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Debris flows are particle–fluid mixtures that pose a significant hazard to many
communities throughout the world. Bouldery debris flows are often characterised by a
deep dry granular flow front, which is followed by a progressively thinner and increasingly
watery tail. The formation of highly destructive bouldery wave fronts is usually attributed
to particle-size segregation. However, the moving-bed flume experiments of Davies (N. Z.
J. Hydrol., vol. 29, 1990, pp. 18–46) show that discrete surges with dry fronts and watery
tails also form in monodisperse particle–fluid mixtures. These observations motivate the
development of a new depth-averaged mixture theory for debris flows, which explicitly
takes account of the differing granular and phreatic surfaces, velocity shear, and relative
motion between grains and fluid to explain these phenomena. The theory consists of four
coupled conservation laws that describe the spatial and temporal evolution of the grain
and water thicknesses and depth-averaged velocities. This system enables travelling wave
solutions to be constructed that consist of (i) a large amplitude dry flow front that smoothly
transitions to (ii) an undersaturated body, (iii) an oversaturated region and then (iv) a
pure water tail. It is shown that these solutions are in good quantitative agreement with
Davies’ experiments at high bed speeds and slope inclinations. At lower bed speeds and
inclinations, the theory produces travelling wave solutions that connect to a steady-uniform
upstream flow, and may or may not have a bulbous flow front, consistent with Davies’
observations.

Key words: wet granular material, geophysical and geological flows

1. Introduction

Debris flows have attracted the attention of scientists due to the catastrophic nature
of the hazards that they pose (Iverson 1997; McSaveney, Beetham & Leonard 2005).
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A devastating example is that of the 8 August 2010 debris flow in the northwestern Chinese
province of Gansu, which caused more than 1000 deaths in the county of Zhouqu (Ren
2014). Two other prominent recent examples are when heavy rainfall triggered 107 debris
flows in Hiroshima city in southwest Japan on 20 August 2014 (Wang et al. 2015), which
caused 44 injuries and 74 deaths, as well as a torrent of rock, ice, sediment and water in
Uttarakhand in northern India (Sati 2022), which killed hundreds of people and devastated
two hydropower stations on 7 February 2021. In recent years, debris flow frequency has
increased, due to the increased intensity of rainfall events (Ballantyne 2002), glacial melt
water, severe forest fires (Kean et al. 2019) and the melting of permafrost (Higman et al.
2018), which has made previously stable slopes unstable. This provides strong motivation
for the study of the dynamics of debris flows, with the goal of minimising damage to
people and infrastructure.

One of the most destructive features of debris flows is the initial deep surge, which
is drier than the main body and is often rich in boulders and larger particles. A typical
example is shown in figure 1(a) and the supplementary online video (movie 1) available at
https://doi.org/10.1017/jfm.2022.400, where a very rapidly moving debris front narrowly
misses a group of hikers in Aconcagua Park in Argentina. After the initial bouldery surge,
the flow slowly wanes in height at the same time as the largest surface grains decrease
in size and the flow becomes increasingly watery (figure 1b). A series of secondary drier
boulder-rich surges that transition to watery tails then propagate down the channel at 40,
71 and 160 seconds. These poorly understood phenomena are often observed in the field
(Costa & Williams 1984; Pierson 1986; Kean et al. 2013) and in large-scale debris-flow
experiments (Iverson et al. 2010; Johnson et al. 2012). Closely related flow features can
also develop in suspensions (Murisic et al. 2013), snow avalanches (Gray & Hutter 1997)
and pyroclastic flows (Mangeney et al. 2007), as well as in small-scale wet and dry
analogue experiments (Félix & Thomas 2004; Woodhouse et al. 2012; Kokelaar et al.
2014; de Haas et al. 2015; Scheidl, McArdell & Rickenmann 2015; Baker, Johnson &
Gray 2016a; Lanzoni, Gregoretti & Stancanelli 2017).

Since the water typically experiences less friction than the grains, many existing debris
flow models predict that water moves to the front of the flow (George & Iverson 2011;
Pudasaini 2012). As a result, the formation of dry snouts is often attributed to particle-size
segregation (see Vallance & Savage 2000; Gray & Ancey 2009; Iverson et al. 2010;
Johnson et al. 2012; George & Iverson 2014; Baker et al. 2016a; Liu et al. 2020) and the
two ideas have become conflated. Certainly, the vertical ordering provided by particle-size
segregation (i.e. that during shear, large particles tend to rise above finer grains) combined
with velocity shear leads to differential longitudinal transport of the large and small
particles and the formation of a bouldery snout (Gray & Ancey 2009; Gray & Kokelaar
2010; Johnson et al. 2012; Gray 2018), but there is no clear reason why the snout should
be dry.

The moving bed flume experiments of Davies (1988, 1990), with monodisperse-particle–
fluid mixtures, show that dry fronts can develop even in the absence of particle segregation.
Similar dry fronts also develop in monodisperse-particle–fluid mixtures in rotating drums
(Leonardi et al. 2015) and on chutes (Taylor-Noonan 2020). This implies that the dry
snouts do not require particle-size segregation, which motivates the development, in
this paper, of a new depth-averaged model for monodisperse-particle–fluid mixtures that
can account for their formation. As with particle-size segregation, vertical structure and
velocity shear will play a key role in its derivation.

Despite its importance, velocity shear is completely neglected in most debris-flow
models which assume plug flow through their depth (Iverson 1997; Iverson & Denlinger
2001; Pitman & Le 2005; Pailha & Pouliquen 2008; Pudasaini 2012; Iverson & George
943 A19-2
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Flow front

Flow tail

(b)

(a)

Figure 1. Debris flow on 27 January 2015 in Aconcagua Park, Mendoza, Argentina (copyright Julian
Insarralde via ViralHog). (a) A large amplitude dry bouldery flow front propagates down a channel at
approximately 6 m s−1, forcing hikers to scramble to safety. (b) Eighteen seconds later, the height of the flow has
reduced, there are no surface boulders and the flow is much more watery. Movie 1 in the online supplementary
material shows that the main pulse is followed by a series of bouldery surges, 40, 71 and 160 seconds after the
arrival of the main front, which are interspersed by lower amplitude watery sections.

2014; Bouchut et al. 2016). Johnson et al.’s (2012) large-scale debris-flow experiments at
the United States Geological Survey (USGS) flume show that there is in fact strong internal
velocity shear through the flow depth. The flow spread out strongly along the main body of
the chute, and entered a locally quasi-steady depositional regime as the front propagated
down the run-out pad. In this part of the flow, typical measured surface velocities in the
centre of the channel were of the order of 6–8 m s−1, while the front propagated steadily
downslope at 2 m s−1. Material that reached the front was either overridden by the flow
itself, or shouldered aside to form static lateral levees that channelised the oncoming flow.
Detailed movies showing the flow structure and the process by which the levees were
emplaced are available in the online supplementary material of Johnson et al. (2012).
There are also a series of informative video clips showing strong velocity shear and particle
recirculation at the front of debris flows in the open file report of Costa & Williams (1984).

Depth-averaged theories for dry granular avalanches are well established and exploit
the shallowness of the flow to derive conservation laws for the avalanche depth h and
the depth-averaged velocity ū (Savage & Hutter 1989; Gray, Wieland & Hutter 1999;

943 A19-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.400


X. Meng, C.G. Johnson and J.M.N.T. Gray

Pouliquen 1999b; Gray, Tai & Noelle 2003; Gray & Edwards 2014). However, the presence
of the interstitial water significantly alters the flow behaviour and it is therefore included
in two-phase depth-averaged models for debris flows (Iverson & Denlinger 2001; Pitman
& Le 2005; Pailha & Pouliquen 2008; Pudasaini 2012; Kowalski & McElwaine 2013;
Iverson & George 2014; Bouchut et al. 2016). The model of Pitman & Le (2005) couples
the grains and the water through buoyancy and drag interaction forces, and the virtual mass
interaction force is also added in the model of Pudasaini (2012). The buoyancy reduces the
effective weight of the grains, thereby reducing the effective stress and the granular basal
friction. The drag force occurs due to the relative motion of the flowing materials. In the
depth-averaged model of Iverson & George (2014), the basal granular friction is reduced
(or enhanced) as a positive (or negative) excess pore fluid pressure is generated due to
changes in the solids volume fraction.

As mentioned earlier, most debris-flow models are built on the assumption of a
plug-like velocity profile. However, when both the species’ concentration and downslope
velocity vary over the flow depth, the resulting depth-averaged velocities of grains and
water may differ, even if the local velocity of grains and water are identical. When
the depth-averaged velocity of the grains is faster than the depth-averaged velocity of
the water, grains are transported to the flow front and may accumulate to form a dry
snout. The two-phase flow model of Berzi et al. (2009, 2010) captures such shear-induced
transport, using a granular-fluid rheology to determine the velocity profile of the mixture
and assuming a simple vertical structure. In addition, Kowalski & McElwaine (2013)
describe shear-induced transport, but focus on the evolving vertical structure of the flow
due to sedimentation and resuspension processes.

Inspired by the experimental observations of Davies (1988, 1990) and Johnson et al.
(2012), this paper derives a two-phase depth-averaged debris flow model that combines
shear-induced transport, and a relative motion between the grains and fluid. The model
describes separate free surfaces for water and grains, allowing for both oversaturated and
undersaturated flows, where the water free surface lies above or below the free surface
of the grains. The combination of this layered structure with velocity shear results in a
shear-induced transport of grains or fluid forwards or backwards in the flow even when,
locally, the two phases have identical velocity (Gray & Kokelaar 2010). Here, however,
the local percolation of fluid through the grains is also modelled. The resulting difference
between granular and fluid velocities, although often much smaller than the typical flow
speed, provides a second mechanism for differential transport of the two phases, which
may augment or oppose the shear-induced transport. It is the combination of these two
mechanisms that allows the model to describe the steadily travelling finite granular mass
solutions that Davies (1988, 1990) observed in his moving bed flume. These transition
smoothly from a dry front to an undersaturated region, an oversaturated region and finally
a pure watery tail, which is closely akin to what is observed in the field (Pierson 1986;
Iverson 1997; Kean et al. 2013).

2. Governing equations

2.1. Mixture framework
Continuum mixture theory (Truesdell 1984; Morland 1992) provides a framework to
describe the motion of multi-phase materials and postulates that each spatial point is
simultaneously occupied by all the phases. Debris flows may be composed of grains, water
and air, but for simplicity, this paper uses a two-phase formulation that neglects the effect
of air. The volume fraction φν of constituent ν determines what proportion of the mixture
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volume is occupied by that constituent. Using the constituent letters ν = w, g for water and
grains, respectively, it follows that for a pure water phase, φw = 1, while for a dry granular
phase, the solids volume fraction φg < 1 and φw = 0. However, for a water saturated flow,
the volume fractions sum to unity

φg + φw = 1. (2.1)

Mixture theory defines overlapping partial density �ν , partial velocity uν and partial stress
σ ν fields for each phase. Each distributed phase satisfies its individual conservation laws
for mass,

∂�ν

∂t
+ ∇ · (�νuν) = 0, (2.2)

and for momentum,

∂

∂t
(�νuν)+ ∇ · (�νuν ⊗ uν) = ∇ · σ ν + �νg + βν, (2.3)

where t is time, ∇ is the gradient operator, · is the dot product, ⊗ is the dyadic product
and g the acceleration due to gravity. The interaction drag βν is the force exerted on the ν
phase by the other phase, and satisfies βg + βw = 0 according to Newton’s third law.

The partial density is related to its intrinsic counterpart (defined on a unit volume of
that constituent) by a linear volume fraction scaling, while the partial and intrinsic velocity
fields are identical

�ν = φν�ν�, uν = uν�, (2.4a,b)

where the superscript � represents an intrinsic quantity. The intrinsic pore fluid pressure
in the water is pw�. Following de Boer & Ehlers (1990), the partial stress in the grains is
decomposed into

σ g = −φgpw�1 − σ e, (2.5)

where σ e is the effective stress (which, by the convention used in soil mechanics, has the
opposite sign to that of Cauchy stress) and 1 is the unit tensor. The partial water stress is
assumed to be

σw = −φwpw�1 + τw, (2.6)

where the deviatoric stress τw satisfies a Newtonian fluid law

τw = φwηw(∇uw + (∇uw)T), (2.7)

in which ηw is the dynamic viscosity and T is the transpose. This assumes that the
interstitial fluid can be described as a Newtonian fluid with constant viscosity, which is a
potential source of discrepancy. For instance, in Baumgarten & Kamrin’s (2019) two-phase
fluid–sediment mixture model, Einstein’s (1906) linear solids volume correction is used
to account for the increased viscosity of the fluid due to the suspended sediment. This
idea can be extended to higher solids volume fractions. For instance, Boyer, Guazzelli &
Pouliquen (2011) showed how to relate the frictional behaviour of dense suspensions with
classical viscous suspension rheology, so that their behaviour could be expressed either as
a function of the solids volume fraction or the viscous number Iν = J = ηwγ̇ /pg, where γ̇
is the shear rate and pg is the pressure due to grain contacts. This suspension rheology
works well at low shear rates, but at higher shear rates, it has been found that there
is a transition towards a dependence on the granular inertial number I = γ̇ d/

√
pg/�g�

(Trulsson, Andreotti & Claudin 2012; Maurin, Chauchat & Frey 2016). While these
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suspension rheologies determine the composite response for a single effective medium,
it is by no means clear how to partition the stress back between the individual phases.

