabolic form (¢ = 3). Once the front reaches the
horizontal run-out zone the basal friction brings the frontal part of the granular
material to rest, but the part of the rear accelerates further. At this stage, if
the velocity becomes super-critical, a shock (surge) wave is created (¢t = 12 to
t = 18), which moves a short distance backwards as can clearly be seen (compare
the humps at t = 12 to ¢t = 18). At ¢t = 21 the whole avalanche body comes to
rest.

14.4.3 Motion of a Granular Avalanche in a
Convex and Concave Curved Chute

In this section we show the simulation of a two-dimensional avalanche moving
down in a confined convex and concave curved chute, and compare the result
with one of many experiments, called here exp.29 in [5]. The experiment was
performed in a 10 cm wide chute of length greater than 400 cm. The basal surface
was formed to follow a prescribed function, so that the inclination angle is given
by

() = Coe 1 + &/ (1 4 €°%) — G exp(=0.3(z 4+ 10/3)*) (14.59)

where

£=2A@—-9), and (o=60.0°, (=314°, (=237.0°.  (14.60)

The influence of the confining walls of the chute on the bed friction was also
considered, which was determined by replacing the bed friction angle, 4, by the
effective bed friction angle, d.f¢. They are related by

6eff = 0g + ekwanh ; (14.61)

here ¢ is the aspect ratio, h is the dimensionless depth and k. the measured
correction factor to account for the side wall effects in the bed friction angle, see
[12].

In the simulation all parameters are assigned as in [5], where 6y = 26.5°,
Kyan = 11°, and the internal angle of friction is selected to be ¢ = 37°. Figure
L8 shows the computed profile of the avalanche height on the real chute geom-
etry. Once mobile the avalanche rapidly accelerates downslope until it reaches
the shallow rise in the topography. This is enough to retard the granular mate-
rial until the pressure from the material behind has sufficiently accumulated to
push it over the bump. The material accelerates again and when the slope angle
decreases the mass comes to rest. Normally the deposit is divided into two parts
on the both sides of the bump: the rear deposit and the front deposit.

Figure 47 shows time slices of the computed (solid) and experimentally
determined (dashed) profiles of the avalanche height for exp.29 in [5], where
do = 26.5°, ¢ = 37° and K. = 11°. The division of the avalanche body into
two parts is well described by the simulation.
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Fig.14.6. Computed profile of the avalanche height on the real chute geometry for
exp.29 in [B]. Since compared to the length the deposited height of the avalanche is
very small, the height is three times exaggerated

14.4.4 Granular Avalanche over Complex Basal Topography

In this section a simulation example on a chute with complex basal topogra-
phy is presented to describe the two-dimensional shock formation. A simple
reference surface is defined consisting of an inclined plane (¢ = 40°) that is con-
nected to a horizontal run-out zone ({ = 0°) by a transition zone. Superposed
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Fig.14.7. Computed (solid) and experimentally determined (dashed) profiles of the
avalanche height for exp. 29 in [5]; do = 26.5°, ¢ = 37° and Kwan = 11°. The horizontal
distance is arc length measured along the basal surface

on the inclined section of the chute is a shallow parabolic cross-slope topog-
raphy, z°(y) = %?/(2R) with R = 110 cm, which forms a channel that partly
confines the avalanche motion. The inclined parabolic channel lies in the range
0 < x < 215cm and the run-out zone lies in the range z > 245cm, between
which a transition zone smoothly joins the two regions. At z = 160 cm there
is a small parabolic hill with radius 15cm and heigh 5cm, see Fig.[I4.8] In the
transition zone, 215 < x < 245, a smooth change in the topography defined by
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Fig.14.8. The complex basal topography for the test problem describing the two-
dimensional shock formation. A simple reference surface is defined consisting of an
inclined plane that is connected to a horizontal run-out zone by a transition zone.
Superposed on the reference surface is a shallow parabolic cross-slope topography,
which forms a channel that partly confines the avalanche motion. The parabolic channel
in restricted to the inclined range. It is connected with the horizontal run-out zone by a
smooth transition zone. A small parabolic hill lies in the channel centre of the inclined
portion and constitutes a partial obstruction

the inclination angle

<0 ) 0 <z< 215 )
C(x) = { ol — (x — 215)/40], 215 < o < 245, (14.62)
0°, x> 245

is prescribed, where (y = 40°.

The simulation is performed with an internal angle of friction ¢ = 37° and
a bed friction angle § = 32°. The material is suddenly released from a hemi-
spherical shell with radius ro = 32cm. It is so fitted to the basal chute topog-
raphy, that the projection of the line of intersection onto the reference surface
is approximately elliptical in shape. The major axis of the ellipse is 32 cm long
and the maximum height of the cap above the reference surface is 22 cm.