Equations (2.6) and (2.7) are consistent with the mixture theory approach of Nunziato
et al. (1986), although an ensemble averaging approach is also possible (Anderson &
Jackson 1967; Joseph & Lungdren 1990; Anderson, Sundaresan & Jackson 1995; Enwald,
Pelrano & Almstedt 1996; Jackson 2000). The sum of the partial solid and fluid stresses,
(2.5) and (2.6), determines the total stress

σ total = −pw�1 − σ e + τw, (2.8)

which is consistent with the effective stress principle of soil mechanics (Terzaghi 1943).
It also agrees with the experimental observation that the manometric pressure in the soil
is the pressure as if the medium were a bulk fluid, unaffected by the presence of the solid
constituent in the medium.

The interaction drags acting on the water and grain phases are defined by

βw = −βg = pw�∇φw + Cd(ug − uw), (2.9)

where the term pw�∇φw combines with the partial water pressure gradient −∇(φwpw�) in
the water momentum balance (2.3) to ensure that the fluid is driven by gradients in the
intrinsic pore water pressure −φw∇pw�, consistent with Darcy’s law (Bear 1972; Morland
1992). The second term on the right-hand side of (2.9) is the drag due to the relative motion
of the grains and water, with drag coefficient

Cd = ηw (φ
w)2

k
, where the permeability k = (φw)3d2

180(φg)2
, (2.10)

is given by Carman’s formula for the packing of spheres of diameter d. This agrees well
with the sediment dynamics experiments of Goharzadeh, Khalili & Jørgensen (2005) and
Ouriemi, Aussillous & Guazzelli (2009).

When the constitutive laws (2.5) and (2.6) and the interaction drags (2.9) are substituted
into (2.3), the momentum balance equations for the grains and the fluid take the form

∂

∂t
(�gug)+ ∇ · (�gug ⊗ ug) = −∇ · σ e − φg∇pw� + �gg + Cd(uw − ug), (2.11)

∂

∂t
(�wuw)+ ∇ · (�wuw ⊗ uw) = −φw∇pw� + ∇ · τw + �wg + Cd(ug − uw), (2.12)

assuming that the mixture is fully saturated. When there is no water (φw = 0), the
buoyancy force −φg∇pw� and the Darcy interaction force Cd(uw − ug) are assumed to
be zero, and the momentum balance (2.11) then reduces to that for dry grains. Conversely,
in the case of pure water (φw = 1), (2.12) naturally reduces to the Navier–Stokes equations.
The momentum balances (2.11) and (2.12) are identical to those employed to investigate
debris flows by Iverson & Denlinger (2001), sediment flows by Ouriemi et al. (2009) and
general fluid–sediment flows by Baumgarten & Kamrin (2019), apart from the particular
choices of the Darcy drag coefficients and effective fluid phase viscosity.

2.2. Boundary conditions
A Cartesian coordinate system Oxz is introduced with the x-axis pointing down a slope
inclined at an angle ζ to the horizontal and with the z-axis pointing upwards, as shown in
figure 2. A third coordinate y, lying across the slope, can easily be added to model fully
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Figure 2. (a) Two-dimensional schematic diagram of a debris flow on a slope inclined at an angle ζ to the
horizontal. Blue shading corresponds to water, while the grains occupy the region below the red free surface.
Velocity shear results in the surface layer of (light) grains moving towards the front, while the (dark) grains
near the base move backwards relative to the front. This creates a recirculating (green) frontal cell. The water
free surface (blue) and the granular free surface (red) do not coincide. The debris flow therefore consists of
a dry granular front, an undersaturated wet flow, an oversaturated wet flow and a pure watery tail. It is useful
to resolve the vertical structure as shown in panels (b,c) for the undersaturated and oversaturated regimes. In
panel (b), the granular free surface at z = sg(x, t) is above the water free surface at z = sw(x, t), while in the
oversaturated regime, the situation is reversed. The base of the flow lies at z = b(x) and the water and grain
heights are hw = sw − b and hg = sg − b. The internal interface height is min(hg, hw) and the proportion of
the water flow height that is occupied by grains is equal to H = min(hg, hw)/hw. Within this vertical structure,
region (i) consists of dry grains, region (ii) is a mixture of grains and water, and region (iii) is pure water.

three-dimensional flows, but for ease of exposition, the theory presented here is purely
two-dimensional. The debris flow is assumed to have velocity components uν = (uν,wν)
in the downslope and slope normal directions, respectively. The grain surface is defined
by the function Fg(z, x, t) = z − sg(x, t), the water surface by Fw(z, x, t) = z − sw(x, t)
and the basal surface by Fb(z, x, t) = z − b(x). It follows that the upward pointing unit
normal for each surface is nν = ∇Fν/|∇Fν |, where ν = g,w, b. In the undersaturated
regime (figure 2b), the water surface is below the grain surface, i.e. sw < sg, whereas in
the oversaturated regime (figure 2c), the water surface is above it, i.e. sg < sw.
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The grain phase is subject to kinematic conditions on the grain surface Fg(x, t) = 0 and
the basal surface Fb(x) = 0. These conditions are given by

∂Fg

∂t
+ ug · ∇Fg = 0, Fg(x, t) = 0, (2.13)

∂Fb

∂t
+ ug · ∇Fb = 0, Fb(x) = 0. (2.14)

Similarly, the water phase is subject to kinematic conditions on the water surface
Fw(x, t) = 0 and the basal surface Fb(x) = 0. They are given by

∂Fw

∂t
+ uw · ∇Fw = 0, Fw(x, t) = 0, (2.15)

∂Fb

∂t
+ uw · ∇Fb = 0, Fb(x) = 0. (2.16)

Grains can penetrate the water surface in the undersaturated regime (figure 2b) and water
can penetrate the grain surface in the oversaturated regime (figure 2c). The material that
crosses these surfaces can change its volume fraction abruptly, e.g. in the oversaturated
regime, the volume fraction of water jumps from φw = 1 − φg to φw = 1 across the
interface. To describe such singular interfaces, the mass jump conditions (Chadwick 1976)
are

[[�g(ug − uw) · nw]] = 0, Fw(x, t) = 0, (2.17)

[[�w(uw − ug) · ng]] = 0, Fg(x, t) = 0, (2.18)

where the jump brackets [[ ]] indicate the difference between the enclosed quantity on
the forward (+) and rearward (−) sides of the discontinuity. Equation (2.17) describes the
conservation of grains across the water free surface in the undersaturated case, while (2.18)
describes the conservation of water across the granular free surface in the oversaturated
regime.

Grains and water satisfy traction-free conditions at their free surfaces

σ eng = 0, Fg(x, t) = 0, (2.19)

σwnw = 0, Fw(x, t) = 0. (2.20)

Iverson (2003) used large-scale debris flow flume tests to show that the grain phase
experiences a Coulomb-type friction. Additionally, the Chézy formula (Chaudhry 2008),
an empirically derived expression to take into account turbulent friction arising from the
bottom of the channel, can be employed to describe the basal friction experienced by the
water phase. The solid bed friction and Chézy formula take the form

σ enb − (nb · σ enb)nb = − ug
b

|ug
b|
μb(nb · σ enb), Fb(x) = 0, (2.21)

σwnb − (nb · σwnb)nb = �w�Cw|ūw|ūw, Fb(x) = 0, (2.22)

where μb is the basal friction coefficient, Cw is the Chézy drag coefficient (Hogg &
Pritchard 2004) and ūw is the depth-averaged water velocity. Detailed formulae for the
coefficients μb and Cw will be discussed after the depth-integration process.

943 A19-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.400


Formation of dry granular fronts and watery tails in debris flows

3. Non-dimensionalisation

3.1. Scaling the governing equations
Debris flows typically have a flow depth H that is much smaller than their length L. This
makes it possible to derive a depth-averaged model, which does not depend on the normal
coordinate z. Typical downstream flow speeds for both the grain and water phases are
assumed to be of the order of the gravity wave speed U = (gH)1/2, and the mass balances
then imply that typical normal velocities are of magnitude εU, where the aspect ratio
ε = H/L � 1. Hydrostatic and lithostatic balances for the pore fluid pressure and the grain
normal stresses suggest scalings of �w�gH and �g�gH, respectively. A Coulomb friction
law then suggests that the typical order of magnitude for the grain shear stress is μ�g�gH,
where μ is the friction coefficient. The scaling of the deviatoric water stress is determined
by the Newtonian constitutive law (2.7). The governing equations and boundary conditions
are therefore non-dimensionalised by the scalings

(x, z, sw, sg, b, d) = L(x̂, εẑ, εŝw, εŝg, εb̂, εd̂), t = L/(gH)1/2 t̂,

(uν,wν, |uν |) = (gH)1/2(ûν, εŵν, |ûν |), Cd = �w�(g/H)1/2Ĉd,

(σ e
xx, σ

e
zz, σ

e
xz) = �g�gH(σ̂ e

xx, σ̂
e
zz, μσ̂

e
xz),

( pw�, τw
xx, τ

w
zz, τ

w
xz) = �w�gH(p̂w�, ετ̂w

xx, ετ
w
zz, τ̂

w
xz),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1a–f )

where the hatted quantities are non-dimensional. These scalings imply that for the grains,
the non-dimensional mass and momentum balance components are

∂φg

∂ t̂
+ ∂

∂ x̂
(φgûg)+ ∂

∂ ẑ
(φgŵg) = 0, (3.2)

ε

(
∂

∂ t̂
(φgûg)+ ∂

∂ x̂
(φgûgûg)+ ∂

∂ ẑ
(φgûgŵg)

)

= −εγ φg ∂ p̂w�

∂ x̂
− ε

∂σ̂ e
xx

∂ x̂
− μ

∂σ̂ e
xz

∂ ẑ
+ φg sin ζ + γ Ĉd(ûw − ûg), (3.3)

ε2
(
∂

∂ t̂
(φgŵg)+ ∂

∂ x̂
(φgûgŵg)+ ∂

∂ ẑ
(φgŵgŵg)

)

= −γφg ∂ p̂w�

∂ ẑ
− εμ

∂σ̂ e
xz

∂ x̂
− ∂σ̂ e

zz

∂ ẑ
− φg cos ζ + εγ Ĉd(ŵw − ŵg), (3.4)

where the density ratio

γ = �w�/�g�. (3.5)

Similarly, the non-dimensional water mass balance and the downslope and normal
components of the momentum balance are given by

∂φw

∂ t̂
+ ∂

∂ x̂
(φwûw)+ ∂

∂ ẑ
(φwŵw) = 0, (3.6)

ε

(
∂

∂ t̂
(φwûw)+ ∂

∂ x̂
(φwûwûw)+ ∂

∂ ẑ
(φwûwŵw)

)
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= −εφw ∂ p̂w�

∂ x̂
+ ε2 ∂τ̂

w
xx

∂ x̂
+ ∂τ̂w

xz

∂ ẑ
+ φw sin ζ − Ĉd(ûw − ûg), (3.7)

ε2
(
∂

∂ t̂
(φwŵw)+ ∂

∂ x̂
(φwûwŵw)+ ∂

∂ ẑ
(φwŵwŵw)

)

= −φw ∂ p̂w�

∂ ẑ
+ ε

∂τ̂w
xz

∂ x̂
+ ε

∂τ̂w
zz

∂ ẑ
− φw cos ζ − εĈd(ŵw − ŵg). (3.8)

3.2. Non-dimensional boundary conditions
The non-dimensional kinematic conditions (2.13) and (2.14) for the grains are

∂ ŝg

∂ t̂
+ ûg ∂ ŝg

∂ x̂
− ŵg = 0, ẑ = ŝg(x̂, t̂), (3.9)

∂ b̂
∂ t̂

+ ûg ∂ b̂
∂ x̂

− ŵg = 0, ẑ = b̂(x̂), (3.10)

and the non-dimensional kinematic conditions (2.15) and (2.16) for the water are

∂ ŝw

∂ t̂
+ ûw ∂ ŝw

∂ x̂
− ŵw = 0, ẑ = ŝw(x̂, t̂), (3.11)

∂ b̂
∂ t̂

+ ûw ∂ b̂
∂ x̂

− ŵw = 0, ẑ = b̂(x̂). (3.12)

To formulate the non-dimensional form of the mass-jump conditions (2.17) and
(2.18), the kinematic conditions (2.15) and (2.13) are used to show that uw · nw =
−(∂Fw/∂t)·(1/|∇Fw|) and ug · ng = −(∂Fg/∂t) · (1/|∇Fg|). Substitution of these results
implies that the non-dimensional jump conditions at the undersaturated water free surface
and the oversaturated grain free surface are[[

φg
(
∂ ŝw

∂ t̂
+ ûg ∂ ŝw

∂ x̂
− ŵg

)]]
= 0, ẑ = ŝw(x̂, t̂), (3.13)[[

φw
(
∂ ŝg

∂ t̂
+ ûw ∂ ŝg

∂ x̂
− ŵw

)]]
= 0, ẑ = ŝg(x̂, t̂). (3.14)

The non-dimensional downslope and normal components of the grain surface traction
(2.19) are

−εσ̂ e
xx
∂ ŝg

∂ x̂
+ μσ̂ e

xz = 0, ẑ = ŝg(x̂, t̂), (3.15)

−εμσ̂ e
xz
∂ ŝg

∂ x̂
+ σ̂ e

zz = 0, ẑ = ŝg(x̂, t̂), (3.16)

and the non-dimensional components of the water surface traction (2.20) are

εφwp̂w� ∂ ŝw

∂ x̂
− ε2τ̂w

xx
∂ ŝw

∂ x̂
+ τ̂w

xz = 0, ẑ = ŝw(x̂, t̂), (3.17)

−φwp̂w� − ετ̂w
xz
∂ ŝw

∂ x̂
+ ετ̂w

zz = 0, ẑ = ŝw(x̂, t̂). (3.18)
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Formation of dry granular fronts and watery tails in debris flows

The downslope and normal components of the basal granular traction (2.21) are

−εσ̂ e
xx
∂ b̂
∂ x̂

+ μσ̂ e
xz = −(nb · σ̂ enb)

(
ûg

b

|ûg
b|
μb|∇Fb| + ε

∂ b̂
∂ x̂

)
, ẑ = b̂(x̂), (3.19)

−εμσ̂ e
zx
∂ b̂
∂ x̂

+ σ̂ e
zz = −(nb · σ̂ enb)

(
ε

ŵg
b

|ûg
b|
μb|∇Fb| − 1

)
, ẑ = b̂(x̂), (3.20)

where |ûg
b| =

√
(ûg

b)
2 + ε2(ŵg

b)
2 and |∇Fb| =

√
1 + ε2(∂ b̂/∂ x̂)2. Similarly, the downslope

and normal components of the water basal friction (2.22) are

−ε2τ̂w
xx
∂ b̂
∂ x̂

+ τ̂w
xz + ε

(
φwp̂w�

b + (nb · σ̂wnb)
) ∂ b̂
∂ x̂

= Cw ˆ̄uw| ˆ̄uw‖∇Fb|, ẑ = b̂(x̂), (3.21)

−ετ̂w
zx
∂ b̂
∂ x̂

+ ετ̂w
zz −

(
φwp̂w�

b + (nb · σ̂wnb)
)

= εCw ˆ̄ww| ˆ̄uw‖∇Fb|, ẑ = b̂(x̂), (3.22)

where | ˆ̄uw| =
√
( ˆ̄uw)2 + ε2( ˆ̄ww)2.

4. Depth integration

4.1. Depth-averaged mass balance equations
The mass balance equations (3.2) and (3.6) can be integrated through the flow depth using
Leibniz’s rule (Abramowitz & Stegun 1970) to exchange the order of differentiation and
integration, and then simplified by using the kinematic conditions (3.9)–(3.12). In the
oversaturated regime, the standard argument (Savage & Hutter 1989; Gray et al. 1999)
is complicated by the jump in the water volume fraction at the internal free surface of the
grains. To overcome this, the integration of (3.6) is divided into two parts, which implies
that the depth-integrated water mass balance is

∂

∂ t̂
(ĥwφ̄w)+ ∂

∂ x̂
(ĥwφwûw

)+
[[
φw
(
∂ ŝg

∂ t̂
+ ûw ∂ ŝg

∂ x̂
− ŵw

)]]
= 0, (4.1)

where the jump bracket is evaluated at ẑ = ŝg, the water thickness ĥw = ŝw − b̂, and the
depth-averaged water concentration and depth-averaged water flux are

φ̄w = 1

ĥw

∫ ŝw

b̂
φwdẑ, φwûw = 1

ĥw

∫ ŝw

b̂
φwûwdẑ, (4.2a,b)

respectively. The jump bracketed term in (4.1) is zero by the water mass jump condition
(3.14), so the depth-averaged water mass balance reduces to standard form, despite
the jump in concentration. A similar argument carries through in the same way for
the depth-averaged grain mass balance in the undersaturated regime. As a result, the
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depth-averaged grain and water mass balances are

∂

∂ t̂
(ĥgφ̄g)+ ∂

∂ x̂
(ĥgφgûg

) = 0, (4.3)

∂

∂ t̂
(ĥwφ̄w)+ ∂

∂ x̂
(ĥwφwûw

) = 0, (4.4)

where the granular flow thickness ĥg = ŝg − b̂ and

φ̄g = 1

ĥg

∫ ŝg

b̂
φgdẑ, φgûg = 1

ĥg

∫ ŝg

b̂
φgûgdẑ. (4.5a,b)

To further simplify (4.3) and (4.4), the vertical distributions of the solid and water volume
fractions must be prescribed. The simplest approach is to assume that φg is constant,
regardless of whether the flow is undersaturated or oversaturated, i.e.

φg = φc. (4.6)

This is assumed in early debris flow models (Iverson 1997; Iverson & Denlinger 2001) and
appears to be a good approximation in high solids volume fraction granular-dominated
flows (Maurin et al. 2016; Chassagne et al. 2020). However, when the fluid can suspend
grains, the solids volume fraction increases with depth (Egashira, Itoh & Takeuchi 2001;
Maurin et al. 2016) and this will not be a good approximation. The fact that φc is constant
and uniform throughout the debris flow precludes pore pressure effects (Iverson & George
2014). There is therefore potential to improve the model (at this point) in future. The
exclusion of pore pressure effects does, however, allow us to show that they are not
necessarily needed to drive the forward motion of grains from an oversaturated tail towards
the flow front, which is the traditional view in the debris flow community.

As sketched in figure 2(b,c) the volume fraction of water is assumed to have a vertical
distribution that is dependent on whether the flow is undersaturated or oversaturated. In
the undersaturated regime,

φw =
{

0, ẑ ∈ [ŝw, ŝg],
1 − φc, ẑ ∈ [b̂, ŝw],

(4.7)

while in the oversaturated regime,

φw =
{

1, ẑ ∈ [ŝg, ŝw],
1 − φc, ẑ ∈ [b̂, ŝg].

(4.8)

It is useful to define volume-fraction-weighted depth-averaged velocities

ˆ̄ug =

∫ ŝg

b̂
φgûg dẑ∫ ŝg

b̂
φg dẑ

= φgûg

φ̄g
, ˆ̄uw =

∫ ŝw

b̂
φwûw dẑ∫ ŝw

b̂
φw dẑ

= φwûw

φ̄w
. (4.9a,b)

Since the solids volume fraction is constant, (4.9a) reduces to the standard definition
(Savage & Hutter 1989; Gray et al. 1999; Pitman & Le 2005; Gray & Edwards 2014). This
is also true for the water in the undersaturated regime, but in the oversaturated regime, the
internal concentration discontinuity (4.8) implies that the definition of the depth-averaged
water velocity (4.9b) is different. Using the definitions (4.6)–(4.9a,b), it follows that the
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Formation of dry granular fronts and watery tails in debris flows

depth-averaged mass balance of the grains in both the undersaturated and oversaturated
regimes is

∂

∂ t̂
(ĥgφc)+ ∂

∂ x̂
(ĥgφc ˆ̄ug) = 0, (4.10)

while the depth-averaged mass balances for the water in the undersaturated and
oversaturated regimes are

∂

∂ t̂
(ĥw(1 − φc))+ ∂

∂ x̂
(ĥw(1 − φc) ˆ̄uw) = 0, (4.11)

∂

∂ t̂
(ĥw(1 − φcĥg/ĥw))+ ∂

∂ x̂
(ĥw(1 − φcĥg/ĥw) ˆ̄uw) = 0, (4.12)

respectively. The factors φc and 1 − φc in (4.10) and (4.11) are constants that could be
cancelled out. However, these factors are retained here to develop a theoretical framework
that can switch seamlessly between regimes.

4.2. Normal components of the momentum equations
The normal components of the momentum balances play a crucial role in deriving normal
stresses in depth-averaged models (Savage & Hutter 1989; Iverson & Denlinger 2001;
Gray & Edwards 2014). To leading order in ε, the water normal momentum balance (3.8)
implies that the fluid pressure is hydrostatic

∂ p̂w�

∂ ẑ
= − cos ζ, (4.13)

in both the mixed (ii) and pure water (iii) regions shown in figure 2(b,c). Excess pore
pressure, which is important in large-scale debris flows containing fine particles (Iverson
et al. 2010), is therefore neglected in this model. In the dry region (i), the water pressure
and the Darcy drag vanish, and to leading order, the dry grain normal momentum balance
(3.4) reduces to

∂σ̂ e
zz

∂ ẑ
= −φc cos ζ, (4.14)

while in the mixed region (ii), the saturated grain normal stress gradient balances gravity
and buoyancy

∂σ̂ e
zz

∂ ẑ
= −φc cos ζ − γφc ∂ p̂w�

∂ ẑ
. (4.15)

Equations (4.13)–(4.15), together with their respective boundary conditions, enable
expressions for the pore fluid pressure and the grain normal stress to be derived, as
presented below.

4.3. Undersaturated pore fluid pressure and grain normal stress
To leading order, the surface condition (3.18) reduces to

p̂w�(ŝw) = 0. (4.16)

The integration of (4.13) subject to (4.16) implies that the water pressure is hydrostatic

p̂w� = (ŝw − ẑ) cos ζ, ẑ ∈ [b̂, ŝw]. (4.17)
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It follows that the pore fluid pressure on the base is

p̂w�
b = ĥw cos ζ, (4.18)

and that the depth-averaged water pressure is

ˆ̄pw� = 1

ĥw

∫ ŝw

b̂
p̂w� dẑ = 1

2
ĥw cos ζ. (4.19)

To leading order, the grain surface condition (3.16) implies that the surface stress σ̂ e
zz

vanishes. It follows that integrating (4.14) implies that the perpendicular grain normal
stress in the dry region (i) is

σ̂ e
zz = (ŝg − ẑ)φc cos ζ, ẑ ∈ [ŝw, ŝg], (4.20)

and hence that the perpendicular grain normal stress in the upper side of the water surface
is σ̂ e+

zz = (ŝg − ŝw)φc cos ζ . Appendix A shows that provided the granular velocity profile
through the depth of the flow is continuous, then there is no jump in the normal effective
stress, and hence

σ̂ e−
zz = σ̂ e+

zz = (ŝg − ŝw)φc cos ζ, ẑ = ŝw. (4.21)

In the saturated regime (ii), substitution of (4.13) into (4.15) implies that

∂σ̂ e
zz

∂ ẑ
= −φc(1 − γ ) cos ζ, ẑ ∈ [b̂, ŝw]. (4.22)

Integration of (4.22) subject to the continuity condition (4.21) implies that the
perpendicular grain normal stress in the saturated regime (ii) is

σ̂ e
zz = (ŝg − ẑ)φc cos ζ − (ŝw − ẑ)γ φc cos ζ, ẑ ∈ [b̂, ŝw], (4.23)

and hence on the base,

σ̂ e
zz(b) = (ĥg − γ ĥw)φc cos ζ, ẑ = b̂. (4.24)

The depth-averaged perpendicular grain normal stress is

ˆ̄σ e
zz = 1

ĥg

(∫ ŝw

b̂
σ̂ e

zzdẑ +
∫ ŝg

ŝw
σ̂ e

zz dẑ

)
= 1

2
ĥgφc cos ζ − 1

2
γ (ĥw/ĥg)2ĥgφc cos ζ, (4.25)

which, provided the earth pressure coefficient is equal to unity (Savage & Hutter 1989;
Gray et al. 1999; Pouliquen 1999a), implies that the depth-averaged downslope grain
normal stress is

ˆ̄σ e
xx = 1

2 ĥgφc cos ζ − 1
2γ (ĥ

w/ĥg)2ĥgφc cos ζ. (4.26)

It follows that to leading order, (3.20) implies that the basal normal stress

nb · σ̂ enb = σ̂ e
zz(b) = ĥg(1 − γ ĥw/ĥg)φc cos ζ, ẑ = b̂. (4.27)
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Formation of dry granular fronts and watery tails in debris flows

4.4. Oversaturated pore fluid pressure and grain normal stress
Since (4.13) is independent of φw, it can be integrated in the same way as the
undersaturated case to show that the pressure is hydrostatic

p̂w� = (ŝw − ẑ) cos ζ. (4.28)

Similarly, the basal water pressure and the depth-averaged water pressure are the same as
the undersaturated case

p̂w�
b = ĥw cos ζ, ˆ̄pw� = 1

2 ĥw cos ζ, (4.29a,b)

and the pore fluid pressure at the grain surface is

p̂w�(ŝg) = (ĥw − ĥg) cos ζ, ẑ = ŝg. (4.30)

To leading order, the traction-free condition (3.16) reduces to σ̂ e
zz(ŝ

g) = 0. Substituting
the gradient of the pore fluid pressure (4.13) into (4.15) and then integrating implies the
perpendicular grain normal stress is

σ̂ e
zz = (1 − γ )(ŝg − ẑ)φc cos ζ, ẑ ∈ [b̂, ŝg], (4.31)

and hence that the perpendicular basal normal stress is

σ̂ e
zz(b̂) = (1 − γ )ĥgφc cos ζ ẑ = b̂. (4.32)

The depth-averaged perpendicular normal stress is then

ˆ̄σ e
zz = 1

ĥg

∫ ŝg

b̂
σ̂ e

zzdẑ = 1
2
(1 − γ )ĥgφc cos ζ. (4.33)

Given that the earth pressure coefficient is unity, the depth-averaged downslope normal
stress is therefore equal to its counterpart in the vertical direction, i.e.