Figure I49shows the depth contours of the simulated results for a sequence
of non-dimensional times, from the release of the material (¢ = 0) until the
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Fig. 14.9. Depth contour of the simulated results at a series of non-dimensional times,
from the release of the material (¢ = 0) until the avalanche comes to rest (¢t = 22.5).
The length unit is in dm

avalanche comes to rest (¢ = 22.5). Once the cap is open, the avalanche ac-
celerates and extends, where the acceleration in the down-slope x—direction is
obviously dominant (¢ = 2.5). Because of the back pressure the rear part of the
avalanche moves slightly backwards at the initial stage of the motion. Due to
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the curvature in the cross-slope direction the extension in y-direction is limited
in the channel region (see t = 5.0 to t = 12.5). The hill holds the material partly
up (t = 5.0 to t = 12.5), but immediately below the hill and on either side
of it two knolls form. Furthermore, behind the hill the reduction of inflowing
mass causes a dent to form. Basically, the material accelerates until it reaches
the horizontal run-out zone. With increasing basal drag the front comes to rest
(t = 7.5 to t = 12.5) but the part of the tail accelerates further. In this stage the
avalanche body contracts. Once the supercritical velocity becomes subcritical, a
shock wave (steep surface gradient) is formed. This occurs just after the end of
the transition zone at ca. x = 260 (¢t = 15). With the approaching mass from
the tail, the shock wave propagates backwards (¢ = 15 to t = 20), i.e., as time
proceeds, this shock wave propagates upstream. At ¢t = 22.5 the avalanche comes
to rest.

The velocities inside the avalanche body for the same times as the avalanche
geometries in Fig.[T4.9 are illustrated in Fig.[IZT10l in which the arrows denote
the direction of the velocity, and their lengths indicate the speed. The velocity of
the elements with depth h < 0.1 cm are not shown here. Although the hill holds
the material partly up and side knolls around it and a dent behind it are formed,
the velocity is not strongly affected by these features (¢t = 5.0 to ¢ = 12.5) and
the material is obviously accelerated in the downslope direction. The front comes
to rest in the run-out zone but the part of the tail accelerates further (¢t = 7.5
to t = 12.5). At t = 15 there is obviously a jump of velocity taking place at
the transition zone, which corresponds to the steep surface gradient in Fig.[I4.9]
With the mass approaching from the tail, the jump propagates backwards (t = 15
to t = 20). At t = 22.5 the avalanche comes to rest.

14.5 Concluding Remarks

In this contribution a simple theoretical model due to Savage and Hutter was pre-
sented and results obtained with it were compared with experiments. It consists
of depth integrated balance laws of mass and momentum of an incompressible
fluid that obeys a dry friction Coulomb type constitutive relation with constant
internal angle of friction. A second phenomenological parameter entering this
model is the bed friction angle which measures the roughness between the gran-
ules and the bed. This model, which is based on a shallowness assumption and
supposes that downhill velocities are large in comparison to cross-channel veloc-
ities, is expressed as a hyperbolic system of partial differential equations with
an (earth pressure) coefficient appearing in them which, depending on the so-
lution, may be discontinuous. Both the hyperbolicity of the equations and the
discontinuity of the earth pressure coefficient pose difficulties in the integration
process and may require shock capturing numerical techniques. This requires
that the differential equations are formulated in conservative form and that to-
tal variation diminishing finite difference schemes are used and combined with
frontal techniques. Simulations conducted for avalanches, observed in the lab-
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Fig. 14.10. The velocities inside the avalanche body at the same times as in Fig.[J4.9]
are illustrated in Fig.[I4.I0, in which the arrows denote the direction of the velocity
and their lengths indicate the speed

oratory, show that agreement with the observations is good including in those
cases when shocks are formed.

Finally we mention that the fact that the dimensionless form of the Savage—
Hutter equations does not depend on any non-dimensional parameters such as
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Froude, Reynolds numbers or any other m-product can constructively be used to
perform laboratory experiments on rapid flow of granular materials. As a con-
sequence, there are no scale effects in this theory, and all that must be observed
in a physical model is geometric similitude and reproduction of the internal and
bed friction angles. This has been done by Tai et al. [22] in a model simulation
of the flow of an avalanche around a wedge that was protecting a construction.
Shocks that form in such processes have also been adequately reproduced.

There remains the incorporation of entrainment/deposition processes to make
the model applicable to realistic situations.
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