ˆ̄σ e
xx = 1

2(1 − γ )ĥgφc cos ζ. (4.34)

To leading order, (3.20) shows the basal normal stress

nb · σ̂ enb = σ̂ e
zz(b̂) = (1 − γ )ĥgφc cos ζ. (4.35)

4.5. Undersaturated depth-averaged downslope momentum balances

The downslope grain momentum balance (3.3) is now integrated from the bed ẑ = b̂ to
the grain surface ẑ = ŝg. The integration is divided into two parts, because the buoyancy
and Darcy drag are active only below the water surface ẑ = ŝw. Leibniz’s integration rule
is used to swap the order of differentiation and integration, and the surface and basal
kinematic conditions, (3.9) and (3.10), and downslope surface traction (3.15) are used to
simplify the resulting equations. The calculations are lengthy and are therefore shown in
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Appendix B. The resulting depth-averaged momentum balance for the grains is

ε

(
∂

∂ t̂
(ĥgφgûg)+ ∂

∂ x̂
(ĥgφg(ûg)2)+ ∂

∂ x̂
(ĥg ˆ̄σ e

xx)+ γφc ∂

∂ x̂
(ĥw ˆ̄pw)

)

= ĥgφc sin ζ −
(
εσ̂ e

xx(b̂)
∂ b̂
∂ x̂

− μσ̂ e
xz(b̂)

)
− γ Ĉd

∫ ŝw

b̂
(ûg − ûw) dẑ − εγ φcp̂w�

b
∂ b̂
∂ x̂
.

(4.36)

Substituting (4.27) into (3.19) implies that the basal downslope traction

εσ̂ e
xx(b̂)

∂ b̂
∂ x̂

− μσ̂ e
xz(b̂) = ûg

b

|ûg
b|
(1 − γ ĥw/ĥg)μbĥgφc cos ζ

+ ε(1 − γ ĥw/ĥg)ĥgφc cos ζ
∂ b̂
∂ x̂

+ O(ε2), (4.37)

where the factor ûg
b/|ûg

b| will be approximated as ˆ̄ug/| ˆ̄ug|. This approximation is employed
in virtually all depth-averaged granular flow models (see e.g. Savage & Hutter 1989;
Pitman & Le 2005; Pudasaini 2012; Gray & Edwards 2014; Iverson & George 2014). To
simplify the momentum transport terms, it is assumed that

φg(ûg)2 = 1

ĥg

∫ ŝg

b̂
φg(ûg)2 dẑ = χgφ̄g( ˆ̄ug)2, (4.38)

where the shape factor χg for specific velocity profiles will be considered in § 4.8. It is
also useful to define the streamfunction for the grains

ψ̂g(ẑ) =
∫ ẑ

b̂
ûg(ẑ′) dẑ′, (4.39)

which allows the Darcy drag exerted on the grain phase to be expressed as

γ Ĉd
∫ ŝw

b̂
(ûg − ûw) dẑ = γ Ĉd(ψ̂g(ŝw)− ĥw ˆ̄uw). (4.40)

The gravitational force, the basal friction and the Darcy drag are all order unity
quantities, but their sum is an order ε quantity. To express this theoretically, the leading
order balance L̂g is defined as

εL̂g = ĥgφc sin ζ︸ ︷︷ ︸
Gravity

−μb
ˆ̄ug

| ˆ̄ug|

(
1 − γ

ĥw

ĥg

)
ĥgφc cos ζ

︸ ︷︷ ︸
Basal friction

− γ Ĉd(ψ̂g(ŝw)− ĥw ˆ̄uw)︸ ︷︷ ︸
Darcy drag

. (4.41)

When (4.6), (4.9a), (4.37), (4.38) and (4.41) are substituted into (4.36), together with the
basal pressure (4.18), the depth-averaged pore fluid pressure (4.19) and the depth-averaged
normal stress (4.26), the leading-order depth-averaged grain momentum balance in the
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Formation of dry granular fronts and watery tails in debris flows

undersaturated regime becomes

∂

∂ t̂
(ĥgφc ˆ̄ug)+ ∂

∂ x̂

(
χgĥgφc( ˆ̄ug)2 + 1

2
(ĥg)2φc cos ζ − 1

2
γ (ĥw)2φc cos ζ

)
= Ŝg, (4.42)

where the source terms

Ŝg = L̂g − γ ĥwφc cos ζ
∂ ĥw

∂ x̂︸ ︷︷ ︸
Buoyancy

− ĥgφc cos ζ
∂ b̂
∂ x̂︸ ︷︷ ︸

Topographic gradient

, (4.43)

combine the leading order balance (4.41) with the lower order buoyancy and topographic
gradient terms. Note that the gradient of (1/2)γ (ĥw)2φc cos ζ in (4.42) can be cancelled
with the buoyancy term in (4.43). However, the equations are left in their present form to
unify all the regimes in § 4.7.

Integrating the downslope water momentum balance (3.7) from the bed ẑ = b̂ to the
water surface ẑ = ŝw is more straightforward, because the integration does not pass through
a singular surface. Using Leibniz’s integration rule to exchange the order of differentiation
and integration and using the kinematic conditions (3.11) and (3.12), the surface traction
(3.17) and the Darcy drag (4.40), the depth-averaged downslope water momentum balance
is

ε

(
∂

∂ t̂
(ĥw(1 − φc) ˆ̄uw)+ ∂

∂ x̂
(χwĥw(1 − φc)( ˆ̄uw)2)+ (1 − φc)

∂

∂ x̂
(ĥw ˆ̄pw�)

)

− ε2 ∂

∂ x̂
(ĥw ˆ̄τw

xx) = ĥw(1 − φc) sin ζ − Ĉd(ĥw ˆ̄uw − ψ̂g(ŝw))− ε(1 − φc)p̂w�
b
∂ b̂
∂ x̂

+
(
ε2τ̂w

xx(b̂)
∂ b̂
∂ x̂

− τ̂w
xz(b̂)

)
, (4.44)

where the water shape factor χw is defined as

φw(ûw)2 = 1

ĥw

∫ ŝw

b̂
φw(ûw)2 dẑ = χwφ̄w( ˆ̄uw)2. (4.45)

The depth-averaged in-plane viscous stress ˆ̄τw
xx is smaller than the other forces, and is

usually neglected (Savage & Hutter 1989; Pitman & Le 2005). However, it plays a crucial
role in some subtle situations, including (i) obtaining the correct cutoff frequency of
roll waves (Forterre 2006; Gray & Edwards 2014), (ii) generating cross-stream velocity
profiles (Iverson & Denlinger 2001; Baker, Johnson & Gray 2016b; Meng & Wang 2018),
(iii) regularising ill-posedness (Baker et al. 2016a) and (iv) forming critical phenomena
like levees (Rocha, Johnson & Gray 2019). An expression for the depth-averaged in-plane
deviatoric water stresses in the undersaturated regime is derived in Appendix C. A similar
depth-averaged in-plane viscous-like term, analogous to that derived by Gray & Edwards
(2014), could also be added to (4.43). However, both these terms are small, and are not
important for reproducing the experimental observations of Davies (1988, 1990) in § 5.
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To leading order, (3.22) reduces to

nb · σ̂wnb = −φwp̂w�
b , (4.46)

and together with (3.21), it shows

− ε2τ̂w
xx(b̂)

∂ b̂
∂ x̂

+ τ̂w
xz(b̂) = Cw ˆ̄uw| ˆ̄uw| + O(ε2). (4.47)

In an analogous way to the grain phase, the sum of the gravitational force, the Chézy drag
and the Darcy drag is small, although they are all individually order unity quantities. To
express this mathematically, the leading order balance L̂w is defined as

εL̂w = ĥw(1 − φc) sin ζ︸ ︷︷ ︸
Gravity

− Cw ˆ̄uw| ˆ̄uw|︸ ︷︷ ︸
Chézy drag

− Ĉd(ĥw ˆ̄uw − ψ̂g(ŝw)).︸ ︷︷ ︸
Darcy drag

(4.48)

When (4.45) and (4.48) are substituted into (4.44), together with the basal pressure
(4.18), the depth-averaged pore fluid pressure (4.19) and the depth-averaged shear stress
(C3), the leading-order water momentum balance in the undersaturated regime becomes

∂

∂ t̂
(ĥw(1 − φc) ˆ̄uw)+ ∂

∂ x̂

(
χwĥw(1 − φc)( ˆ̄uw)2 + 1

2
(ĥw)2 cos ζ

)
= Ŝw, (4.49)

where the source term

Ŝw = L̂w + φcĥw cos ζ
∂ ĥw

∂ x̂︸ ︷︷ ︸
Buoyancy

− ĥw(1 − φc) cos ζ
∂ b̂
∂ x̂︸ ︷︷ ︸

Topographic gradient

+ 2ε
Re

∂

∂ x̂

(
ĥw(1 − φc)

∂ ˆ̄uw

∂ x̂

)
,

︸ ︷︷ ︸
Viscous term

(4.50)

combines the leading order balance (4.48) with the lower order buoyancy, topography
gradient and viscous terms.

4.6. Oversaturated depth-averaged downslope momentum balances
It is also straightforward to integrate the downslope granular momentum balance (3.3)
from ẑ = b̂ to the grain surface ẑ = ŝg, since there is no singular surface. By using
Leibniz’s integration rule to exchange the order of differentiation and integration, together
with the surface and basal kinematic conditions (3.9) and (3.10), the depth-averaged
downslope granular momentum balance in the oversaturated region is

ε

(
∂

∂ t̂
(ĥgφc ˆ̄ug)+ ∂

∂ x̂
(χgĥgφc( ˆ̄ug)2)+ ∂

∂ x̂
(ĥg ˆ̄σ e

xx)+ γφc ∂

∂ x̂

(∫ ŝg

b̂
p̂w�dẑ

))

= ĥgφc sin ζ −
(
εσ̂ e

xx(b̂)
∂ b̂
∂ x̂

− μσ̂ e
xz(b̂)

)
− γ Ĉd

∫ ŝg

b̂
(ûg − ûw) dẑ

+ εγ φc
(

p̂w� ∂ ẑ
∂ x̂

)ŝg

b̂
, (4.51)

where the basal granular traction is determined by the downslope component of the basal
friction condition (3.19) and the basal normal stress (4.35), i.e.

εσ̂ e
xx
∂ b̂
∂ x̂

− μσ̂ e
xz = μb

ˆ̄ug

| ˆ̄ug|(1 − γ )ĥgφc cos ζ + ε(1 − γ )ĥgφc cos ζ
∂ b̂
∂ x̂

+ O(ε2). (4.52)

943 A19-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.400


Formation of dry granular fronts and watery tails in debris flows

This time, it is useful to define the streamfunction for the water

ψ̂w(ẑ) =
∫ ẑ

b̂
ûw(ẑ′) dẑ′, (4.53)

which allows the Darcy drag to be expressed as

γ Ĉd
∫ ŝg

b̂
(ûg − ûw) dẑ = γ Ĉd(ĥg ˆ̄ug − ψ̂w(ŝg)). (4.54)

The difference of the gravitational force, the basal friction and the Darcy drag is of order
ε. This leading order balance is expressed mathematically by defining the function

εL̂g = ĥgφc sin ζ︸ ︷︷ ︸
Gravity

−μb
ˆ̄ug

| ˆ̄ug|(1 − γ )ĥgφc cos ζ︸ ︷︷ ︸
Basal friction

− γ Ĉd(ĥg ˆ̄ug − ψ̂w(ŝg))︸ ︷︷ ︸
Darcy drag

. (4.55)

Substituting the hydrostatic water pressure (4.28) into the relevant terms in (4.51) implies
that

− ∂

∂ x̂

(∫ ŝg

b̂
p̂w� dẑ

)
+
(

p̂w� ∂ ẑ
∂ x̂

)ŝg

b̂
= −ĥg cos ζ

∂ ĥw

∂ x̂
− ĥg cos ζ

∂ b̂
∂ x̂
. (4.56)

Finally, substituting (4.54)–(4.56) together with the depth-averaged downslope normal
stress (4.34) into (4.51) implies that the depth-averaged granular momentum balance is

∂

∂ t̂
(ĥgφc ˆ̄ug)+ ∂

∂ x̂

(
χgĥgφc( ˆ̄ug)2 + 1

2
(ĥg)2(1 − γ )φc cos ζ

)
= Ŝg, (4.57)

where the source term Ŝg on the right-hand side is

Ŝg = L̂g − γ ĥgφc cos ζ
∂ ĥw

∂ x̂︸ ︷︷ ︸
Buoyancy

− ĥgφc cos ζ
∂ b̂
∂ x̂
.︸ ︷︷ ︸

Topographic gradient

(4.58)

To leading order, the normal component of the Chézy formula (3.22) reduces to

nb · σ̂wnb = −φwp̂w�
b , (4.59)

which implies the downslope component of the Chézy formula (3.21) becomes

− ε2τ̂w
xx(b̂)

∂ b̂
∂ x̂

+ τ̂w
xz(b̂) = Cw ˆ̄uw| ˆ̄uw| + O(ε2). (4.60)

In the oversaturated region, the water volume fraction is discontinuous across the grain
free surface, so the integral of the downslope component of the water momentum balance
(3.7) through the water depth is complicated. The detailed derivation can be found in
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Appendix D. It follows from this calculation that the depth-integrated water momentum
balance in the oversaturated regime is

ε

(
∂

∂ t̂
((ĥw − φcĥg) ˆ̄uw)+ ∂

∂ x̂
(χw(ĥw − φcĥg)( ˆ̄uw)2)+ ∂

∂ x̂
(ĥw ˆ̄pw�)− ε

∂

∂ x̂
(ĥw ˆ̄τw

xx)

)

= (ĥw − φcĥg) sin ζ − Cw ˆ̄uw| ˆ̄uw| − Ĉd(ψ̂w(ŝg)− ĥg ˆ̄ug)+ ε

(
p̂w� ∂ ẑ

∂ x̂

)ŝw

b̂

+ εφc ∂

∂ x̂

(∫ ŝg

b̂
p̂w� dẑ

)
− εφc

(
p̂w� ∂ ẑ

∂ x̂

)ŝg

b̂
. (4.61)

This time, the leading order balance lies between the gravitational force, the Chézy
drag and the Darcy drag. The sum of these terms is of order ε, which is expressed
mathematically by defining the function

εL̂w = (ĥw − φcĥg) sin ζ︸ ︷︷ ︸
Gravity

− Cw ˆ̄uw| ˆ̄uw|︸ ︷︷ ︸
Chézy drag

− Ĉd(ψ̂w(ŝg)− ĥg ˆ̄ug).︸ ︷︷ ︸
Darcy drag

(4.62)

Using (4.16), (4.29a,b), (4.56), (4.62) and the depth-averaged shear stress (C4), the
leading-order depth-averaged oversaturated water momentum balance becomes

∂

∂ t̂
((ĥw − φcĥg) ˆ̄uw)+ ∂

∂ x̂

(
χw(ĥw − φcĥg)( ˆ̄uw)2 + 1

2
(ĥw)2 cos ζ

)
= Ŝw, (4.63)

where the source term

Ŝw = L̂w + ĥgφc cos ζ
∂ ĥw

∂ x̂︸ ︷︷ ︸
Buoyancy

− (ĥw − φcĥg) cos ζ
∂ b̂
∂ x̂︸ ︷︷ ︸

Topographic gradient

+ 2ε
Re

∂

∂ x̂

(
(ĥw − φcĥg)

∂ ˆ̄uw

∂ x̂

)
.

︸ ︷︷ ︸
Viscous term

(4.64)

4.7. Unified dimensional system of depth-averaged equations
The leading-order system (4.10), (4.11), (4.42) and (4.49) in the undersaturated regime,
and (4.10), (4.12), (4.57) and (4.63) in the oversaturated regime can be made dimensional
by reversing the scalings

x = Lx̂, (hν, sν, b) = H(ĥν, ŝν, b̂), t = (L/
√

gH)t̂, uν =
√

gHûν,

(Sν,Lν) = (gH2/L)(Ŝν, L̂ν), Cd = (�w�√g/
√

H)Ĉd, ψν = H
√

gHψ̂ν.

}
(4.65a–g)

They can also be written in a unified form by introducing the variable

H = min(hw, hg)/hw, (4.66)

which determines the proportion of the water height that is occupied by grains. As shown
in figure 2(b,c), this implies that

H =
{

1, hg > hw, (undersaturated),
hg/hw, hg ≤ hw, (oversaturated).

(4.67)

943 A19-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.400


Formation of dry granular fronts and watery tails in debris flows

It follows that the unified system of dimensional equations can be expressed as

∂

∂t
(hgφc)+ ∂

∂x
(hgφcūg) = 0, (4.68)

∂

∂t
(hw(1 − φcH))+ ∂

∂x
(hw(1 − φcH)ūw) = 0, (4.69)

∂

∂t
(hgφcūg)+ ∂

∂x

(
χghgφc(ūg)2 + 1

2
(hg)2φcg cos ζ − 1

2
γφc(hwH)2g cos ζ

)
= Sg,

(4.70)

∂

∂t
(hw(1 − φcH)ūw)+ ∂

∂x

(
χwhw(1 − φcH)(ūw)2 + 1

2
(hw)2g cos ζ

)
= Sw, (4.71)

where the terms on the left-hand side of (4.70) and (4.71) represent the momentum
transport and pressure gradients of each phase. The source terms on the right-hand side of
(4.70) and (4.71) take the form

Sg = Lg − γφcHhwg cos ζ
∂hw

∂x︸ ︷︷ ︸
Buoyancy

− hgφcg cos ζ
∂b
∂x
,︸ ︷︷ ︸

Topography gradient

(4.72)

Sw = Lw + φcHhwg cos ζ
∂hw

∂x︸ ︷︷ ︸
Buoyancy

− (1 − φcH)hwg cos ζ
∂b
∂x︸ ︷︷ ︸

Topography gradient

+ 2νw ∂

∂x

(
hw(1 − φcH)∂ ūw

∂x

)
,︸ ︷︷ ︸

Viscous term

(4.73)

where the kinematic viscosity of water

νw = ηw/�w�. (4.74)

The dimensional leading order balances are

Lg = hgφcg sin ζ︸ ︷︷ ︸
Gravity

− ūg

|ūg|
(

1 − γHhw

hg

)
μbhgφcg cos ζ︸ ︷︷ ︸

Basal friction

+ Cd

�g�

(
ψw(sν)− ψg(sν)

)
︸ ︷︷ ︸

Darcy drag

,

(4.75)

Lw = hw(1 − φcH)g sin ζ︸ ︷︷ ︸
Gravity

− Cwūw|ūw|︸ ︷︷ ︸
Basal friction

− Cd

�w∗
(
ψw(sν)− ψg(sν)

)
,︸ ︷︷ ︸

Darcy drag

(4.76)

where the internal interface height in the Darcy drag terms is defined as

sν = Hhw + b =
{

sw, hg > hw, (undersaturated),
sg, hg ≤ hw, (oversaturated).

(4.77)

Equations (4.66)–(4.77) provide a convenient way of expressing the equations in all four
regimes shown in figure 2, i.e. the dry granular front, the undersaturated region, the
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oversaturated region and the watery tail. In the undersaturated regime, the buoyancy terms
in (4.72) and (4.73) can be written in conservative form. In this case, the whole system is
in conservative form, which is advantageous for numerical methods (Kurganov & Tadmor
2000) as well as for deriving jump conditions (Chadwick 1976) at internal shocks. In the
oversaturated regime, the buoyancy terms can not be written in conservative form, which is
potentially a problem for numerical methods and if shocks develop. However, the presence
of the viscous term in (4.73) will suppress the formation of water shocks, since the higher
order gradient terms will smooth out any discontinuities. If granular shocks develop during
oversaturated flows, it may also be necessary to add a viscous term to the depth-averaged
granular momentum balance (see e.g. Gray & Edwards 2014).

4.8. Velocity profiles through the flow depth
To evaluate the shape factors in (4.70) and (4.71) and the Darcy drag terms in (4.75) and
(4.76), it is necessary to make some assumptions about the velocity profiles through the
depth of grains and the water. These assumptions must take account of the layered structure
of the flow (4.6)–(4.8) in the undersaturated and oversaturated regimes (figure 2), and
be consistent with the definitions of the depth-averaged velocities in (4.9a,b). This paper
introduces shear into the model by defining the velocity for phase ν of the form

uν = uνc (x, t)
(
αν + 2(1 − αν)

(
z − b

hν

))
, (4.78)

where uνc is independent of z and the parameter αν ∈ [0, 1] allows the velocity profile
to vary from simple shear with no basal slip (αν = 0) to plug flow (αν = 1) (Gray &
Thornton 2005; Gray & Kokelaar 2010; Johnson et al. 2012). It would also be possible
to use a power law or a Bagnold velocity profile (Turnbull, Bowman & McElwaine 2015;
Baker et al. 2016b). The shear velocity profile (4.78) contrasts with widely used debris-flow
models (e.g. Iverson & Denlinger 2001; Pitman & Le 2005; Pelanti, Bouchut & Mangeney
2008; Pudasaini 2012; Iverson & George 2014; Meng & Wang 2016), which assume plug
flow for both the grain and water phases.

This paper will show that velocity shear is sufficient to produce a dry granular front
without the need to invoke ideas about particle segregation (Iverson 2003; Gray 2018).
Consider then the linear velocity profiles with depth given by (4.78). Since the volume
fraction of grains is always equal to the constant φc by (4.6), and the volume fraction of
water is equal to the constant 1 − φc in the undersaturated regime (4.7), it follows from
(4.9a,b) that

ug
c = ūg, uw

c = ūw. (4.79a,b)

The corresponding granular and water shape factors, defined in (4.38) and (4.45), are

χg = 4
3 − 2

3α
g + 1

3 (α
g)2, χw = 4

3 − 2
3α

w + 1
3 (α

w)2, (4.80a,b)

respectively. For these cases, the shape factor χν = 1 for plug flow and 4/3 for simple
shear. The situation for the oversaturated regime is more complex, because the volume
fraction of water (4.8) is also height dependent. Substituting (4.8) and (4.78) into (4.9b)
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Formation of dry granular fronts and watery tails in debris flows

implies that
uw

c = λwūw, (4.81)

where

λw = (1 − φcH)
1 − φc(αwH + (1 − αw)H2)

. (4.82)

Note that when H = 1, λw = 1 and (4.81) reduces to the undersaturated case. Solving
(4.45) for the shape factor and substituting the depth-averaged water velocity (4.9b)
implies that

χw = φw(uw)2φ̄w

(φwuw)2
. (4.83)

The oversaturated water shape factor is therefore

χw = (4χw
0 − 2χw

1 α
w + χw

2 (α
w)2)(1 − Hφc)

3(1 − φc(αwH + (1 − αw)H2))2
, (4.84)

where the coefficients

χw
0 = 1 − H3φc, χw

1 = 1 + 3H2φc − 4H3φc,

χw
2 = 1 − 3Hφc + 6H2φc − 4H3φc.

}
(4.85a–c)

Thus, (4.84) reduces to the undersaturated case (4.80b) when H = 1. For the velocity
profiles (4.78), it follows from the definitions of the streamfunctions (4.39) and (4.53) that
in the undersaturated regime,

ψw(sw)− ψg(sw) = hwūw − ūg
(
αghw + (1 − αg)

(hw)2

hg

)
. (4.86)

Similarly, in the oversaturated regime at the internal grain surface,

ψw(sg)− ψg(sg) = λwūw
(
αwhg + (1 − αw)

(hg)2

hw

)
− hgūg, (4.87)

where the factor λw enters due to the non-uniform concentration of water with z. This
paper investigates the simplest possible shearing debris flow model, by assuming simple
shear in the granular phase and plug flow in the water, i.e.

αg = 0, and αw = 1. (4.88a,b)

With these assumptions, it follows from (4.86) and (4.87) that the difference of the
streamfunctions, which arises in (4.75) and (4.76), can be expressed in the unified form

ψw(sν)− ψg(sν) = hwHūw − (hwH)2
hg ūg. (4.89)

The assumption of plug flow in the water implies that χw = 1, and for simplicity, it is
further assumed that the grain shape factor χg = 1, which is a common assumption in
depth-averaged debris flow models (e.g. Iverson & Denlinger 2001; Pitman & Le 2005;
Pelanti et al. 2008; Pudasaini 2012; Iverson & George 2014; Meng & Wang 2016).
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4.9. Closure of friction coefficients μb and Cw

Considerable progress has been made in the field of the granular flows with the
development of μ(I)-rheology (GDR-MiDi 2004; Jop, Forterre & Pouliquen 2006), where
the friction coefficient μ is a monotonically increasing function of inertial number I.
This functional dependence was determined from measurements of steady-uniform flows
between the angles ζ1 and ζ2 on an inclined plane (Pouliquen 1999b; Pouliquen & Forterre
2002). The ensuing empirical friction law is given by

μb(Fr, hg) = μ1 + μ2 − μ1

1 + βhg

L Fr

, (4.90)

where μ1 = tan ζ1 and μ2 = tan ζ2. The parameter β is an empirical constant and L has
the dimensions of a length and is dependent on the properties of the grains and on the bed
roughness. The Froude number in (4.90) is defined as

Fr = |ūg|√
hgg cos ζ

. (4.91)

Maurin et al. (2016) used a coupled fluid–discrete-element method to perform numerical
simulations of turbulent bedload transport. Contrary to expectations, they found that
for dense submerged granular flows, the effect of the interstitial fluid viscosity was
negligible. Moreover, they found that the μ(I)-rheology was able to collapse the simulated
shear-to-normal stress ratio and the solids volume fraction over an unexpectedly wide
range of inertial numbers. This lends weight to the use of the granular friction (4.90)
to describe the basal friction of the grains. It enters the theory through the leading order
granular source term defined in (4.75), which includes a factor 1 − γHhw/hg to account
for the reduced granular normal stress in the submerged grains.

The water bed friction coefficient is based on the Manning equation (Manning 1891;
Chaudhry 2008) for open channel flows, which implies that Cw = gn2/(hw)1/3, where n
is the Manning coefficient (Chertock et al. 2015). This formula is modified to account for
the presence of grains by defining it to be

Cw = (1 − φcH) gn2

(hw)1/3
. (4.92)

This ensures that Cw reduces to the classical form for shallow water flows in the absence
of grains.

5. Davies’ moving bed flume experiments

Davies (1988, 1990) generated small-scale steady-state flows on a moving conveyor belt
that possess many features in common with geophysical flows in the field, e.g. dry
snouts and pure watery tails. Davies’ carefully described experiments (figure 3 and online
supplementary movies 2–4) are a good test of the present theory because the moving
conveyor belt reduces the average bulk flow speed to zero, allowing detailed study of the
shear profiles and relative motion between grains and fluid that remain. They have also
been used by Berzi & Jenkins (2009) to test against their steady-state kinetic theory based
debris flow model.
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channel
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Channel bed

Wall
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Rollers

Retention wall

(b)

(a)

Figure 3. (a) Schematic diagrams of Davies’ (1988) moving bed flume experiment and the toothed belt. (b) A
photo of the experiment on a 15◦ slope and with a bed speed U = 0.3 m s−1. Three movies of the experiment
are available in the online supplementary material (courtesy of Davies 1988, 1990).

5.1. Description and summary of observations
The moving-bed apparatus consisted of a rectangular flume that was 2 m in length and had
a width of 50 mm, with walls at the ends to retain all the material, see figure 3. The channel
bed was made rough by using a corrugated nylon belt, driven by a toothed drive wheel
connected by another toothed belt to a variable-speed electric motor and controller. The
range of channel slopes used in the experiments was from 5◦ to 19◦ and the bed speeds
ranged from 0.25 to 1.17 m s−1. Room temperature tap water was used and the plastic
grains were 4-mm-long cylinders cut from 4-mm diameter polyvinyl chloride (PVC) rod
with intrinsic density �g� = 1400 kg m−3. The maximum grain volume fraction was 0.56.
Approximately 10 % of the particles were painted white to act as tracers, and videos were
used to track individual particle paths. In Davies’ (1988) experiments, the surge remains
stationary, while the bed moves upward at a constant velocity U. The main experimental
findings relevant to the current study are outlined below.
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(i) Adding grains caused the flow depth to increase and a curved front appeared in the
channel. As more grains were added, and the grain volume exceeded the threshold for
uniform flow at a given speed and slope angle, the excess grains moved to the front and
caused a thicker dry snout to develop. This dry bulbous flow head is similar in form to
those observed in large scale debris flows.

(ii) As more grains were added, a substantial high-concentration stationary surge was
formed at the lower end of the channel. This surge had a uniform depth body that extended
from the curved front to an attenuated tail. The depth of this uniform body was not very
sensitive to the grain volume, as shown in figure 9 of Davies (1990). The flows usually
formed on a relatively gentle slope or when the bed speed was relatively low. An example
is shown in online supplementary movie 2, at a slope angle of 15◦ and bed speed U =
0.2 m s−1.

(iii) When the bed speed was raised to a relatively high value, the stationary surge was
curved rather than being of uniform depth (see e.g. online supplementary movie 3 at 15◦
inclination and bed speed U = 0.3 m s−1). The longitudinal profiles showed that a dry
front is followed by an undersaturated and oversaturated body that degenerates down to
pure water in the tail, as sketched in figure 2. This longitudinal profile is similar to those
observed in the USGS debris-flow flume tests (Iverson et al. 2010; Johnson et al. 2012)
and in the small scale experimental curved channel of Scheidl et al. (2015).

(iv) Tracers show that grains near the free surface are sheared towards the front, are
overrun there and transported back towards the tail near the base of the flow. Here they rise
up to the surface again and are sheared forward to form a recirculating cell that conserves
its mass.

5.2. Experimental parameters
Davies (1988) provided the values of the slope angle ζ , the solids volume fraction
φc, the density ratio γ , the particle diameter d and the water viscosity ηw. These
experimental parameters are summarised in table 1. At the time, the μ(I)-rheology had
not been developed, so exact values of the parameters in the friction law (4.90) were not
determined. However, Armanini et al. (2005) has conducted experiments using similar
plastic cylinders, and Berzi & Jenkins (2008) show that these cylinders are more frictional
than glass beads (Pouliquen 1999b), but less frictional than sand. The values of ζ1 and ζ2
are therefore assumed to be slightly larger than those for glass beads presented in table I of
Pouliquen (1999b). The value of β follows from Pouliquen (1999b) and Gray & Edwards
(2014). The measurements of Forterre & Pouliquen (2003) show that the frictional length
scale L depends on the grain diameter d, and that it is approximately equal to 1.65d for
glass beads in dry granular flows. The parameters measured for dry flows are adopted
here without modification. However, it should be noted that the basal friction in (4.75)
includes a factor 1 − γHhw/hg to account for the reduced granular normal stress when the
grains are submerged in water. This is consistent with Maurin et al. (2016) who measured
quite large shear-to-normal stress ratios in their coupled fluid-discrete-element method
simulations of bed load transport.

The steady-uniform water flow at the tail in Davies’ (1988) experiments implies a
balance between the gravitational force and the Chézy friction in (4.76),

hw
0 g sin ζ = gn2(ūw

0 )
2/(hw

0 )
1/3, (5.1)
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Parameter Measured values Model values

Solids volume fraction, φc 0.56 0.56
Diameter, d 4 mm 4 mm
Water density, �w� tap water 1000 kg m−3

Water viscosity, ηw tap water 0.001 Pa s
Solids density, �g� 1400 kg m−3 1400 kg m−3

Manning’s coefficient, n — 0.0593 s m−(1/3)
Minimum bed friction angle, ζ1 — 24.57◦
Maximum bed friction angle, ζ2 — 36.5◦
Empirical flow rule parameter, β — 0.135
Frictional length scale, L — 1.65 × d

Table 1. Physical parameters in the experiments and the computation.

where hw
0 and ūw

0 are the steady-uniform thickness and speed of the bed, respectively. It
follows that Manning’s coefficient is

n =
√
(hw

0 )
4/3 sin ζ
(ūw

0 )
2 . (5.2)

For Davies’ (1988) experiment shown in the online supplementary material (movie 4),
the slope inclination angle ζ = 19◦, the bed speed ūw

0 = 0.3 m s−1 and the steady-uniform
water depth in the tail lies between one- and two-grain diameters. Assuming hw

0 = 5.5 mm,
Manning’s coefficient is n = 0.0593 s m−(1/3). All these additional parameters are also
summarised in table 1. In particular, none of them are fitting parameters.

6. Steady travelling wave solutions

Davies’ (1988, 1990) moving bed flume experiments develop steady travelling states that
are similar to flow fronts observed in the field (Pierson 1986). This section investigates
whether the governing equations, summarised in § 4.7, can also support such travelling
wave solutions, and explain the formation of dry snouts (Hungr 2000; Berzi & Jenkins
2008; Leonardi et al. 2015).

6.1. Case 1: formation of bulbous heads in the undersaturated regime
The online supplementary movie of Davies’ (1988, 1990) experiment shows that when
the bed speed is relatively small, a dry bulbous head develops that is connected to an
undersaturated body of approximately constant depth. This configuration is equivalent to
the case where the surge is steadily translating on an unmoved bed. It is therefore useful
to transform the governing equations (4.68)–(4.71) into a frame of reference moving with
speed U, by making the coordinate transformation

ξ = x − Ut, τ = t. (6.1a,b)
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The steady-state grain and water mass balances in the moving frame are therefore
d

dξ
(hgφc(ūg − U)) = 0, (6.2)

d
dξ
(hw(1 − φcH)(ūw − U)) = 0, (6.3)

respectively. Integrating (6.2) and (6.3), subject to the condition that hg = 0 and hw = 0 at
the front, implies that

hgφc(ūg − U) = 0, hw(1 − φcH)(ūw − U) = 0. (6.4a,b)

These are satisfied either when hg or hw are identically zero, or when

ūg = ūw = U, (6.5)

i.e. the depth-averaged velocities of the grains and the water are equal to the moving frame
speed.

Since the depth-averaged water velocity is independent of ξ and b = 0 in Davies’ (1988,
1990) experiments, the viscous term and the topography gradients vanish in the source
terms (4.72)–(4.73). Assuming that the flow is undersaturated (H = 1) and that χν = 1,
the steady-state depth-averaged momentum balances (4.70)–(4.71) in the travelling frame
reduce to

hgφc(ūg − U)
dūg

dξ
+ hgφcg cos ζ

dhg

dξ
= hgφcg sin ζ

− μbhgφcg cos ζ(1 − γ hw/hg)+ 180ηwhw(φc)2

�g�(1 − φc)d2 (ū
w − ūghw/hg), (6.6)

hw(1 − φc)(ūw − U)
dūw

dξ
+ hw(1 − φc)g cos ζ

dhw

dξ
= hw(1 − φc)g sin ζ

− (1 − φc)g(nūw)2/(hw)1/3 − 180ηwhw(φc)2

�w�(1 − φc)d2 (ū
w − ūghw/hg), (6.7)

where it is implicitly assumed that the sidewall friction in Davies’ (1988, 1990)
experiments is sufficiently small that this one-dimensional theory can be applied.

Using (6.5) to eliminate ūg and ūw in favour of U, it follows that (6.6) and (6.7) reduce
to a pair of ordinary differential equations (ODEs) for the thicknesses hg and hw

dhg

dξ
= tan ζ − μb(1 − γ hw/hg)+ 180ηwφc

�g�g cos ζ(1 − φc)d2
hw

hg (1 − hw/hg)U, (6.8)

dhw

dξ
= tan ζ − (nU)2/((hw)4/3 cos ζ )− 180ηw(φc)2

�w�g cos ζ(1 − φc)2d2 (1 − hw/hg)U. (6.9)

The grain thickness gradient in (6.8) is balanced by gravity, the buoyancy-reduced friction
and the Darcy drag, while the water thickness gradient in (6.9) balances gravity, the Chézy
drag and the Darcy drag.

In a dry snout, the position of the grain front ξg
f lies further downslope than the water

front ξw
f , and within this region, the water depth hw vanishes. As a result, (6.8) reduces to

dhg

dξ
= tan ζ − μb. (6.10)

This equation was originally derived by Pouliquen (1999a) to compute the shape of a
dry granular front, and admits an exact solution (Gray & Ancey 2009) for the friction law
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Formation of dry granular fronts and watery tails in debris flows

(4.90). As hw → 0, the Chézy drag is singular in the water ODE (6.9). It follows that at the
water front, the dominant balance is between the thickness gradient and Chézy drag, i.e.

dhw

dξ
= − (nU)2

(hw)4/3 cos ζ
. (6.11)

Integrating (6.11) subject to the condition that hw = 0 at ξ = ξw
f , implies that

hw =
[

7
3
(nU)2

cos ζ
(ξw

f − ξ)

]3/7

, (6.12)

which determines the water free surface in the neighbourhood of the front.
Without loss of generality, the granular front is assumed to lie at ξg

f = 0, and (6.10)
is integrated upstream using Matlab’s ode45 initial value problem solver to determine
hg. This solution is valid until the water front is reached at ξ = ξw

f , which is a free
parameter in the problem. The approximate solution (6.12) is used to determine the
water surface for small hw, and then the ODEs (6.8) and (6.9) are integrated upstream
to determine both hw and hg. Figure 4 shows two solution profiles for a 15◦ slope and
a bed speed U = 0.262 m s−1. In figure 4(a), the dry front is assumed to be 18 grain
diameters long, and both the water and grain fronts are connected to the far field steady
states by monotonically decreasing curves. Such solutions resemble those of monodisperse
dry granular flows (Pouliquen 1999a), and agree with the experimental observation of
Davies (1988) that for low speed flows on shallow inclines, the dry snout is connected to
an upstream uniform-depth undersaturated flow. Although the depth-averaged velocities
of grains and water are equal, the local velocities are not. In the lower, saturated part
of the flow, the water flows downslope more quickly than the grains, and helps to drag
the granular phase downslope. In the upper unsaturated part of the flow, velocity shear
results in the grains (alone) being transported downslope faster than either the water or
grains in the lower saturated part of the flow. This differs from the model of Berzi et al.
(2010), in which the local grain and water velocities are assumed to be equal in the steady
uniform flow far upstream of the front. This results in their solutions approaching an
exactly saturated state hw = hg upstream.

When the dry front is doubled in length, to ξg
f − ξw

f = 36 grain diameters (figure 4b),
there is much more resistance from the dry snout, and the granular front has to have a
steeper gradient to drive it downslope. As a result, both the granular and the water free
surfaces develop a pronounced bulge just upstream of the bump, as shown in figure 4(b).
In the dry snout, the component of gravitational acceleration is smaller than the basal
friction, so that there is a negative thickness gradient. Upstream of the water front, the basal
granular friction diminishes gradually, due to the buoyancy imparted by the interstitial
fluid. This implies that the driving force gets close to the buoyancy-reduced grain friction,
and exceeds it just upstream of the peak grain depth, implying the gradient of hg is positive
there. In the wet region, the driving force, i.e. the downslope component of gravitational
acceleration, balances the resistance due to Chézy drag and the Darcy interaction force for
the water phase. Near the water front, the water thickness is sufficiently thin that the Chézy
drag outweighs the gravity-driven force, and a steep water front forms with a negative
thickness gradient. Note that far upstream, the two solutions shown in figure 4(a,b)
approach the same steady uniform states.
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Figure 4. Longitudinal profiles of the grain depth (brown lines) and water depth (blue lines) with ζ = 15◦
and U = 0.262 m s−1 for (a) ξg

f − ξw
f = 18d and (b) ξg

f − ξw
f = 36d. The blue shaded regions represent

water-saturated material and a few schematic grains are shown in the granular region to make it easier to
identify. The flow direction is from left to right and the insets show a close-up view of the front.

6.2. Case 2: formation of bulbous heads and pure watery tails
When the bed speed U is increased, the granular free surface becomes more curved, as
shown in the supplementary online movies 3 and 4 of Davies’ (1988, 1990) experiments.
As a result, the flow develops a dry snout, an undersaturated region that smoothly
transitions into an oversaturated flow and then a watery tail, as shown schematically in
figure 2. This is qualitatively different from the experiments and solutions described in
§ 6.1 for low bed speeds. In the travelling frame (6.1a,b), the steady-state mass balances
(6.2) and (6.3), together with the grain and water free frontal condition, imply that either
hg and hw are identically zero or the depth-averaged grain and water velocities are equal to
the bed speed

ūg = ūw = U. (6.13)

As in § 6.1, the solution starts at the front of the dry snout, which is assumed to lie at ξg
f =

0. The dry granular momentum balance (6.10) is then integrated back to the water front at
ξw

f using Matlab’s ode45 initial value solver. The approximate solution (6.12) at the water
front is used to initiate the solution of the undersaturated ODEs (6.8) and (6.9). These
are integrated upstream until the transition point is reached between the undersaturated
and oversaturated regimes, where hg = hw. To advance the solution further, ODEs need to
be derived for the oversaturated regime. Assuming that the shape factors χν equal unity,
the steady-state oversaturated depth-averaged momentum balances (4.70) and (4.71) in the
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travelling frame reduce to

hgφc(ūg − U)
dūg

dξ
+ hg(1 − γ )φcg cos ζ

dhg

dξ
+ γ hgφcg cos ζ

dhw

dξ
= hgφcg sin ζ

− μbhgφcg cos ζ(1 − γ )+ 180ηwhg(φc)2

�g�(1 − φc)d2 (ū
w − ūg), (6.14)

(hw − hgφc)(ūw − U)
dūw

dξ
+ (hw − hgφc)g cos ζ

dhw

dξ
= (hw − hgφc)g sin ζ

− (hw − hgφc)
g(nūw)2

(hw)4/3
− 180ηwhg(φc)2

�w�(1 − φc)d2 (ū
w − ūg), (6.15)

respectively. Substituting the velocity condition (6.13) into (6.14) and (6.15) eliminates
the acceleration and Darcy drag terms, even though locally, the grains, water and moving
frame are all moving at different speeds. The resulting pair of equations can be solved for
the gradients of the grain and water thicknesses

dhg

dξ
= tan ζ − μb + γ

1 − γ

(nU)2

(hw)4/3 cos ζ
, (6.16)

dhw

dξ
= tan ζ − (nU)2

(hw)4/3 cos ζ
. (6.17)

The lubrication effect of the water phase on the grains is characterised by a buoyancy force
that acts against the granular friction, and has the form of a Chézy drag. This is different
from (6.8) in the undersaturated regime, where the lubrication effect is characterised by
the buoyancy-reduced friction.

The ODEs (6.16) and (6.17) are integrated back from the transition point until hg reaches
zero at ξg

t . Since hg = 0 is a trivial solution of (6.14), the underlying system naturally
degenerates to a single ODE (6.17) that can be solved for the shape of the pure water tail,
upstream of ξg

t . Figure 5 shows solutions for the free surfaces of the grains and the water at
a slope angle ζ = 15◦, bed speed U = 0.39 m s−1 and for three values of the snout length
ξ

g
f − ξw

f , which is a free parameter in the problem. Increasing the snout length results
in an increase of the total volume of grains in the travelling wave. In the undersaturated
regime, the water phase moves locally faster than the grains at the bottom of the flow, but
slower than the dry surface grains, which are sheared forward to form the dry snout. In the
oversaturated tail, the flow becomes sufficiently thin that the basal friction experienced by
the water outweighs that acting on the grains. As a result, grains that reach the granular
free surface are sheared forward to leave a watery upstream tail. This process can be seen
in Davies’ (1988) experimental movies 3 and 4 in the online supplementary material. The
solutions in figure 5 illustrate that it is possible to model the forward motion of the grains
relative to the water, without the need to invoke the traditional view (in the debris flow
community) that excess pore pressures are needed to drive the forward motion of grains in
the oversaturated tail.

For the solutions shown in figures 4 and 5, the snout length is the natural parameter
to use when solving the ODEs, and the total volume of grains and water emerges as
part of the solution. Conversely, in physical experiments, the total volume of grains
and water is prescribed, and one then has to iterate on the snout length to select the
solution with the correct water and grain volumes. Figure 5(b) shows a comparison of the
computed grain free surface and that measured by Davies (1988) at the same bed speed and
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Figure 5. Longitudinal profiles of the grain depth (brown lines) and water depth (blue lines) with ζ = 15◦
and U = 0.39 m s−1, for (a) ξg

f − ξw
f = 18d, (b) ξg

f − ξw
f = 29.7485d and (c) ξg

f − ξw
f = 36d. The blue shaded

regions represent water-saturated material and a few schematic grains are shown in the granular region to make
it easier to identify. The ‘◦’ symbols in panel (b) represent the granular free surface measured by Davies (1990)
at the same bed speed and inclination. The flow direction is from left to right.

slope angle. The computed amplitude, length and slope of the granular free surface in the
tail are in good agreement with the experiments. The main deviation from the experimental
measurements lies in the frontal profile, which may be due to a collisional shear layer that
forms near the moving bed in the experiments. Detailed profiles of the water free surface
are not reported in Davies (1988, 1990). However, Davies (1990) does say that the water
free surface is approximately one-grain diameter below the granular free surface in the
main part of the unsaturated body. Figure 5(b) shows that the water free surface lies within
two grain diameters of the grain free surface for the majority of the undersaturated region.
The theory therefore captures the key qualitative features of the flow as well as providing
a good quantitative match to Davies’ (1990) granular free surface data without any fitting
parameters.
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Formation of dry granular fronts and watery tails in debris flows

6.3. Recirculation of the grains
In Davies’ (1988) experiments, approximately 10 % of the grains were painted white to
reveal the particle paths. This can also be simulated by reconstructing the two-dimensional
velocity field from the depth-averaged velocity and tracing out the streamlines. It follows
from (4.78), (4.79a,b) and (4.88a,b) that the downstream velocity of the grains is given by
the linear shear profile

ug = 2ūg
(

z − b
hg

)
. (6.18)

The granular mass balance (2.2) with the assumption of constant solids volume fraction
(4.6) implies that in the moving frame, the grains satisfy bulk incompressibility

∂ug

∂ξ
+ ∂wg

∂z
= 0. (6.19)

This can be integrated through the depth z, subject to the condition that wg = 0 on the
bottom z = b, to give the normal velocity

wg = ūg

(hg)2
dhg

dξ
(z − b)2. (6.20)

Following Gray & Ancey (2009), the particle paths in the moving frame

dξp

dt
= ug − U,

dzp

dt
= wg (6.21a,b)

can be reconstructed by solving
dzp

dξ
= wg

ug − U
. (6.22)

This can be simplified by introducing the streamfunction coordinate

ψ(ξ, z(ξ)) =
∫ z(ξ)

b
ug(ξ, z′)− U dz′. (6.23)

Assuming that ψp(ξ) is the particle path z = zp(ξ), Leibniz’s rule can be used to swap
the order of differentiation and integration in the derivative dψp/dξ , and hence, using the
bulk incompressibility (6.19), the no normal velocity condition wg(b) = 0 and (6.22), this
implies

dψp

dξ
= (ug − U)

dzp

dξ
− wg = 0. (6.24)

The streamfunction is therefore constant along a given particle path. An explicit expression
for ψ can be obtained by substituting the downstream velocity component (6.18) into
(6.23) and recalling that the depth-averaged velocity ūg is equal to the bed speed U in
the travelling wave solution (6.5), to give

ψ = (z − b)2

hg U − (z − b)U. (6.25)

It follows that the streamfunction ψ equals zero on both the free surface z = sg and the
base z = b. This implies that there is a closed streamline that runs along the grain free
surface and base, which forms a recirculating cell. Grains on the free surface are sheared
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towards the flow front, where they are over-run and remain stationary on the bottom while
the flow passes over them. As the tail propagates past, these basal grains are picked up
again and sheared towards the front.

Within the ψ = 0 contour, there are a nested set of recirculating closed particle paths,
as shown in figure 6(a). At each ξ , the streamfunction reaches a local minimum ψmin =
−hgU/4 at z = zmin = b + hg/2. This is also the point where the downslope velocity (6.18)
is equal to the frame speed U, i.e. it is the no-mean-flow line in the frame of the wave.
Grains above the no-mean-flow line migrate towards the front and grains below advect
backwards in the moving frame and are overtaken by the tail. An explicit relation for the
particle paths can be obtained by solving the quadratic equation (6.25) for z to give

z =
⎧⎨
⎩b + 1

2 hg + 1
2

√
(hg)2 + 4ψhg/U, z ≥ zmin,

b + 1
2 hg − 1

2

√
(hg)2 + 4ψhg/U, z < zmin.

(6.26)

The predicted grain paths (figure 6c) are in good agreement with Davies’ (1990)
measured particle paths over a one-second time interval (figure 6b). Both measurements
and prediction show that grains near the surface are moving forward towards the front,
while those near the base are transported backward (in the moving frame) and rise up again
to prevent the surge from losing mass. This clearly indicates that strong shear develops in
the flow. Some discrepancies also exist. This is largely because the velocity profile in
Davies’ (1990) experiments has the shear concentrated at the bottom of the flow and it is
sheared less strongly near the free surface.

7. Conclusions

In this paper, a depth-averaged two-phase model is derived to account for the development
of dry snouts and watery tails in granular–fluid mixtures, such as debris flows and lahars.
Most of the existing depth-averaged models for debris flows assume that the flow is
saturated and the contribution of the interstitial water is characterised by the bed pore
fluid pressure that mitigates the bed granular friction (Iverson & George 2014), or by
buoyancy and interaction drag forces that couple the grain and water phases (Pitman &
Le 2005). These models usually solve for the mixture depth and solids volume fraction,
in addition to the depth-averaged velocities. Since the water typically experiences less
frictional resistance to motion than the grains, existing debris flow models predict that
water moves to the flow front (e.g. see figure 3(c) in George & Iverson (2011) and figure 2
in Pudasaini 2012). As a result, the formation of dry snouts, observed in the field (Pierson
1986) and in large scale debris experiments (Iverson 2003; Iverson et al. 2010; Johnson
et al. 2012), is often attributed to particle-size segregation.

The laboratory experiment of Davies (1988, 1990) show that the formation of the dry
snouts and pure watery tails are not necessarily associated with particle-size segregation,
and that a mixture of water and monodisperse grains can also generate them. The research
of Gray & Ancey (2009), Johnson et al. (2012), Baker et al. (2016a) and Gray (2018) on the
formation of coarse granular fronts in bi-disperse granular flows, does, however, point to a
promising approach to account for their formation, by incorporating shear and the layered
development of the flow into debris flow models.

In this paper, a depth-averaged fluid–solid mixture model with shear is derived, which
assumes the flow has three regimes consisting of (i) dry grains, (ii) a mixture of water
and grains, and (iii) pure water. The concentrations of the grains and water within regimes
(i)–(iii) are set a priori in (4.6)–(4.8). The volume fraction of water φw can therefore take
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Figure 6. (a) Nested (green) streamlines within the granular region for the same conditions as illustrated in
figure 5(b). The granular free surface is illustrated in brown and the no-mean-flow line in the frame of the
wave is shown with a dashed line. The water is shaded in blue. Each streamline has two intersections with the
no-mean-flow line (as illustrated by the black markers on one loop). Grains that lie above the no-mean-flow
line move forwards towards the front of the flow, while grains below it move backwards towards the tail. (b)
Measured particle paths in Davies’ (1990) experiments over a one-second time interval (green arrowed lines)
and the measured free surface height (circles). (c) Predicted particle paths using the flow field in panel (a). In
panel (c), the original positions of grains with numbers (1) and (2) are (−20.1326d, 7.4855d) and (−26.9030d,
7.7656d), respectively, which are different from those in panel (b) due to the fact that their measured positions
are beyond the predicted grain surface.

three values 0, 1 − φc or 1, where φc is the solids volume fraction, which is constant
and uniform throughout the granular phase. This latter assumption precludes excess pore
fluid pressure effects (see Kowalski & McElwaine 2013; Iverson & George 2014; Bouchut
et al. 2016; Wang et al. 2017; Meng & Wang 2018; Meng et al. 2020). While the local
water and grain concentrations in regimes (i)–(iii) are set in stone, the water height hw and
the grain height hg are independent fields that determine the local vertical structure. This
vertical structure is taken into account in the depth averaging of the granular and water
mass and momentum balances. In particular, the volume fraction weighted depth-averaged
water velocity ūw, defined in (4.9b), changes as the relative heights of the grains and water
change. As a result, if there is a deep layer of pure water (regime iii) on top of a thin layer of
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water and grains (regime ii), then the water momentum balance will be more reflective of
the momentum balance for a pure water layer. Conversely, if there is only a thin pure water
layer, the momentum balance for the water will be closer to that for the water percolating
through the grains.

The governing equations are combined into a single unified system (4.67)–(4.77) that
can seamlessly switch between dry, oversaturated, undersaturated and pure water regimes.
To illustrate the flexibility and power of this approach, comparisons are made to Davies’
(1988, 1990) small-scale moving bed flume experiments, which were performed with
a mixture of monodisperse grains and water. The travelling-wave solutions constructed
here account for Davies’ (1988, 1990) findings that if the grain volume exceeds what a
steady-uniform flow can sustain at low bed speeds, then a bulbous head develops that
is connected to an upstream region of uniform-depth flow (figure 4). At higher bed
speeds, the theory naturally generates steadily travelling waves for a finite granular mass
that transition from (i) a dry front (ii) to an undersaturated region, (iii) an oversaturated
region and finally (iv) a pure watery tail (see figures 5 and 6). These solutions therefore
encompass all four debris flow regimes in a single longitudinal profile. Moreover, the free
surface profile and the grain trajectories are in good agreement with the experimental data
of Davies (1988, 1990), without the use of any fitting parameters. Velocity shear in the
granular body allows a continuous circulation of particles, with those higher in the flow
advected towards the flow front, and those lower down in the slower moving part of the
flow being overtaken by the moving wave until they near the tail of the flow and start
moving forwards again. In these solutions, the dry granular front is driven downslope by
the upstream water front, which experiences less friction. Conversely, in the tail, a thin
layer of water develops that is in steady-uniform flow and the grains experience less basal
friction.

The theory derived in this paper is sufficiently general to apply to both quasi-steady
flows (Davies 1988, 1990) as well as fully transient spatially developing ones (Iverson
1997; Johnson et al. 2012; Taylor-Noonan 2020). In particular, there is no difference
in the physical assumptions that need to go into the theory in these cases. The only
difference lies in the initial and boundary conditions that are applied to the final model. A
future paper will develop a numerical method to solve the full system of depth-averaged
equations (4.67)–(4.77) and test the results against transient experiments with strong
longitudinal spreading, which is a characteristic feature of natural debris flows. It should
be noted, however, that even fully transient spreading flows can locally enter a quasi-steady
flow regime if their fronts propagate steadily downslope. This is the case in the large-scale
debris-flow experiments of Johnson et al. (2012), as well as in the small-scale analogue
experiments of Pouliquen (1999a), Viroulet et al. (2018), Rocha et al. (2019) and
Edwards et al. (2021). The small-scale experimental results of Davies (1988, 1990) and
the solutions constructed here in § 5 are therefore of direct relevance to real debris
flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.400.
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Appendix A. No jump in the effective stress tractions

The field equations (2.11) and (2.12) assume that physical quantities are continuous and
differentiable. These conditions are not necessarily met on the water surface z = sw(x, t)
in the undersaturated region or the grain surface z = sg(x, t) in the oversaturated region.
In this case, momentum-jump conditions (Chadwick 1976) must be applied across the
singular surfaces. The existence of the non-conservative terms, such as the buoyancy force,
present a challenge to the direct formulation of jump conditions. However, the assumption
of constant solids volume fraction (4.6) made in this paper reduces the buoyancy force to a
conservative form in the undersaturated region and the momentum-jump condition at the
water free surface is therefore

Fw(x, t) = 0 : [[�gug(uw − ug) · nw + σ gnw]] = 0. (A1)

Substitution of the grain partial stress (2.5) into (A1), and using the mass-jump condition
(2.17) to simplify the result, implies

Fw(x, t) = 0 : [[Mgug − (φcpw�I + σ e)nw]] = 0, (A2)

where Mg = �g+(uw − ug+) · nw is the grain mass flux across the water surface. The
normal component of the water surface traction (3.18) implies that, to leading order, the
pore fluid pressure is pw� = 0. Substituting this into (A2) implies that

Fw(x, t) = 0 : [[Mgug − σ enw]] = 0. (A3)

It follows that if the granular velocity is continuous across the water free surface, then
(A3) implies that there is no jump in the effective stress

Fw(x, t) = 0 : [[σ enw]] = 0. (A4)

Using the scaling (3.1a–f ) to non-dimensionalise (A4) implies that the tangential and
normal components of the granular momentum jump condition are[[

−εσ̂ e
xx
∂ ŝw

∂ x̂
+ μσ̂ e

xz

]]
= 0, ẑ = ŝw(x̂, t̂), (A5)[[

−εμσ̂ e
xz
∂ ŝw

∂ x̂
+ σ̂ e

zz

]]
= 0, ẑ = ŝw(x̂, t̂). (A6)

Appendix B. The undersaturated grain momentum balance

This appendix provides details of the derivation of the depth-averaged granular momentum
balance (4.36) in the undersaturated region. It is convenient to define the left-hand side of
the non-dimensional downslope granular momentum balance (3.3) as

L g = ε

(
∂

∂ t̂
(φgûg)+ ∂

∂ x̂
(φgûgûg)+ ∂

∂ ẑ
(φgûgŵg)

)
. (B1)

The integral of (B1) through the grain depth is divided into two parts, one integral
above the water free surface ẑ = ŝw, and one below it. Using Leibniz’s integration rule
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to swap the order of integration and differentiation, and substituting the surface and basal
kinematic conditions (3.9) and (3.10), implies∫ ŝg

b̂
L gdẑ =

∫ ŝw

b̂
L g dẑ +

∫ ŝg

ŝw
L g dẑ

= ε
∂

∂ t̂
(ĥgφgûg)+ ε

∂

∂ x̂
(ĥgφg(ûg)2)+

[[
εφgûg

(
∂ ŝw

∂ t̂
+ ûg ∂ ŝw

∂ x̂
− ŵg

)]]
,

(B2)

where (3.13) implies that the terms in the jump bracket [[·]] vanish provided there is no
jump in the downslope granular velocity. Using the assumption that the solids volume
fraction is constant (4.6), the terms on the right-hand side of (3.3) are

Rg = −εγ φc ∂ p̂w�

∂ x̂
− ε

∂σ̂ e
xx

∂ x̂
− μ

∂σ̂ e
xz

∂ ẑ
+ φc sin ζ + γ Ĉd(ûw − ûg). (B3)

This can also now be integrated through the flow depth by dividing the integration into
two parts, and recalling that the buoyancy and Darcy drag are active only below the water
surface. It follows that∫ ŝg

b̂
Rgdẑ =

∫ ŝw

b̂
Rg dẑ +

∫ ŝg

ŝw
Rg dẑ

= ĥgφc sin ζ − ε
∂

∂ x̂
(ĥg ˆ̄σ e

xx)− εγ φc ∂

∂ x̂
(ĥw ˆ̄pw)−

(
εσ̂ e

xx
∂ b̂
∂ x̂

− μσ̂ e
xz

)

−
[[
εσ̂ e

xx
∂ ŝw

∂ x̂
− μσ̂ e

xz

]]
− εγ φcp̂w�

b
∂ b̂
∂ x̂

−
∫ ŝw

b̂
γ Ĉd(ûg − ûw) dẑ, (B4)

where the surface and basal kinematic conditions, (3.9) and (3.10), and the downslope
surface traction (3.15) have been used to simplify the result. The terms within the jump
bracket [[·]] vanish, because there is no jump in the effective stress (A5). The combination
of (B2) and (B4) gives (4.36).

Appendix C. Derivation of the fluid viscous stress

This appendix provides details of the derivation of the non-dimensional depth-averaged
viscous stress experienced by the water. By using the constitutive relation for the deviatoric
stress in the Newtonian fluid (2.7), and non-dimensionalising using the scalings (3.1a–f ),
it follows that

τ̂w
xx = 2φw

Re
∂ ûw

∂ x̂
, (C1)

where the Reynolds number Re = �w�H
√

gH/ηw. For the undersaturated regime,
substituting φw = 1 − φc and using Leibniz’s rule for exchanging the order of integration
and differentiation, implies that

ĥw ˆ̄τw
xx = 2

Re

(∫ ŝw

b̂
φw ∂ ûw

∂ x̂
dẑ

)
= 2

Re
(1 − φc)

(
∂

∂ x̂
(ĥw ˆ̄uw)−

[
ûw ∂ ẑ
∂ x̂

]ẑw

b̂

)
. (C2)

Trying to formally include all of the terms on the right-hand side of (C2) is difficult and
leads to theories that are too complicated. A pragmatic approach is to assume that the
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downslope velocity is uniform with depth, i.e. that ûw = ˆ̄uw. In this case, (C2) reduces to

ĥw ˆ̄τw
xx ≈ 2

Re
ĥw(1 − φc)

∂ ˆ̄uw

∂ x̂
. (C3)

In the oversaturated regime, the plug-flow assumption implies that

ĥw ˆ̄τw
xx ≈ 2

Re
(ĥw − φcĥg)

∂ ˆ̄uw

∂ x̂
. (C4)

Appendix D. The oversaturated water momentum balance

This appendix provides details of the derivation of the depth-averaged water momentum
balance (4.63) in the oversaturated region. It is convenient to define the left-hand side of
the non-dimensional downslope water momentum balance (3.7) as

L w = ε

(
∂

∂ t̂
(φwûw)+ ∂

∂ x̂
(φwûwûw)+ ∂

∂ ẑ
(φwûwŵw)

)
. (D1)

Since there is a discontinuity in the water concentration at the grain free surface ẑ = ŝg,
the integration is split into two parts

∫ ŝw

b̂
L w dẑ =

∫ ŝg

b̂
L w dẑ +

∫ ŝw

ŝg
L w dẑ. (D2)

Using Leibniz’s rule to exchange the order of integration and differentiation and the
surface and basal kinematics conditions (3.11)–(3.12), it follows that

∫ ŝw

b̂
L w dẑ = ε

∂

∂ t̂
(ĥwφwûw)+ ε

∂

∂ x̂
(ĥwφw(ûw)2)+

[[
εφwûw

(
∂ ŝg

∂ t̂
+ ûw ∂ ŝg

∂ x̂
− ŵw

)]]
,

(D3)

where the terms within the jump bracket [[·]] vanish due to (3.14) provided the downslope
water velocity is continuous across the concentration discontinuity. Finally, using the
definition of the depth-averaged velocity (4.9b) and the water shape factor (4.45), the
integral of the left-hand side becomes

∫ ŝw

b̂
L w dẑ = ε

∂

∂ t̂
((ĥw − φcĥg) ˆ̄uw)+ ε

∂

∂ x̂
(χw(ĥw − φcĥg)( ˆ̄uw)2). (D4)

Below the granular free surface, the right-hand side of (3.7) can be written as

Rw = −ε ∂ p̂w�

∂ x̂
+ εφc ∂ p̂w�

∂ x̂
+ ε2 ∂τ̂

w
xx

∂ x̂
+ ∂τ̂w

xz

∂ ẑ
+ φw sin ζ − Ĉd(ûw − ûg), (D5)

using φw = 1 − φc. Above the grain free surface, the term φc∂ p̂w∗/∂ x̂ and the Darcy drag
are zero. Using Leibniz’s rule to exchange the order of integration and differentiation, the
traction-free water condition (3.17), the basal water traction (3.21) and the depth-integrated
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Darcy drag (4.54), it follows that∫ ŝw

b̂
Rw dẑ = (ĥw − φcĥg) sin ζ − Cw ˆ̄uw| ˆ̄uw| − Ĉd(ψ̂w(ŝg)− ĥg ˆ̄ug)− ε

∂

∂ x̂
(ĥw ˆ̄pw�)

+ ε2 ∂

∂ x̂
(ĥw ˆ̄τw

xx)+ ε

(
p̂w� ∂ ẑ

∂ x̂

)ŝw

b̂
+ εφc ∂

∂ x̂

(∫ ŝg

b̂
p̂w� dẑ

)

− εφc
(

p̂w� ∂ ẑ
∂ x̂

)ŝg

b̂
−
[[
εp̂w� ∂ ŝg

∂ x̂
− ε2τ̂w

xx
∂ ŝg

∂ x̂
+ τ̂w

xz

]]
, (D6)

where the terms in the jump bracket [[·]] vanish provided there is no jump in stress at the
granular free surface. Combining (D4) and (D6) gives the oversaturated depth-averaged
water momentum balance (4.61).
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